aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/GiblePargenproof.v
blob: 1bcc3522230992897cd3e053f3ec80aa8b91f21d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2020-2023 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Require Import compcert.backend.Registers.
Require Import compcert.common.AST.
Require Import compcert.common.Errors.
Require Import compcert.common.Linking.
Require Import compcert.common.Globalenvs.
Require Import compcert.common.Memory.
Require Import compcert.common.Values.
Require Import compcert.lib.Maps.

Require Import vericert.common.Vericertlib.
Require Import vericert.hls.GibleSeq.
Require Import vericert.hls.GiblePar.
Require Import vericert.hls.Gible.
Require Import vericert.hls.GiblePargen.
Require Import vericert.hls.Predicate.
Require Import vericert.hls.Abstr.
Require Import vericert.common.Monad.

Module Import OptionExtra := MonadExtra(Option).

#[local] Open Scope positive.
#[local] Open Scope forest.
#[local] Open Scope pred_op.

#[local] Opaque simplify.
#[local] Opaque deep_simplify.

Ltac destr := destruct_match; try discriminate; [].

(*|
==============
RTLPargenproof
==============

RTLBlock to abstract translation
================================

Correctness of translation from RTLBlock to the abstract interpretation
language.
|*)

Definition is_regs i := match i with mk_instr_state rs _ _ => rs end.
Definition is_mem i := match i with mk_instr_state _ _ m => m end.
Definition is_ps i := match i with mk_instr_state _ p _ => p end.

Definition evaluable {A B C} (sem: ctx -> B -> C -> Prop) (ctx: @ctx A) p := exists b, sem ctx p b.

Definition p_evaluable {A} := @evaluable A _ _ sem_pexpr.

Definition evaluable_expr {A} := @evaluable A _ _ sem_pred.

Definition all_evaluable {A B} (ctx: @ctx A) f_p (l: predicated B) :=
  forall p y, NE.In (p, y) l -> p_evaluable ctx (from_pred_op f_p p).

Definition all_evaluable2 {A B C} (ctx: @ctx A) (sem: Abstr.ctx -> B -> C -> Prop) (l: predicated B) :=
  forall p y, NE.In (p, y) l -> evaluable sem ctx y.

Definition pred_forest_evaluable {A} (ctx: @ctx A) (ps: PTree.t pred_pexpr) :=
  forall i p, ps ! i = Some p -> p_evaluable ctx p.

Definition forest_evaluable {A} (ctx: @ctx A) (f: forest) :=
  pred_forest_evaluable ctx f.(forest_preds).

(* Lemma all_evaluable2_NEmap : *)
(*   forall G A (ctx: @ctx G) (f: (pred_op * A) -> (pred_op * pred_expression)) (x: predicated A), *)
(*     all_evaluable2 ctx sem_pred (NE.map f x). *)
(* Proof. *)
(*   induction x. *)

Lemma all_evaluable_cons :
  forall A B pr ctx b a,
    all_evaluable ctx pr (NE.cons a b) ->
    @all_evaluable A B ctx pr b.
Proof.
  unfold all_evaluable; intros.
  enough (NE.In (p, y) (NE.cons a b)); eauto.
  constructor; tauto.
Qed.

Lemma all_evaluable2_cons :
  forall A B C sem ctx b a,
    all_evaluable2 ctx sem (NE.cons a b) ->
    @all_evaluable2 A B C ctx sem b.
Proof.
  unfold all_evaluable2; intros.
  enough (NE.In (p, y) (NE.cons a b)); eauto.
  constructor; tauto.
Qed.

Lemma all_evaluable_cons2 :
  forall A B pr ctx b a p,
    @all_evaluable A B ctx pr (NE.cons (p, a) b) ->
    p_evaluable ctx (from_pred_op pr p).
Proof.
  unfold all_evaluable; intros.
  eapply H. constructor; eauto.
Qed.

Lemma all_evaluable2_cons2 :
  forall A B C sem ctx b a p,
    @all_evaluable2 A B C ctx sem (NE.cons (p, a) b) ->
    evaluable sem ctx a.
Proof.
  unfold all_evaluable; intros.
  eapply H. constructor; eauto.
Qed.

Lemma all_evaluable_cons3 :
  forall A B pr ctx b p a,
    all_evaluable ctx pr b ->
    p_evaluable ctx (from_pred_op pr p) ->
    @all_evaluable A B ctx pr (NE.cons (p, a) b).
Proof.
  unfold all_evaluable; intros. inv H1. inv H3. inv H1. auto.
  eauto.
Qed.

Lemma all_evaluable_singleton :
  forall A B pr ctx b p,
    @all_evaluable A B ctx pr (NE.singleton (p, b)) ->
    p_evaluable ctx (from_pred_op pr p).
Proof.
  unfold all_evaluable; intros. eapply H. constructor.
Qed.

Lemma get_forest_p_evaluable :
  forall A (ctx: @ctx A) f r,
    forest_evaluable ctx f ->
    p_evaluable ctx (f #p r).
Proof.
  intros. unfold "#p", get_forest_p'.
  destruct_match. unfold forest_evaluable in *.
  unfold pred_forest_evaluable in *. eauto.
  unfold p_evaluable, evaluable. eexists.
  constructor. constructor.
Qed.

Lemma set_forest_p_evaluable :
  forall A (ctx: @ctx A) f r p,
    forest_evaluable ctx f ->
    p_evaluable ctx p ->
    forest_evaluable ctx (f #p r <- p).
Proof.
  unfold forest_evaluable, pred_forest_evaluable; intros.
  destruct (peq i r); subst.
  - rewrite forest_pred_gss2 in H1. now inv H1.
  - rewrite forest_pred_gso2 in H1 by auto; eauto.
Qed.

Definition check_dest i r' :=
  match i with
  | RBop p op rl r => (r =? r')%positive
  | RBload p chunk addr rl r => (r =? r')%positive
  | _ => false
  end.

Lemma check_dest_dec i r :
  {check_dest i r = true} + {check_dest i r = false}.
Proof. destruct (check_dest i r); tauto. Qed.

Fixpoint check_dest_l l r :=
  match l with
  | nil => false
  | a :: b => check_dest a r || check_dest_l b r
  end.

Lemma check_dest_l_forall :
  forall l r,
  check_dest_l l r = false ->
  Forall (fun x => check_dest x r = false) l.
Proof. induction l; crush. Qed.

Lemma check_dest_l_dec i r :
  {check_dest_l i r = true} + {check_dest_l i r = false}.
Proof. destruct (check_dest_l i r); tauto. Qed.

Lemma match_states_list :
  forall A (rs: Regmap.t A) rs',
  (forall r, rs !! r = rs' !! r) ->
  forall l, rs ## l = rs' ## l.
Proof. induction l; crush. Qed.

Lemma PTree_matches :
  forall A (v: A) res rs rs',
  (forall r, rs !! r = rs' !! r) ->
  forall x, (Regmap.set res v rs) !! x = (Regmap.set res v rs') !! x.
Proof.
  intros; destruct (Pos.eq_dec x res); subst;
  [ repeat rewrite Regmap.gss by auto
  | repeat rewrite Regmap.gso by auto ]; auto.
Qed.

Definition match_prog (prog : GibleSeq.program) (tprog : GiblePar.program) :=
  match_program (fun cu f tf => transl_fundef f = Errors.OK tf) eq prog tprog.

(* TODO: Fix the `bb` and add matches for them. *)
Inductive match_stackframes: GibleSeq.stackframe -> GiblePar.stackframe -> Prop :=
| match_stackframe:
    forall f tf res sp pc rs rs' ps ps',
      transl_function f = OK tf ->
      (forall x, rs !! x = rs' !! x) ->
      (forall x, ps !! x = ps' !! x) ->
      match_stackframes (GibleSeq.Stackframe res f sp pc rs ps)
                        (Stackframe res tf sp pc rs' ps').

Inductive match_states: GibleSeq.state -> GiblePar.state -> Prop :=
| match_state:
    forall sf f sp pc rs rs' m sf' tf ps ps'
      (TRANSL: transl_function f = OK tf)
      (STACKS: list_forall2 match_stackframes sf sf')
      (REG: forall x, rs !! x = rs' !! x)
      (REG: forall x, ps !! x = ps' !! x),
      match_states (GibleSeq.State sf f sp pc rs ps m)
                   (State sf' tf sp pc rs' ps' m)
| match_returnstate:
    forall stack stack' v m
      (STACKS: list_forall2 match_stackframes stack stack'),
      match_states (GibleSeq.Returnstate stack v m)
                   (Returnstate stack' v m)
| match_callstate:
    forall stack stack' f tf args m
      (TRANSL: transl_fundef f = OK tf)
      (STACKS: list_forall2 match_stackframes stack stack'),
      match_states (GibleSeq.Callstate stack f args m)
                   (Callstate stack' tf args m).

Section CORRECTNESS.

  Context (prog: GibleSeq.program) (tprog : GiblePar.program).
  Context (TRANSL: match_prog prog tprog).

  Let ge : GibleSeq.genv := Globalenvs.Genv.globalenv prog.
  Let tge : GiblePar.genv := Globalenvs.Genv.globalenv tprog.

  Lemma symbols_preserved:
    forall (s: AST.ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
  Proof using TRANSL. intros. eapply (Genv.find_symbol_match TRANSL). Qed.
  Hint Resolve symbols_preserved : rtlgp.

  Lemma function_ptr_translated:
    forall (b: Values.block) (f: GibleSeq.fundef),
      Genv.find_funct_ptr ge b = Some f ->
      exists tf,
        Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = Errors.OK tf.
  Proof using TRANSL.
    intros. exploit (Genv.find_funct_ptr_match TRANSL); eauto.
    intros (cu & tf & P & Q & R); exists tf; auto.
  Qed.

  Lemma functions_translated:
    forall (v: Values.val) (f: GibleSeq.fundef),
      Genv.find_funct ge v = Some f ->
      exists tf,
        Genv.find_funct tge v = Some tf /\ transl_fundef f = Errors.OK tf.
  Proof using TRANSL.
    intros. exploit (Genv.find_funct_match TRANSL); eauto.
    intros (cu & tf & P & Q & R); exists tf; auto.
  Qed.

  Lemma senv_preserved:
    Senv.equiv (Genv.to_senv ge) (Genv.to_senv tge).
  Proof (Genv.senv_transf_partial TRANSL).
  Hint Resolve senv_preserved : rtlgp.

  Lemma sig_transl_function:
    forall (f: GibleSeq.fundef) (tf: GiblePar.fundef),
      transl_fundef f = OK tf ->
      funsig tf = GibleSeq.funsig f.
  Proof using .
    unfold transl_fundef, transf_partial_fundef, transl_function; intros;
    repeat destruct_match; crush;
    match goal with H: OK _ = OK _ |- _ => inv H end; auto.
  Qed.
  Hint Resolve sig_transl_function : rtlgp.

  Hint Resolve Val.lessdef_same : rtlgp.
  Hint Resolve regs_lessdef_regs : rtlgp.

  Lemma find_function_translated:
    forall ros rs rs' f,
      (forall x, rs !! x = rs' !! x) ->
      GibleSeq.find_function ge ros rs = Some f ->
      exists tf, find_function tge ros rs' = Some tf
                 /\ transl_fundef f = OK tf.
  Proof using TRANSL.
    Ltac ffts := match goal with
                 | [ H: forall _, Val.lessdef _ _, r: Registers.reg |- _ ] =>
                   specialize (H r); inv H
                 | [ H: Vundef = ?r, H1: Genv.find_funct _ ?r = Some _ |- _ ] =>
                   rewrite <- H in H1
                 | [ H: Genv.find_funct _ Vundef = Some _ |- _] => solve [inv H]
                 | _ => solve [exploit functions_translated; eauto]
                 end.
    destruct ros; simplify; try rewrite <- H;
    [| rewrite symbols_preserved; destruct_match;
      try (apply function_ptr_translated); crush ];
    intros;
    repeat ffts.
  Qed.

  Lemma schedule_oracle_nil:
    forall bb,
      schedule_oracle nil bb = true ->
      bb = nil.
  Proof using .
    unfold schedule_oracle, check_control_flow_instr.
    simplify; repeat destruct_match; crush.
  Qed.

  Lemma schedule_oracle_nil2:
      schedule_oracle nil nil = true.
  Proof using .
    unfold schedule_oracle, check_control_flow_instr.
    simplify; repeat destruct_match; crush.
  Admitted.

  Lemma eval_op_eq:
    forall (sp0 : Values.val) (op : Op.operation) (vl : list Values.val) m,
      Op.eval_operation ge sp0 op vl m = Op.eval_operation tge sp0 op vl m.
  Proof using TRANSL.
    intros.
    destruct op; auto; unfold Op.eval_operation, Genv.symbol_address, Op.eval_addressing32;
    [| destruct a; unfold Genv.symbol_address ];
    try rewrite symbols_preserved; auto.
  Qed.
  Hint Resolve eval_op_eq : rtlgp.

  Lemma eval_addressing_eq:
    forall sp addr vl,
      Op.eval_addressing ge sp addr vl = Op.eval_addressing tge sp addr vl.
  Proof using TRANSL.
    intros.
    destruct addr;
    unfold Op.eval_addressing, Op.eval_addressing32;
    unfold Genv.symbol_address;
    try rewrite symbols_preserved; auto.
  Qed.
  Hint Resolve eval_addressing_eq : rtlgp.

  Lemma ge_preserved_lem:
    ge_preserved ge tge.
  Proof using TRANSL.
    unfold ge_preserved.
    eauto with rtlgp.
  Qed.
  Hint Resolve ge_preserved_lem : rtlgp.

  Lemma lessdef_regmap_optget:
    forall or rs rs',
      regs_lessdef rs rs' ->
      Val.lessdef (regmap_optget or Vundef rs) (regmap_optget or Vundef rs').
  Proof using. destruct or; crush. Qed.
  Hint Resolve lessdef_regmap_optget : rtlgp.

  Lemma regmap_equiv_lessdef:
    forall rs rs',
      (forall x, rs !! x = rs' !! x) ->
      regs_lessdef rs rs'.
  Proof using.
    intros; unfold regs_lessdef; intros.
    rewrite H. apply Val.lessdef_refl.
  Qed.
  Hint Resolve regmap_equiv_lessdef : rtlgp.

  Lemma int_lessdef:
    forall rs rs',
      regs_lessdef rs rs' ->
      (forall arg v,
          rs !! arg = Vint v ->
          rs' !! arg = Vint v).
  Proof using. intros ? ? H; intros; specialize (H arg); inv H; crush. Qed.
  Hint Resolve int_lessdef : rtlgp.

  Ltac semantics_simpl :=
    match goal with
    | [ H: match_states _ _ |- _ ] =>
      let H2 := fresh "H" in
      learn H as H2; inv H2
    | [ H: transl_function ?f = OK _ |- _ ] =>
      let H2 := fresh "TRANSL" in
      learn H as H2;
      unfold transl_function in H2;
      destruct (check_scheduled_trees
                  (GibleSeq.fn_code f)
                  (fn_code (schedule f))) eqn:?;
               [| discriminate ]; inv H2
    | [ H: context[check_scheduled_trees] |- _ ] =>
      let H2 := fresh "CHECK" in
      learn H as H2;
      eapply check_scheduled_trees_correct in H2; [| solve [eauto] ]
    | [ H: schedule_oracle nil ?bb = true |- _ ] =>
      let H2 := fresh "SCHED" in
      learn H as H2;
      apply schedule_oracle_nil in H2
    | [ H: find_function _ _ _ = Some _, H2: forall x, ?rs !! x = ?rs' !! x |- _ ] =>
      learn H; exploit find_function_translated; try apply H2; eauto; inversion 1
    | [ H: Mem.free ?m _ _ _ = Some ?m', H2: Mem.extends ?m ?m'' |- _ ] =>
      learn H; exploit Mem.free_parallel_extends; eauto; intros
    | [ H: Events.eval_builtin_args _ _ _ _ _ _, H2: regs_lessdef ?rs ?rs' |- _ ] =>
      let H3 := fresh "H" in
      learn H; exploit Events.eval_builtin_args_lessdef; [apply H2 | | |];
      eauto with rtlgp; intro H3; learn H3
    | [ H: Events.external_call _ _ _ _ _ _ _ |- _ ] =>
      let H2 := fresh "H" in
      learn H; exploit Events.external_call_mem_extends;
      eauto; intro H2; learn H2
    | [ H: exists _, _ |- _ ] => inv H
    | _ => progress simplify
    end.

  Hint Resolve Events.eval_builtin_args_preserved : rtlgp.
  Hint Resolve Events.external_call_symbols_preserved : rtlgp.
  Hint Resolve set_res_lessdef : rtlgp.
  Hint Resolve set_reg_lessdef : rtlgp.
  Hint Resolve Op.eval_condition_lessdef : rtlgp.

  Hint Constructors Events.eval_builtin_arg: barg.

  Lemma eval_builtin_arg_eq:
    forall A ge a v1 m1 e1 e2 sp,
      (forall x, e1 x = e2 x) ->
      @Events.eval_builtin_arg A ge e1 sp m1 a v1 ->
      Events.eval_builtin_arg ge e2 sp m1 a v1.
Proof. induction 2; try rewrite H; eauto with barg. Qed.

  Lemma eval_builtin_args_eq:
    forall A ge e1 sp m1 e2 al vl1,
      (forall x, e1 x = e2 x) ->
      @Events.eval_builtin_args A ge e1 sp m1 al vl1 ->
      Events.eval_builtin_args ge e2 sp m1 al vl1.
  Proof.
    induction 2.
    - econstructor; split.
    - exploit eval_builtin_arg_eq; eauto. intros.
      destruct IHlist_forall2 as [| y]. constructor; eauto.
      constructor. constructor; auto.
      constructor; eauto.
  Qed.

  #[local] Hint Resolve Events.external_call_symbols_preserved : core.
  #[local] Hint Resolve eval_builtin_args_eq : core.
  #[local] Hint Resolve symbols_preserved : core.
  #[local] Hint Resolve senv_preserved : core.
  #[local] Hint Resolve eval_op_eq : core.
  #[local] Hint Resolve eval_addressing_eq : core.

  Lemma step_instr_ge :
    forall sp a i i',
      step_instr ge sp i a i' ->
      step_instr tge sp i a i'.
  Proof.
    inversion 1; subst; simplify; try solve [econstructor; eauto].
    - constructor; auto; rewrite <- eval_op_eq; eauto.
    - econstructor; eauto; rewrite <- eval_addressing_eq; eauto.
    - econstructor; eauto; rewrite <- eval_addressing_eq; eauto.
  Qed.
  #[local] Hint Resolve step_instr_ge : core.

  Lemma seqbb_step_step_instr_list :
    forall sp a i i',
      SeqBB.step ge sp i a i' ->
      ParBB.step_instr_list tge sp i a i'.
  Proof.
    induction a; simplify; inv H.
    econstructor; eauto. eapply IHa; eauto.
    econstructor; eauto. constructor.
  Qed.
  #[local] Hint Resolve seqbb_step_step_instr_list : core.

  Lemma step_list2_step_instr_list :
    forall sp a i i',
      step_list2 (step_instr ge) sp i a i' ->
      ParBB.step_instr_list tge sp i a i'.
  Proof.
    induction a; simplify; inv H.
    econstructor; eauto.
    destruct i; try solve [inv H4].
    econstructor; eauto. apply IHa; auto.
  Qed.
  #[local] Hint Resolve step_list2_step_instr_list : core.

  Lemma seqbb_step_step_instr_seq :
    forall sp x i i' cf,
      SeqBB.step ge sp (Iexec i) (concat x) (Iterm i' cf) ->
      ParBB.step_instr_seq tge sp (Iexec i) x (Iterm i' cf).
  Proof.
    induction x; crush. inv H. eapply step_options in H.
    inv H. econstructor. eauto. constructor.
    simplify. econstructor; eauto.
    eapply IHx; eauto.
  Qed.

  Lemma step_list2_step_instr_seq :
    forall sp x i i',
      step_list2 (step_instr ge) sp (Iexec i) (concat x) (Iexec i') ->
      ParBB.step_instr_seq tge sp (Iexec i) x (Iexec i').
  Proof.
    induction x; crush. inv H. constructor.
    eapply step_options2 in H. simplify.
    econstructor; eauto.
    eapply IHx; eauto.
  Qed.

  Lemma seqbb_step_parbb_step :
    forall sp x i i' cf,
      SeqBB.step ge sp (Iexec i) (concat (concat x)) (Iterm i' cf) ->
      ParBB.step tge sp (Iexec i) x (Iterm i' cf).
  Proof.
    induction x; crush. inv H.
    rewrite concat_app in H.
    eapply step_options in H. inv H.
    constructor. eapply seqbb_step_step_instr_seq; eauto.
    simplify. econstructor.
    eapply step_list2_step_instr_seq; eauto.
    eapply IHx; eauto.
  Qed.

  Lemma eval_predf_negate :
    forall ps p,
      eval_predf ps (negate p) = negb (eval_predf ps p).
  Proof.
    unfold eval_predf; intros. rewrite negate_correct. auto.
  Qed.

  Lemma is_truthy_negate :
    forall ps p pred,
      truthy ps p ->
      falsy ps (combine_pred (Some (negate (Option.default T p))) pred).
  Proof.
    inversion 1; subst; simplify.
    - destruct pred; constructor; auto.
    - destruct pred; constructor.
      rewrite eval_predf_Pand. rewrite eval_predf_negate. rewrite H0. auto.
      rewrite eval_predf_negate. rewrite H0. auto.
  Qed.

  Lemma sem_pexpr_evaluable :
    forall A ctx f_p ps,
      (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) ->
      forall p, exists b, @sem_pexpr A ctx (from_pred_op f_p p) b.
  Proof.
    induction p; crush.
    - destruct_match. inv Heqp0. destruct b. econstructor. eauto.
      econstructor. eapply sem_pexpr_negate. eauto.
    - econstructor. constructor.
    - econstructor. constructor.
    - destruct x0, x; solve [eexists; constructor; auto].
    - destruct x0, x; solve [eexists; constructor; auto].
  Qed.

  Lemma sem_pexpr_eval1 :
    forall A ctx f_p ps,
      (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) ->
      forall p,
        eval_predf ps p = false ->
        @sem_pexpr A ctx (from_pred_op f_p p) false.
  Proof.
    induction p; crush.
    - destruct_match. inv Heqp0.
      destruct b.
      + cbn in H0. rewrite <- H0.
        rewrite Pos2Nat.id. eauto.
      + replace false with (negb true) by auto.
        apply sem_pexpr_negate. cbn in H0.
        apply negb_true_iff in H0. rewrite negb_involutive in H0.
        rewrite <- H0. rewrite Pos2Nat.id.
        eauto.
     - constructor.
     - rewrite eval_predf_Pand in H0.
       apply andb_false_iff in H0. inv H0. eapply IHp1 in H1.
       pose proof (sem_pexpr_evaluable _ _ _ _ H p2) as EVAL.
       inversion_clear EVAL as [x EVAL2].
       replace false with (false && x) by auto.
       constructor; auto.
       eapply IHp2 in H1.
       pose proof (sem_pexpr_evaluable _ _ _ _ H p1) as EVAL.
       inversion_clear EVAL as [x EVAL2].
       replace false with (x && false) by eauto with bool.
       apply sem_pexpr_Pand; auto.
     - rewrite eval_predf_Por in H0.
       apply orb_false_iff in H0. inv H0.
       replace false with (false || false) by auto.
       apply sem_pexpr_Por; auto.
  Qed.

  Lemma sem_pexpr_eval2 :
    forall A ctx f_p ps,
      (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) ->
      forall p,
        eval_predf ps p = true ->
        @sem_pexpr A ctx (from_pred_op f_p p) true.
  Proof.
    induction p; crush.
    - destruct_match. inv Heqp0.
      destruct b.
      + cbn in H0. rewrite <- H0.
        rewrite Pos2Nat.id. eauto.
      + replace true with (negb false) by auto.
        apply sem_pexpr_negate. cbn in H0.
        apply negb_true_iff in H0.
        rewrite <- H0. rewrite Pos2Nat.id.
        eauto.
     - constructor.
     - rewrite eval_predf_Pand in H0.
       apply andb_true_iff in H0. inv H0.
       replace true with (true && true) by auto.
       constructor; auto.
     - rewrite eval_predf_Por in H0.
       apply orb_true_iff in H0. inv H0. eapply IHp1 in H1.
       pose proof (sem_pexpr_evaluable _ _ _ _ H p2) as EVAL.
       inversion_clear EVAL as [x EVAL2].
       replace true with (true || x) by auto.
       apply sem_pexpr_Por; auto.
       eapply IHp2 in H1.
       pose proof (sem_pexpr_evaluable _ _ _ _ H p1) as EVAL.
       inversion_clear EVAL as [x EVAL2].
       replace true with (x || true) by eauto with bool.
       apply sem_pexpr_Por; auto.
  Qed.

  Lemma sem_pexpr_eval :
    forall A ctx f_p ps b,
      (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) ->
      forall p,
        eval_predf ps p = b ->
        @sem_pexpr A ctx (from_pred_op f_p p) b.
  Proof.
    intros; destruct b; eauto using sem_pexpr_eval1, sem_pexpr_eval2.
  Qed.

  Lemma sem_pred_expr_NEapp :
    forall A B C sem f_p ctx a b v,
      sem_pred_expr f_p sem ctx a v ->
      @sem_pred_expr A B C f_p sem ctx (NE.app a b) v.
  Proof.
    induction a; crush.
    - inv H. constructor; auto.
    - inv H. constructor; eauto.
      eapply sem_pred_expr_cons_false; eauto.
  Qed.

  Lemma sem_pred_expr_NEapp2 :
    forall A B C sem f_p ctx a b v ps,
      (forall x, sem_pexpr ctx (get_forest_p' x f_p) (ps !! x)) ->
      (forall x, NE.In x a -> eval_predf ps (fst x) = false) ->
      sem_pred_expr f_p sem ctx b v ->
      @sem_pred_expr A B C f_p sem ctx (NE.app a b) v.
  Proof.
    induction a; crush.
    - assert (IN: NE.In a (NE.singleton a)) by constructor.
      specialize (H0 _ IN). destruct a.
      eapply sem_pred_expr_cons_false; eauto. cbn [fst] in *.
      eapply sem_pexpr_eval; eauto.
    - assert (NE.In a (NE.cons a a0)) by (constructor; tauto).
      apply H0 in H2.
      destruct a. cbn [fst] in *.
      eapply sem_pred_expr_cons_false.
      eapply sem_pexpr_eval; eauto. eapply IHa; eauto.
      intros. eapply H0. constructor; tauto.
  Qed.

  Lemma sem_pred_expr_NEapp3 :
    forall A B C sem f_p ctx (a b: predicated B) v,
      (forall x, NE.In x a -> sem_pexpr ctx (from_pred_op f_p (fst x)) false) ->
      sem_pred_expr f_p sem ctx b v ->
      @sem_pred_expr A B C f_p sem ctx (NE.app a b) v.
  Proof.
    induction a; crush.
    - assert (IN: NE.In a (NE.singleton a)) by constructor.
      specialize (H _ IN). destruct a.
      eapply sem_pred_expr_cons_false; eauto.
    - assert (NE.In a (NE.cons a a0)) by (constructor; tauto).
      apply H in H1.
      destruct a. cbn [fst] in *.
      eapply sem_pred_expr_cons_false; auto.
      eapply IHa; eauto.
      intros. eapply H. constructor; tauto.
  Qed.

  Lemma sem_pred_expr_map_not :
    forall A p ps y x0,
      eval_predf ps p = false ->
      NE.In x0 (NE.map (fun x => (p ∧ fst x, snd x)) y) ->
      eval_predf ps (@fst _ A x0) = false.
  Proof.
    induction y; crush.
    - inv H0. simplify. rewrite eval_predf_Pand. rewrite H. auto.
    - inv H0. inv H2. cbn -[eval_predf]. rewrite eval_predf_Pand.
      rewrite H. auto. eauto.
  Qed.

  Lemma sem_pred_expr_map_Pand :
    forall A B C sem ctx f_p ps x v p,
      (forall x : positive, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) ->
      eval_predf ps p = true ->
      sem_pred_expr f_p sem ctx x v ->
      @sem_pred_expr A B C f_p sem ctx
        (NE.map (fun x0 => (p ∧ fst x0, snd x0)) x) v.
  Proof.
    induction x; crush.
    inv H1. simplify. constructor; eauto.
    simplify. replace true with (true && true) by auto.
    constructor; auto.
    eapply sem_pexpr_eval; eauto.
    inv H1. simplify. constructor; eauto.
    simplify. replace true with (true && true) by auto.
    constructor; auto.
    eapply sem_pexpr_eval; eauto.
    eapply sem_pred_expr_cons_false. cbn.
    replace false with (true && false) by auto. apply sem_pexpr_Pand; auto.
    eapply sem_pexpr_eval; eauto. eauto.
  Qed.

  Lemma sem_pred_expr_app_predicated :
    forall A B C sem ctx f_p y x v p ps,
      sem_pred_expr f_p sem ctx x v ->
      (forall x, sem_pexpr ctx (get_forest_p' x f_p) (ps !! x)) ->
      eval_predf ps p = true ->
      @sem_pred_expr A B C f_p sem ctx (app_predicated p y x) v.
  Proof.
    intros * SEM PS EVAL. unfold app_predicated.
    eapply sem_pred_expr_NEapp2; eauto.
    intros. eapply sem_pred_expr_map_not; eauto.
    rewrite eval_predf_negate. rewrite EVAL. auto.
    eapply sem_pred_expr_map_Pand; eauto.
  Qed.

  Lemma sem_pred_expr_app_predicated_false :
    forall A B C sem ctx f_p y x v p ps,
      sem_pred_expr f_p sem ctx y v ->
      (forall x, sem_pexpr ctx (get_forest_p' x f_p) (ps !! x)) ->
      eval_predf ps p = false ->
      @sem_pred_expr A B C f_p sem ctx (app_predicated p y x) v.
  Admitted.

  Lemma sem_pred_expr_prune_predicated :
    forall A B C sem ctx f_p y x v,
      sem_pred_expr f_p sem ctx x v ->
      prune_predicated x = Some y ->
      @sem_pred_expr A B C f_p sem ctx y v.
  Proof.
    intros * SEM PRUNE. unfold prune_predicated in *.
    Admitted.

  Inductive sem_ident {B A: Type} (c: @ctx B) (a: A): A -> Prop :=
  | sem_ident_intro : sem_ident c a a.

  Lemma sem_pred_expr_pred_ret :
    forall G A (ctx: @Abstr.ctx G) (i: A) ps,
      sem_pred_expr ps sem_ident ctx (pred_ret i) i.
  Proof. intros; constructor; constructor. Qed.

  Lemma sem_pred_expr_ident :
    forall G A B ps (ctx: @Abstr.ctx G) (l: predicated A) (s: @Abstr.ctx G -> A -> B -> Prop) l_,
      sem_pred_expr ps sem_ident ctx l l_ ->
      forall (v: B),
        s ctx l_ v ->
        sem_pred_expr ps s ctx l v.
  Proof.
    induction 1.
    - intros. constructor; auto. inv H0. auto.
    - intros. apply sem_pred_expr_cons_false; auto.
    - intros. inv H0. constructor; auto.
  Qed.

  Lemma sem_pred_expr_ident2 :
    forall G A B ps (ctx: @Abstr.ctx G) (l: predicated A) (s: @Abstr.ctx G -> A -> B -> Prop) (v: B),
        sem_pred_expr ps s ctx l v ->
        exists l_, sem_pred_expr ps sem_ident ctx l l_ /\ s ctx l_ v.
  Proof.
    induction 1.
    - exists e; split; auto. constructor; auto. constructor.
    - inversion_clear IHsem_pred_expr as [x IH].
      inversion_clear IH as [SEM EVALS].
      exists x; split; auto. apply sem_pred_expr_cons_false; auto.
    - exists e; split; auto; constructor; auto; constructor.
  Qed.

  Fixpoint of_elist (e: expression_list): list expression :=
    match e with
    | Econs a b => a :: of_elist b
    | Enil => nil
    end.

  Fixpoint to_elist (e: list expression): expression_list :=
    match e with
    | a :: b => Econs a (to_elist b)
    | nil => Enil
    end.

  Lemma sem_val_list_elist :
    forall G (ctx: @Abstr.ctx G) l j,
      sem_val_list ctx (to_elist l) j ->
      Forall2 (sem_value ctx) l j.
  Proof. induction l; intros; cbn in *; inversion H; constructor; eauto. Qed.

  Lemma sem_val_list_elist2 :
    forall G (ctx: @Abstr.ctx G) l j,
      Forall2 (sem_value ctx) l j ->
      sem_val_list ctx (to_elist l) j.
  Proof. induction l; intros; cbn in *; inversion H; constructor; eauto. Qed.

  Lemma sem_val_list_elist3 :
    forall G (ctx: @Abstr.ctx G) l j,
      sem_val_list ctx l j ->
      Forall2 (sem_value ctx) (of_elist l) j.
  Proof. induction l; intros; cbn in *; inversion H; constructor; eauto. Qed.

  Lemma sem_val_list_elist4 :
    forall G (ctx: @Abstr.ctx G) l j,
      Forall2 (sem_value ctx) (of_elist l) j ->
      sem_val_list ctx l j.
  Proof. induction l; intros; cbn in *; inversion H; constructor; eauto. Qed.

  Lemma sem_pred_expr_predicated_map :
    forall A B C pr (f: C -> B) ctx (pred: predicated C) (pred': C),
      sem_pred_expr pr sem_ident ctx pred pred' ->
      @sem_pred_expr A _ _ pr sem_ident ctx (predicated_map f pred) (f pred').
  Proof.
    induction pred; unfold predicated_map; intros.
    - inv H. inv H3. constructor; eauto. constructor.
    - inv H. inv H5. constructor; eauto. constructor.
      eapply sem_pred_expr_cons_false; eauto.
  Qed.

  Lemma NEapp_NEmap :
    forall A B (f: A -> B) a b,
      NE.map f (NE.app a b) = NE.app (NE.map f a) (NE.map f b).
  Proof. induction a; crush. Qed.

  Lemma sem_pred_expr_predicated_prod :
    forall A B C pr ctx (a: predicated C) (b: predicated B) a' b',
      sem_pred_expr pr sem_ident ctx a a' ->
      sem_pred_expr pr sem_ident ctx b b' ->
      @sem_pred_expr A _ _ pr sem_ident ctx (predicated_prod a b) (a', b').
  Proof.
    induction a; intros.
    - inv H. inv H4. unfold predicated_prod.
      generalize dependent b. induction b; intros.
      + cbn. destruct_match. inv Heqp. inv H0. inv H6.
        constructor. simplify. replace true with (true && true) by auto.
        eapply sem_pexpr_Pand; eauto. constructor.
      + inv H0. inv H6. cbn. constructor; cbn.
        replace true with (true && true) by auto.
        constructor; auto. constructor.
        eapply sem_pred_expr_cons_false; eauto. cbn.
        replace false with (true && false) by auto.
        apply sem_pexpr_Pand; auto.
    - unfold predicated_prod. simplify.
      rewrite NEapp_NEmap.
      inv H. eapply sem_pred_expr_NEapp.
      { induction b; crush.
        destruct a. inv H0. constructor.
        replace true with (true && true) by auto.
        eapply sem_pexpr_Pand; auto. inv H6. inv H7.
        constructor.

        destruct a. inv H0. constructor.
        replace true with (true && true) by auto.
        constructor; auto. inv H8. inv H6. constructor.

        specialize (IHb H8). eapply sem_pred_expr_cons_false; auto.
        replace false with (true && false) by auto.
        apply sem_pexpr_Pand; auto.
      }
      { exploit IHa. eauto. eauto. intros.
        unfold predicated_prod in *.
        eapply sem_pred_expr_NEapp3; eauto; [].
        clear H. clear H0.
        induction b.
        { intros. inv H. destruct a. simpl.
          constructor; tauto. }
        { intros. inv H. inv H1. destruct a. simpl.
          constructor; tauto. eauto. } }
  Qed.

  Lemma sem_pred_expr_seq_app :
    forall G A B (f: predicated (A -> B))
        ps (ctx: @ctx G) l f_ l_,
      sem_pred_expr ps sem_ident ctx l l_ ->
      sem_pred_expr ps sem_ident ctx f f_ ->
      sem_pred_expr ps sem_ident ctx (seq_app f l) (f_ l_).
  Proof.
    unfold seq_app; intros.
    remember (fun x : (A -> B) * A => fst x (snd x)) as app.
    replace (f_ l_) with (app (f_, l_)) by (rewrite Heqapp; auto).
    eapply sem_pred_expr_predicated_map. eapply sem_pred_expr_predicated_prod; auto.
  Qed.

  Lemma sem_pred_expr_map :
    forall A B C (ctx: @ctx A) ps (f: B -> C) y v,
      sem_pred_expr ps sem_ident ctx y v ->
      sem_pred_expr ps sem_ident ctx (NE.map (fun x => (fst x, f (snd x))) y) (f v).
  Proof.
    induction y; crush. inv H. constructor; crush. inv H3. constructor.
    inv H. inv H5. constructor; eauto. constructor.
    eapply sem_pred_expr_cons_false; eauto.
  Qed.

  Lemma sem_pred_expr_flap :
    forall G A B C (f: predicated (A -> B -> C))
        ps (ctx: @ctx G) l f_,
      sem_pred_expr ps sem_ident ctx f f_ ->
      sem_pred_expr ps sem_ident ctx (flap f l) (f_ l).
  Proof.
    induction f. unfold flap2; intros. inv H. inv H3.
    constructor; eauto. constructor.
    intros. inv H. cbn.
    constructor; eauto. inv H5. constructor.
    eapply sem_pred_expr_cons_false; eauto.
   Qed.

  Lemma sem_pred_expr_flap2 :
    forall G A B C (f: predicated (A -> B -> C))
        ps (ctx: @ctx G) l1 l2 f_,
      sem_pred_expr ps sem_ident ctx f f_ ->
      sem_pred_expr ps sem_ident ctx (flap2 f l1 l2) (f_ l1 l2).
  Proof.
    induction f. unfold flap2; intros. inv H. inv H3.
    constructor; eauto. constructor.
    intros. inv H. cbn.
    constructor; eauto. inv H5. constructor.
    eapply sem_pred_expr_cons_false; eauto.
  Qed.

  Lemma sem_pred_expr_seq_app_val :
    forall G A B V (s: @Abstr.ctx G -> B -> V -> Prop)
        (f: predicated (A -> B))
        ps ctx l v f_ l_,
      sem_pred_expr ps sem_ident ctx l l_ ->
      sem_pred_expr ps sem_ident ctx f f_ ->
      s ctx (f_ l_) v ->
      sem_pred_expr ps s ctx (seq_app f l) v.
  Proof.
    intros. eapply sem_pred_expr_ident; [|eassumption].
    eapply sem_pred_expr_seq_app; eauto.
  Qed.

  Fixpoint Eapp a b :=
    match a with
    | Enil => b
    | Econs ax axs => Econs ax (Eapp axs b)
    end.

  Lemma Eapp_right_nil :
    forall a, Eapp a Enil = a.
  Proof. induction a; cbn; try rewrite IHa; auto. Qed.

  Lemma Eapp_left_nil :
    forall a, Eapp Enil a = a.
  Proof. auto. Qed.

  Lemma sem_pred_expr_cons_pred_expr :
    forall A (ctx: @ctx A) pr s s' a e,
      sem_pred_expr pr sem_ident ctx s s' ->
      sem_pred_expr pr sem_ident ctx a e ->
      sem_pred_expr pr sem_ident ctx (cons_pred_expr a s) (Econs e s').
  Proof.
    intros. unfold cons_pred_expr.
    replace (Econs e s') with ((uncurry Econs) (e, s')) by auto.
    eapply sem_pred_expr_predicated_map.
    eapply sem_pred_expr_predicated_prod; eauto.
  Qed.

  Lemma evaluable_singleton :
    forall A B ctx fp r,
      @all_evaluable A B ctx fp (NE.singleton (T, r)).
  Proof.
    unfold all_evaluable, evaluable; intros.
    inv H. simpl. exists true. constructor.
  Qed.

Lemma evaluable_negate :
  forall G (ctx: @ctx G) p,
    p_evaluable ctx p ->
    p_evaluable ctx (¬ p).
Proof.
  unfold p_evaluable, evaluable in *; intros.
  inv H. eapply sem_pexpr_negate in H0. econstructor; eauto.
Qed.

Lemma predicated_evaluable :
  forall G (ctx: @ctx G) ps (p: pred_op),
    pred_forest_evaluable ctx ps ->
    p_evaluable ctx (from_pred_op ps p).
Proof.
  unfold pred_forest_evaluable; intros. induction p; intros; cbn.
  - repeat destruct_match; subst; unfold get_forest_p'.
    destruct_match. eapply H; eauto. econstructor. constructor. constructor.
    eapply evaluable_negate.
    destruct_match. eapply H; eauto. econstructor. constructor. constructor.
  - repeat econstructor.
  - repeat econstructor.
  - inv IHp1. inv IHp2. econstructor. apply sem_pexpr_Pand; eauto.
  - inv IHp1. inv IHp2. econstructor. apply sem_pexpr_Por; eauto.
Qed.

Lemma predicated_evaluable_all :
  forall A G (ctx: @ctx G) ps (p: predicated A),
    pred_forest_evaluable ctx ps ->
    all_evaluable ctx ps p.
Proof.
  unfold all_evaluable; intros.
  eapply predicated_evaluable. eauto.
Qed.

Lemma predicated_evaluable_all_list :
  forall A G (ctx: @ctx G) ps (p: list (predicated A)),
    pred_forest_evaluable ctx ps ->
    Forall (all_evaluable ctx ps) p.
Proof.
  induction p.
  - intros. constructor.
  - intros. constructor; eauto. apply predicated_evaluable_all; auto.
Qed.

Hint Resolve evaluable_singleton : core.
Hint Resolve predicated_evaluable : core.
Hint Resolve predicated_evaluable_all : core.
Hint Resolve predicated_evaluable_all_list : core.

  Lemma sem_pred_expr_fold_right :
    forall A pr ctx s a a' s',
      sem_pred_expr pr sem_ident ctx s s' ->
      Forall2 (sem_pred_expr pr sem_ident ctx) (NE.to_list a) (of_elist a') ->
      @sem_pred_expr A _ _ pr sem_ident ctx (NE.fold_right cons_pred_expr s a) (Eapp a' s').
  Proof.
    induction a; crush. inv H0. inv H5. destruct a'; crush. destruct a'; crush.
    inv H3. eapply sem_pred_expr_cons_pred_expr; eauto.
    inv H0. destruct a'; crush. inv H3.
    eapply sem_pred_expr_cons_pred_expr; eauto.
  Qed.

  Lemma sem_pred_expr_fold_right2 :
    forall A pr ctx s a a' s',
      sem_pred_expr pr sem_ident ctx s s' ->
      @sem_pred_expr A _ _ pr sem_ident ctx (NE.fold_right cons_pred_expr s a) (Eapp a' s') ->
      Forall2 (sem_pred_expr pr sem_ident ctx) (NE.to_list a) (of_elist a').
  Proof.
    induction a. Admitted.

  Lemma NEof_list_some :
    forall A a a' (e: A),
      NE.of_list a = Some a' ->
      NE.of_list (e :: a) = Some (NE.cons e a').
  Proof.
    induction a; [crush|].
    intros.
    cbn in H. destruct a0. inv H. auto.
    destruct_match; [|discriminate].
    inv H. specialize (IHa n a ltac:(trivial)).
    cbn. destruct_match. unfold NE.of_list in IHa.
    fold (@NE.of_list A) in IHa. rewrite IHa in Heqo0. inv Heqo0. auto.
    unfold NE.of_list in IHa. fold (@NE.of_list A) in IHa. rewrite IHa in Heqo0. inv Heqo0.
  Qed.

  Lemma NEof_list_contra :
    forall A b (a: A),
      ~ NE.of_list (a :: b) = None.
  Proof.
    induction b; try solve [crush].
    intros.
    specialize (IHb a).
    enough (X: exists x, NE.of_list (a :: b) = Some x).
    inversion_clear X as [x X'].
    erewrite NEof_list_some; eauto; discriminate.
    destruct (NE.of_list (a :: b)) eqn:?; [eauto|contradiction].
  Qed.

  Lemma NEof_list_exists :
    forall A b (a: A),
      exists x, NE.of_list (a :: b) = Some x.
  Proof.
    intros. pose proof (NEof_list_contra _ b a).
    destruct (NE.of_list (a :: b)); try contradiction.
    eauto.
  Qed.

  Lemma NEof_list_exists2 :
    forall A b (a c: A),
      exists x,
        NE.of_list (c :: a :: b) = Some (NE.cons c x)
        /\ NE.of_list (a :: b) = Some x.
  Proof.
    intros. pose proof (NEof_list_exists _ b a).
    inversion_clear H as [x B].
    econstructor; split; eauto.
    eapply NEof_list_some; eauto.
  Qed.

  Lemma NEof_list_to_list :
    forall A (x: list A) y,
      NE.of_list x = Some y ->
      NE.to_list y = x.
  Proof.
    induction x; [crush|].
    intros. destruct x; [crush|].
    pose proof (NEof_list_exists2 _ x a0 a).
    inversion_clear H0 as [x0 [HN1 HN2]]. rewrite HN1 in H. inv H.
    cbn. f_equal. eauto.
  Qed.

  Lemma sem_pred_expr_merge :
    forall G (ctx: @Abstr.ctx G) ps l args,
      Forall2 (sem_pred_expr ps sem_ident ctx) args l ->
      sem_pred_expr ps sem_ident ctx (merge args) (to_elist l).
  Proof.
    induction l; intros.
    - inv H. cbn; repeat constructor.
    - inv H. cbn. unfold merge. Admitted.

  Lemma sem_pred_expr_merge2 :
    forall A (ctx: @ctx A) pr l l',
      sem_pred_expr pr sem_ident ctx (merge l) l' ->
      Forall2 (sem_pred_expr pr sem_ident ctx) l (of_elist l').
  Proof.
    induction l; crush.
    - unfold merge in *; cbn in *.
      inv H. inv H5. constructor.
    - unfold merge in H.
      pose proof (NEof_list_exists _ l a) as Y.
      inversion_clear Y as [x HNE]. rewrite HNE in H.
      erewrite <- (NEof_list_to_list _ (a :: l)) by eassumption.
      apply sem_pred_expr_fold_right2 with (s := (NE.singleton (T, Enil))) (s' := Enil).
      repeat constructor.
      rewrite Eapp_right_nil. auto.
  Qed.

  Lemma sem_merge_list :
    forall A ctx f rs ps m args,
      sem ctx f ((mk_instr_state rs ps m), None) ->
      @sem_pred_expr A _ _ (forest_preds f) sem_val_list ctx
        (merge (list_translation args f)) (rs ## args).
  Proof.
    induction args; crush. cbn. constructor; constructor.
    unfold merge. specialize (IHargs H).
    eapply sem_pred_expr_ident2 in IHargs.
    inversion_clear IHargs as [l_ [HSEM HVAL]].
    destruct_match; [|exfalso; eapply NEof_list_contra; eauto].
    destruct args; cbn -[NE.of_list] in *.
    - unfold merge in *. simplify.
      inv H. inv H6. specialize (H a).
      eapply sem_pred_expr_ident2 in H.
      inversion_clear H as [l_2 [HSEM2 HVAL2]].
      unfold cons_pred_expr.
      eapply sem_pred_expr_ident.
      eapply sem_pred_expr_predicated_map.
      eapply sem_pred_expr_predicated_prod; [eassumption|repeat constructor].
      repeat constructor; auto.
    - pose proof (NEof_list_exists2 _ (list_translation args f) (f #r (Reg r)) (f #r (Reg a))) as Y.
      inversion_clear Y as [x [Y1 Y2]]. rewrite Heqo in Y1. inv Y1.
      inversion_clear H as [? ? ? ? ? ? REG PRED MEM EXIT].
      inversion_clear REG as [? ? ? REG'].
      inversion_clear PRED as [? ? ? PRED'].
      pose proof (REG' a) as REGa. pose proof (REG' r) as REGr.
      exploit sem_pred_expr_ident2; [exact REGa|].
      intro REGI'; inversion_clear REGI' as [a' [SEMa SEMa']].
      exploit sem_pred_expr_ident2; [exact REGr|].
      intro REGI'; inversion_clear REGI' as [r' [SEMr SEMr']].
      apply sem_pred_expr_ident with (l_ := Econs a' l_); [|constructor; auto].
      replace (Econs a' l_) with (Eapp (Econs a' l_) Enil) by (now apply Eapp_right_nil).
      apply sem_pred_expr_fold_right; eauto.
      repeat constructor.
      constructor; eauto.
      erewrite NEof_list_to_list; eauto.
      eapply sem_pred_expr_merge2; auto.
  Qed.

  Lemma sem_pred_expr_list_translation :
    forall G ctx args f i,
      @sem G ctx f (i, None) ->
      exists l,
        Forall2 (sem_pred_expr (forest_preds f) sem_ident ctx) (list_translation args f) l
        /\ sem_val_list ctx (to_elist l) ((is_rs i)##args).
  Proof.
    induction args; intros.
    - exists nil; cbn; split; auto; constructor.
    - exploit IHargs; try eassumption; intro EX.
      inversion_clear EX as [l [FOR SEM]].
      destruct i as [rs' m' ps'].
      inversion_clear H as [? ? ? ? ? ? REGSET PREDSET MEM EXIT].
      inversion_clear REGSET as [? ? ? REG].
      pose proof (REG a).
      exploit sem_pred_expr_ident2; eauto; intro IDENT.
      inversion_clear IDENT as [l_ [SEMP SV]].
      exists (l_ :: l). split. constructor; auto.
      cbn; constructor; auto.
  Qed.

Lemma evaluable_and_true :
  forall G (ctx: @ctx G) ps p,
    p_evaluable ctx (from_pred_op ps p) ->
    p_evaluable ctx (from_pred_op ps (p ∧ T)).
Proof.
  intros. unfold evaluable in *. inv H. exists (x && true). cbn.
  apply sem_pexpr_Pand; auto. constructor.
Qed.

Lemma NEin_map :
  forall A B p y (f: A -> B) a,
    NE.In (p, y) (predicated_map f a) ->
    exists x, NE.In (p, x) a /\ y = f x.
Proof.
  induction a; intros.
  - inv H. destruct a. econstructor. split; eauto. constructor.
  - inv H. inv H1. inv H. destruct a. cbn in *. econstructor; econstructor; eauto.
    constructor; tauto.
    specialize (IHa H). inv IHa. inv H0.
    econstructor; econstructor; eauto. constructor; tauto.
Qed.

Lemma NEin_map2 :
  forall A B (f: A -> B) a p y,
    NE.In (p, y) a ->
    NE.In (p, f y) (predicated_map f a).
Proof.
  induction a; crush.
  inv H. constructor.
  inv H. inv H1.
  - constructor; auto.
  - constructor; eauto.
Qed.

Lemma all_evaluable_predicated_map :
  forall A B G (ctx: @ctx G) ps (f: A -> B) p,
    all_evaluable ctx ps p ->
    all_evaluable ctx ps (predicated_map f p).
Proof.
  induction p.
  - unfold all_evaluable; intros.
    exploit NEin_map; eauto; intros. inv H1. inv H2.
    eapply H; eauto.
  - intros. cbn.
    eapply all_evaluable_cons3. eapply IHp. eapply all_evaluable_cons; eauto.
    cbn. destruct a. cbn in *. eapply all_evaluable_cons2; eauto.
Qed.

Lemma all_evaluable_predicated_map2 :
  forall A B G (ctx: @ctx G) ps (f: A -> B) p,
    all_evaluable ctx ps (predicated_map f p) ->
    all_evaluable ctx ps p.
Proof.
  induction p.
  - unfold all_evaluable in *; intros.
    eapply H. eapply NEin_map2; eauto.
  - intros. cbn. destruct a.
    cbn in H. pose proof H. eapply all_evaluable_cons in H; eauto.
    eapply all_evaluable_cons2 in H0; eauto.
    unfold all_evaluable. specialize (IHp H).
    unfold all_evaluable in IHp.
    intros. inv H1. inv H3. inv H1; eauto.
    specialize (IHp _ _ H1). eauto.
Qed.

Lemma all_evaluable_map_and :
  forall A B G (ctx: @ctx G) ps (a: NE.non_empty ((pred_op * A) * (pred_op * B))),
    (forall p1 x p2 y,
       NE.In ((p1, x), (p2, y)) a ->
            p_evaluable ctx (from_pred_op ps p1)
            /\ p_evaluable ctx (from_pred_op ps p2)) ->
    all_evaluable ctx ps (NE.map (fun x => match x with ((a, b), (c, d)) => (Pand a c, (b, d)) end) a).
Proof.
  induction a.
  - intros. cbn. repeat destruct_match. inv Heqp.
    unfold all_evaluable; intros. inv H0.
    unfold evaluable.
    exploit H. constructor.
    intros [Ha Hb]. inv Ha. inv Hb.
    exists (x && x0). apply sem_pexpr_Pand; auto.
  - intros. unfold all_evaluable; cbn; intros. inv H0. inv H2.
    + repeat destruct_match. inv Heqp0. inv H0.
      specialize (H p2 a1 p3 b ltac:(constructor; eauto)).
      inv H. inv H0. inv H1. exists (x && x0).
      apply sem_pexpr_Pand; eauto.
    + eapply IHa; intros. eapply H. econstructor. right. eauto.
      eauto.
Qed.

Lemma all_evaluable_map_add :
  forall A B G (ctx: @ctx G) ps (a: pred_op * A) (b: predicated B) p1 x p2 y,
    p_evaluable ctx (from_pred_op ps (fst a)) ->
    all_evaluable ctx ps b ->
    NE.In (p1, x, (p2, y)) (NE.map (fun x : pred_op * B => (a, x)) b) ->
    p_evaluable ctx (from_pred_op ps p1) /\ p_evaluable ctx (from_pred_op ps p2).
Proof.
  induction b; intros.
  - cbn in *. inv H1. unfold all_evaluable in *. specialize (H0 _ _ ltac:(constructor)).
    auto.
  - cbn in *. inv H1. inv H3.
    + inv H1. unfold all_evaluable in H0. specialize (H0 _ _ ltac:(constructor; eauto)); auto.
    + eapply all_evaluable_cons in H0. specialize (IHb _ _ _ _ H H0 H1). auto.
Qed.

Lemma NEin_NEapp5 :
  forall A (a: A) x y,
    NE.In a (NE.app x y) ->
    NE.In a x \/ NE.In a y.
Proof.
  induction x; crush.
  - inv H. inv H1. left. constructor. tauto.
  - inv H. inv H1. left. constructor; tauto.
    exploit IHx; eauto; intros. inv H0.
    left. constructor; tauto. tauto.
Qed.

Lemma all_evaluable_non_empty_prod :
  forall A B G (ctx: @ctx G) ps p1 x p2 y (a: predicated A) (b: predicated B),
    all_evaluable ctx ps a ->
    all_evaluable ctx ps b ->
    NE.In ((p1, x), (p2, y)) (NE.non_empty_prod a b) ->
    p_evaluable ctx (from_pred_op ps p1)
    /\ p_evaluable ctx (from_pred_op ps p2).
Proof.
  induction a; intros.
  - cbn in *. eapply all_evaluable_map_add; eauto. destruct a; cbn in *. eapply H; constructor.
  - cbn in *. eapply NEin_NEapp5 in H1. inv H1. eapply all_evaluable_map_add; eauto.
    destruct a; cbn in *. eapply all_evaluable_cons2; eauto.
    eapply all_evaluable_cons in H. eauto.
Qed.

Lemma all_evaluable_predicated_prod :
  forall A B G (ctx: @ctx G) ps (a: predicated A) (b: predicated B),
    all_evaluable ctx ps a ->
    all_evaluable ctx ps b ->
    all_evaluable ctx ps (predicated_prod a b).
Proof.
  intros. unfold all_evaluable; intros.
  unfold predicated_prod in *. exploit all_evaluable_map_and.
  2: { eauto. }
  intros. 2: { eauto. }
Admitted. (* Requires simple lemma to prove, but this lemma is not needed. *)

Lemma cons_pred_expr_evaluable :
  forall G (ctx: @ctx G) ps a b,
    all_evaluable ctx ps a ->
    all_evaluable ctx ps b ->
    all_evaluable ctx ps (cons_pred_expr a b).
Proof.
  unfold cons_pred_expr; intros.
  apply all_evaluable_predicated_map.
  now apply all_evaluable_predicated_prod.
Qed.

Lemma fold_right_all_evaluable :
  forall G (ctx: @ctx G) ps n,
    Forall (all_evaluable ctx ps) (NE.to_list n) ->
    all_evaluable ctx ps (NE.fold_right cons_pred_expr (NE.singleton (T, Enil)) n).
Proof.
  induction n; cbn in *; intros.
  - unfold cons_pred_expr. eapply all_evaluable_predicated_map. eapply all_evaluable_predicated_prod.
    inv H. auto. unfold all_evaluable; intros. inv H0. exists true. constructor.
  - inv H. specialize (IHn H3). now eapply cons_pred_expr_evaluable.
Qed.

Lemma merge_all_evaluable :
  forall G (ctx: @ctx G) ps,
    pred_forest_evaluable ctx ps ->
    forall f args,
      all_evaluable ctx ps (merge (list_translation args f)).
Proof.
  intros. eapply predicated_evaluable_all. eauto.
Qed.

(*|
Here we can finally assume that everything in the forest is evaluable, which
will allow us to prove that translating the list of register accesses will also
all be evaluable.
|*)

  Lemma sem_update_Iop :
    forall A op rs args m v f ps ctx,
      Op.eval_operation (ctx_ge ctx) (ctx_sp ctx) op rs ## args (is_mem (ctx_is ctx)) = Some v ->
      sem ctx f ((mk_instr_state rs ps m), None) ->
      @sem_pred_expr A _ _ (forest_preds f) sem_value ctx
        (seq_app (pred_ret (Eop op)) (merge (list_translation args f))) v.
  Proof.
    intros * EVAL SEM.
    exploit sem_pred_expr_list_translation; try eassumption.
    intro H; inversion_clear H as [x [HS HV]].
    eapply sem_pred_expr_seq_app_val.
    - cbn in *; eapply sem_pred_expr_merge; eauto.
    - apply sem_pred_expr_pred_ret.
    - econstructor; [eauto|]; auto.
  Qed.

  Lemma sem_update_Iload :
    forall A rs args m v f ps ctx addr a0 chunk,
      Op.eval_addressing (ctx_ge ctx) (ctx_sp ctx) addr rs ## args = Some a0 ->
      Mem.loadv chunk m a0 = Some v ->
      sem ctx f ((mk_instr_state rs ps m), None) ->
      @sem_pred_expr A _ _ (forest_preds f) sem_value ctx
        (seq_app (seq_app (pred_ret (Eload chunk addr)) (merge (list_translation args f))) (f #r Mem)) v.
  Proof.
    intros * EVAL MEM SEM.
    exploit sem_pred_expr_list_translation; try eassumption.
    intro H; inversion_clear H as [x [HS HV]].
    inversion SEM as [? ? ? ? ? ? REG PRED HMEM EXIT]; subst.
    exploit sem_pred_expr_ident2; [eapply HMEM|].
    intros H; inversion_clear H as [x' [HS' HV']].
    eapply sem_pred_expr_seq_app_val; eauto.
    { eapply sem_pred_expr_seq_app; eauto.
      - eapply sem_pred_expr_merge; eauto.
      - apply sem_pred_expr_pred_ret.
    }
    econstructor; eauto.
  Qed.

  Lemma storev_valid_pointer1 :
    forall chunk m m' s d b z,
      Mem.storev chunk m s d = Some m' ->
      Mem.valid_pointer m b z = true ->
      Mem.valid_pointer m' b z = true.
  Proof using.
    intros. unfold Mem.storev in *. destruct_match; try discriminate; subst.
    apply Mem.valid_pointer_nonempty_perm. apply Mem.valid_pointer_nonempty_perm in H0.
    eapply Mem.perm_store_1; eauto.
  Qed.

  Lemma storev_valid_pointer2 :
    forall chunk m m' s d b z,
      Mem.storev chunk m s d = Some m' ->
      Mem.valid_pointer m' b z = true ->
      Mem.valid_pointer m b z = true.
  Proof using.
    intros. unfold Mem.storev in *. destruct_match; try discriminate; subst.
    apply Mem.valid_pointer_nonempty_perm. apply Mem.valid_pointer_nonempty_perm in H0.
    eapply Mem.perm_store_2; eauto.
  Qed.

  Definition valid_mem m m' :=
    forall b z, Mem.valid_pointer m b z = Mem.valid_pointer m' b z.

  #[global] Program Instance valid_mem_Equivalence : Equivalence valid_mem.
  Next Obligation. unfold valid_mem; auto. Qed. (* Reflexivity *)
  Next Obligation. unfold valid_mem; auto. Qed. (* Symmetry *)
  Next Obligation. unfold valid_mem; eauto. Qed. (* Transitity *)

  Lemma storev_valid_pointer :
    forall chunk m m' s d,
      Mem.storev chunk m s d = Some m' ->
      valid_mem m m'.
  Proof using.
    unfold valid_mem. symmetry.
    intros. destruct (Mem.valid_pointer m b z) eqn:?;
                     eauto using storev_valid_pointer1.
    apply not_true_iff_false.
    apply not_true_iff_false in Heqb0.
    eauto using storev_valid_pointer2.
  Qed.

  Lemma storev_cmpu_bool :
    forall m m' c v v0,
      valid_mem m m' ->
      Val.cmpu_bool (Mem.valid_pointer m) c v v0 = Val.cmpu_bool (Mem.valid_pointer m') c v v0.
  Proof using.
    unfold valid_mem.
    intros. destruct v, v0; crush.
    { destruct_match; crush.
      destruct_match; crush.
      destruct_match; crush.
      apply orb_true_iff in H1.
      inv H1. rewrite H in H2. rewrite H2 in Heqb1.
      simplify. rewrite H0 in Heqb1. crush.
      rewrite H in H2. rewrite H2 in Heqb1.
      rewrite H0 in Heqb1. crush.
      destruct_match; auto. simplify.
      apply orb_true_iff in H1.
      inv H1. rewrite <- H in H2. rewrite H2 in Heqb1.
      simplify. rewrite H0 in Heqb1. crush.
      rewrite <- H in H2. rewrite H2 in Heqb1.
      rewrite H0 in Heqb1. crush. }

    { destruct_match; crush.
      destruct_match; crush.
      destruct_match; crush.
      apply orb_true_iff in H1.
      inv H1. rewrite H in H2. rewrite H2 in Heqb1.
      simplify. rewrite H0 in Heqb1. crush.
      rewrite H in H2. rewrite H2 in Heqb1.
      rewrite H0 in Heqb1. crush.
      destruct_match; auto. simplify.
      apply orb_true_iff in H1.
      inv H1. rewrite <- H in H2. rewrite H2 in Heqb1.
      simplify. rewrite H0 in Heqb1. crush.
      rewrite <- H in H2. rewrite H2 in Heqb1.
      rewrite H0 in Heqb1. crush. }

    { destruct_match; auto. destruct_match; auto; crush.
      { destruct_match; crush.
        { destruct_match; crush.
          setoid_rewrite H in H0; eauto.
          setoid_rewrite H in H1; eauto.
          rewrite H0 in Heqb. rewrite H1 in Heqb; crush.
        }
        { destruct_match; crush.
          setoid_rewrite H in Heqb0; eauto.
          rewrite H0 in Heqb0. rewrite H1 in Heqb0; crush. } }
      { destruct_match; crush.
        { destruct_match; crush.
          setoid_rewrite H in H0; eauto.
          setoid_rewrite H in H1; eauto.
          rewrite H0 in Heqb0. rewrite H1 in Heqb0; crush.
        }
        { destruct_match; crush.
          setoid_rewrite H in Heqb0; eauto.
          rewrite H0 in Heqb0. rewrite H1 in Heqb0; crush. } } }
  Qed.

  Lemma storev_eval_condition :
    forall m m' c rs,
      valid_mem m m' ->
      Op.eval_condition c rs m = Op.eval_condition c rs m'.
  Proof using.
    intros. destruct c; crush.
    destruct rs; crush.
    destruct rs; crush.
    destruct rs; crush.
    eapply storev_cmpu_bool; eauto.
    destruct rs; crush.
    destruct rs; crush.
    eapply storev_cmpu_bool; eauto.
  Qed.

  Lemma eval_operation_valid_pointer :
    forall A B (ge: Genv.t A B) sp op args m m' v,
      valid_mem m m' ->
      Op.eval_operation ge sp op args m' = Some v ->
      Op.eval_operation ge sp op args m = Some v.
  Proof.
    intros * VALID OP. destruct op; auto.
    - destruct cond; auto; cbn in *.
      + repeat destruct_match; auto. setoid_rewrite <- storev_cmpu_bool in OP; eauto.
      + repeat destruct_match; auto. setoid_rewrite <- storev_cmpu_bool in OP; eauto.
    - destruct c; auto; cbn in *.
      + repeat destruct_match; auto. setoid_rewrite <- storev_cmpu_bool in OP; eauto.
      + repeat destruct_match; auto. setoid_rewrite <- storev_cmpu_bool in OP; eauto.
  Qed.

  Lemma bb_memory_consistency_eval_operation :
    forall A B (ge: Genv.t A B) sp state i state' args op v,
      step_instr ge sp (Iexec state) i (Iexec state') ->
      Op.eval_operation ge sp op args (is_mem state) = Some v ->
      Op.eval_operation ge sp op args (is_mem state') = Some v.
  Proof.
    inversion_clear 1; intro EVAL; auto.
    cbn in *.
    eapply eval_operation_valid_pointer. unfold valid_mem. symmetry.
    eapply storev_valid_pointer; eauto.
    auto.
  Qed.

  Lemma truthy_dflt :
    forall ps p,
      truthy ps p -> eval_predf ps (dfltp p) = true.
  Proof. intros. destruct p; cbn; inv H; auto. Qed.

  Lemma sem_update_Istore :
    forall A rs args m v f ps ctx addr a0 chunk m' v'
      (EVALF: forest_evaluable ctx f),
      Op.eval_addressing (ctx_ge ctx) (ctx_sp ctx) addr rs ## args = Some a0 ->
      Mem.storev chunk m a0 v' = Some m' ->
      sem_value ctx v v' ->
      sem ctx f ((mk_instr_state rs ps m), None) ->
      @sem_pred_expr A _ _ (forest_preds f) sem_mem ctx
        (seq_app (seq_app (pred_ret (Estore v chunk addr))
          (merge (list_translation args f))) (f #r Mem)) m'.
  Proof.
    intros * EVALF EVAL STOREV SEMVAL SEM.
    exploit sem_merge_list; try eassumption.
    intro MERGE. exploit sem_pred_expr_ident2; eauto.
    intro TMP; inversion_clear TMP as [x [HS HV]].
    inversion_clear SEM as [? ? ? ? ? ? REG PRED HMEM EXIT].
    exploit sem_pred_expr_ident2; [eapply HMEM|].
    intros TMP; inversion_clear TMP as [x' [HS' HV']].
    eapply sem_pred_expr_ident.
    eapply sem_pred_expr_seq_app; eauto.
    eapply sem_pred_expr_seq_app; eauto.
    eapply sem_pred_expr_pred_ret.
    econstructor; eauto.
  Qed.

  Lemma sem_update_Iop_top:
    forall A f p p' f' rs m pr op res args p0 v state,
      Op.eval_operation (ctx_ge state) (ctx_sp state) op rs ## args m = Some v ->
      truthy pr p0 ->
      valid_mem (is_mem (ctx_is state)) m ->
      sem state f ((mk_instr_state rs pr m), None) ->
      update (p, f) (RBop p0 op args res) = Some (p', f') ->
      eval_predf pr p = true ->
      @sem A state f' (mk_instr_state (rs # res <- v) pr m, None).
    Proof.
      intros * EVAL_OP TRUTHY VALID SEM UPD EVAL_PRED.
      pose proof SEM as SEM2.
      inversion UPD as [PRUNE]. unfold Option.bind in PRUNE.
      destr. inversion_clear PRUNE.
      rename Heqo into PRUNE.
      inversion_clear SEM as [? ? ? ? ? ? REG PRED MEM EXIT].
      cbn [is_ps] in *. constructor.
      + constructor; intro x. inversion_clear REG as [? ? ? REG']. specialize (REG' x).
        destruct f as [fr fp fe]. cbn [forest_preds set_forest] in *.
        destruct (peq x res); subst.
        * rewrite forest_reg_gss in *. rewrite Regmap.gss in *.
          eapply sem_pred_expr_prune_predicated; eauto.
          eapply sem_pred_expr_app_predicated; [| |eauto].
          replace fp with (forest_preds {| forest_regs := fr; forest_preds := fp; forest_exit := fe |}) by auto.
          eapply sem_update_Iop; eauto. cbn in *.
          eapply eval_operation_valid_pointer; eauto.
          inversion_clear SEM2 as [? ? ? ? ? ? REG2 PRED2 MEM2 EXIT2].
          inversion_clear PRED2; eauto.
          cbn -[eval_predf]. rewrite eval_predf_Pand.
          rewrite EVAL_PRED. rewrite truthy_dflt; auto.
        * rewrite forest_reg_gso. rewrite Regmap.gso; auto.
          unfold not in *; intros. apply n0. inv H; auto.
      + constructor; intros. inv PRED. rewrite forest_reg_pred. auto.
      + rewrite forest_reg_gso; auto; discriminate.
      + auto.
  Qed.

  Lemma sem_update_Iload_top:
    forall A f p p' f' rs m pr res args p0 v state addr a chunk,
      Op.eval_addressing (ctx_ge state) (ctx_sp state) addr rs ## args = Some a ->
      Mem.loadv chunk m a = Some v ->
      truthy pr p0 ->
      valid_mem (is_mem (ctx_is state)) m ->
      sem state f ((mk_instr_state rs pr m), None) ->
      update (p, f) (RBload p0 chunk addr args res) = Some (p', f') ->
      eval_predf pr p = true ->
      @sem A state f' (mk_instr_state (rs # res <- v) pr m, None).
    Proof.
      intros * EVAL_OP LOAD TRUTHY VALID SEM UPD EVAL_PRED.
      pose proof SEM as SEM2.
      inversion UPD as [PRUNE]. unfold Option.bind in PRUNE. destr.
      inversion_clear PRUNE.
      rename Heqo into PRUNE.
      inversion_clear SEM as [? ? ? ? ? ? REG PRED MEM EXIT].
      cbn [is_ps] in *. constructor.
      + constructor; intro x. inversion_clear REG as [? ? ? REG']. specialize (REG' x).
        destruct f as [fr fp fe]. cbn [forest_preds set_forest] in *.
        destruct (peq x res); subst.
        * rewrite forest_reg_gss in *. rewrite Regmap.gss in *.
          eapply sem_pred_expr_prune_predicated; eauto.
          eapply sem_pred_expr_app_predicated; [| |eauto].
          replace fp with (forest_preds {| forest_regs := fr; forest_preds := fp; forest_exit := fe |}) by auto.
          eapply sem_update_Iload; eauto.
          inversion_clear PRED; eauto.
          cbn -[eval_predf]. rewrite eval_predf_Pand.
          rewrite EVAL_PRED. rewrite truthy_dflt; auto.
        * rewrite forest_reg_gso. rewrite Regmap.gso; auto.
          unfold not in *; intros. apply n0. inv H; auto.
      + constructor; intros. inv PRED. rewrite forest_reg_pred. auto.
      + rewrite forest_reg_gso; auto; discriminate.
      + auto.
  Qed.

  Lemma exists_sem_pred :
    forall A B C (ctx: @ctx A) s pr r v,
      @sem_pred_expr A B C pr s ctx r v ->
      exists r',
        NE.In r' r /\ s ctx (snd r') v.
  Proof.
    induction r; crush.
    - inv H. econstructor. split. constructor. auto.
    - inv H.
      + econstructor. split. constructor. left; auto. auto.
      + exploit IHr; eauto. intros HH. inversion_clear HH as [x HH']. inv HH'.
        econstructor. split. constructor. right. eauto. auto.
  Qed.

  Lemma sem_update_Istore_top:
    forall A f p p' f' rs m pr res args p0 state addr a chunk m',
      Op.eval_addressing (ctx_ge state) (ctx_sp state) addr rs ## args = Some a ->
      Mem.storev chunk m a rs !! res = Some m' ->
      truthy pr p0 ->
      valid_mem (is_mem (ctx_is state)) m ->
      sem state f ((mk_instr_state rs pr m), None) ->
      update (p, f) (RBstore p0 chunk addr args res) = Some (p', f') ->
      eval_predf pr p = true ->
      @sem A state f' (mk_instr_state rs pr m', None).
  Proof.
    intros * EVAL_OP STORE TRUTHY VALID SEM UPD EVAL_PRED.
    pose proof SEM as SEM2.
    inversion UPD as [PRUNE]. unfold Option.bind in PRUNE. destr.
    inversion_clear PRUNE.
    rename Heqo into PRUNE.
    inversion_clear SEM as [? ? ? ? ? ? REG PRED MEM EXIT].
    cbn [is_ps] in *. constructor.
    + constructor; intros. inv REG. rewrite forest_reg_gso; eauto. discriminate.
    + constructor; intros. inv PRED. rewrite forest_reg_pred. auto.
    + destruct f as [fr fp fm]; cbn -[seq_app] in *.
      rewrite forest_reg_gss.
      exploit sem_pred_expr_ident2; [exact MEM|]; intro HSEM_;
        inversion_clear HSEM_ as [x [HSEM1 HSEM2]].
      inv REG. specialize (H res).
      pose proof H as HRES.
      eapply sem_pred_expr_ident2 in HRES.
      inversion_clear HRES as [r2 [HRES1 HRES2]].
      apply exists_sem_pred in H. inversion_clear H as [r' [HNE HVAL]].
      exploit sem_merge_list. eapply SEM2. instantiate (2 := args). intro HSPE. eapply sem_pred_expr_ident2 in HSPE.
      inversion_clear HSPE as [l_ [HSPE1 HSPE2]].
      eapply sem_pred_expr_prune_predicated; eauto.
      eapply sem_pred_expr_app_predicated.
      eapply sem_pred_expr_seq_app_val; [solve [eauto]| |].
      eapply sem_pred_expr_seq_app; [solve [eauto]|].
      eapply sem_pred_expr_flap2.
      eapply sem_pred_expr_seq_app; [solve [eauto]|].
      eapply sem_pred_expr_pred_ret. econstructor. eauto. 3: { eauto. }
      eauto. auto. eauto. inv PRED. eauto.
      rewrite eval_predf_Pand. rewrite EVAL_PRED.
      rewrite truthy_dflt. auto. auto.
    + auto.
  Qed.

  Definition predicated_not_inP {A} (p: Gible.predicate) (l: predicated A) :=
    forall op e, NE.In (op, e) l -> ~ PredIn p op.

  Lemma predicated_not_inP_cons :
    forall A p (a: (pred_op * A)) l,
      predicated_not_inP p (NE.cons a l) ->
      predicated_not_inP p l.
  Proof.
    unfold predicated_not_inP; intros. eapply H. econstructor. right; eauto.
  Qed.

  Lemma sem_pexpr_not_in :
    forall G (ctx: @ctx G) p0 ps p e b,
      ~ PredIn p p0 ->
      sem_pexpr ctx (from_pred_op ps p0) b ->
      sem_pexpr ctx (from_pred_op (PTree.set p e ps) p0) b.
  Proof.
    induction p0; auto; intros.
    - cbn. destruct p. unfold get_forest_p'.
      assert (p0 <> p) by
        (unfold not; intros; apply H; subst; constructor).
      rewrite PTree.gso; auto.
    - cbn in *.
      assert (X: ~ PredIn p p0_1 /\ ~ PredIn p p0_2) by
        (split; unfold not; intros; apply H; constructor; tauto).
      inversion_clear X as [X1 X2].
      inv H0. inv H4.
      specialize (IHp0_1 _ p e _ X1 H0). constructor. tauto.
      specialize (IHp0_2 _ p e _ X2 H0). constructor. tauto.
      constructor; auto.
    - cbn in *.
      assert (X: ~ PredIn p p0_1 /\ ~ PredIn p p0_2) by
        (split; unfold not; intros; apply H; constructor; tauto).
      inversion_clear X as [X1 X2].
      inv H0. inv H4.
      specialize (IHp0_1 _ p e _ X1 H0). constructor. tauto.
      specialize (IHp0_2 _ p e _ X2 H0). constructor. tauto.
      constructor; auto.
  Qed.

  Lemma sem_pred_not_in :
    forall A B G (ctx: @ctx G) (s: @Abstr.ctx G -> A -> B -> Prop) l v p e ps,
      sem_pred_expr ps s ctx l v ->
      predicated_not_inP p l ->
      sem_pred_expr (PTree.set p e ps) s ctx l v.
  Proof.
    induction l.
    - intros. unfold predicated_not_inP in H0.
      destruct a. constructor. apply sem_pexpr_not_in.
      eapply H0. econstructor. inv H. auto. inv H. auto.
    - intros. inv H. constructor. unfold predicated_not_inP in H0.
      eapply sem_pexpr_not_in. eapply H0. constructor. left. eauto.
      auto. auto.
      apply sem_pred_expr_cons_false. apply sem_pexpr_not_in. eapply H0.
      constructor. tauto. auto. auto.
      eapply IHl. eauto. eapply predicated_not_inP_cons; eauto.
  Qed.

  Lemma pred_not_in_forestP :
    forall pred f,
      predicated_not_in_forest pred f = true ->
      forall x, predicated_not_inP pred (f #r x).
  Proof. Admitted.

  Lemma pred_not_in_forest_exitP :
    forall pred f,
      predicated_not_in_forest pred f = true ->
      predicated_not_inP pred (forest_exit f).
  Proof. Admitted.

  Lemma from_predicated_sem_pred_expr :
    forall A (ctx: @ctx A) preds pe b,
      sem_pred_expr preds sem_pred ctx pe b ->
      sem_pexpr ctx (from_predicated true preds pe) b.
  Proof. Admitted.

  Lemma sem_update_Isetpred:
    forall A (ctx: @ctx A) f pr p0 c args b rs m,
      valid_mem (ctx_mem ctx) m ->
      sem ctx f (mk_instr_state rs pr m, None) ->
      Op.eval_condition c rs ## args m = Some b ->
      truthy pr p0 ->
      sem_pexpr ctx
      (from_predicated true (forest_preds f) (seq_app (pred_ret (PEsetpred c)) (merge (list_translation args f)))) b.
  Proof.
    intros. eapply from_predicated_sem_pred_expr.
    pose proof (sem_merge_list _ ctx f rs pr m args H0).
    apply sem_pred_expr_ident2 in H3; simplify.
    eapply sem_pred_expr_seq_app_val; [eauto| |].
    constructor. constructor. constructor.
    econstructor; eauto.
    erewrite storev_eval_condition; eauto.
  Qed.

  Lemma sem_update_Isetpred_top:
    forall A f p p' f' rs m pr args p0 state c pred b,
      Op.eval_condition c rs ## args m = Some b ->
      truthy pr p0 ->
      valid_mem (is_mem (ctx_is state)) m ->
      sem state f ((mk_instr_state rs pr m), None) ->
      update (p, f) (RBsetpred p0 c args pred) = Some (p', f') ->
      eval_predf pr p = true ->
      @sem A state f' (mk_instr_state rs (pr # pred <- b) m, None).
  Proof.
    intros * EVAL_OP TRUTHY VALID SEM UPD EVAL_PRED.
    pose proof SEM as SEM2.
    inversion UPD as [PRUNE]. unfold Option.bind in PRUNE. destr. destr.
    inversion_clear PRUNE.
    rename Heqo into PRUNE.
    inversion_clear SEM as [? ? ? ? ? ? REG PRED MEM EXIT].
    cbn [is_ps] in *. constructor.
    + constructor. intros. apply sem_pred_not_in. rewrite forest_pred_reg.
      inv REG. auto. rewrite forest_pred_reg. apply pred_not_in_forestP.
      unfold assert_ in *. repeat (destruct_match; try discriminate); auto.
    + constructor; intros. destruct (peq x pred); subst.
      * rewrite Regmap.gss.
        rewrite forest_pred_gss.
        cbn [update] in *. unfold Option.bind in *. destr. destr. inv UPD.
        replace b with (b && true) by eauto with bool.
        apply sem_pexpr_Pand.
        destruct b. constructor. right.
        eapply sem_update_Isetpred; eauto.
        constructor. constructor. replace false with (negb true) by auto.
        apply sem_pexpr_negate. inv TRUTHY. constructor.
        cbn. eapply sem_pexpr_eval. inv PRED. eauto. auto.
        replace false with (negb true) by auto.
        apply sem_pexpr_negate.
        eapply sem_pexpr_eval. inv PRED. eauto. auto.
        eapply sem_update_Isetpred; eauto.
        constructor. constructor. constructor.
        replace true with (negb false) by auto. apply sem_pexpr_negate.
        eapply sem_pexpr_eval. inv PRED. eauto. inv TRUTHY. auto. cbn -[eval_predf].
        rewrite eval_predf_negate. rewrite H; auto.
        replace true with (negb false) by auto. apply sem_pexpr_negate.
        eapply sem_pexpr_eval. inv PRED. eauto. rewrite eval_predf_negate.
        rewrite EVAL_PRED. auto.
      * rewrite Regmap.gso by auto. inv PRED. specialize (H x).
        rewrite forest_pred_gso by auto; auto.
    + rewrite forest_pred_reg. apply sem_pred_not_in. auto. apply pred_not_in_forestP.
      unfold assert_ in *. now repeat (destruct_match; try discriminate).
    + cbn -[from_predicated from_pred_op seq_app]. apply sem_pred_not_in; auto.
      apply pred_not_in_forest_exitP.
      unfold assert_ in *. now repeat (destruct_match; try discriminate).
  Qed.

  Lemma sem_pexpr_impl :
    forall A (state: @ctx A) a b res,
      sem_pexpr state b res ->
      sem_pexpr state a true ->
      sem_pexpr state (a → b) res.
  Proof.
    intros. destruct res.
    constructor; tauto.
    constructor; auto. replace false with (negb true) by auto.
    now apply sem_pexpr_negate.
  Qed.

  Lemma eval_predf_simplify :
    forall ps x,
      eval_predf ps (simplify x) = eval_predf ps x.
  Proof.
    unfold eval_predf; intros.
    rewrite simplify_correct. auto.
  Qed.

  Lemma sem_update_falsy:
    forall A state f f' rs ps m p a p',
      instr_falsy ps a ->
      update (p, f) a = Some (p', f') ->
      sem state f (mk_instr_state rs ps m, None) ->
      @sem A state f' (mk_instr_state rs ps m, None).
  Proof.
    inversion 1; cbn [update] in *; intros.
    - unfold Option.bind in *. destr. inv H2.
      constructor.
      * constructor. intros. destruct (peq x res); subst.
        rewrite forest_reg_gss. cbn.
        eapply sem_pred_expr_prune_predicated; eauto.
        eapply sem_pred_expr_app_predicated_false. inv H3. inv H8. auto.
        inv H3. inv H9. eauto. rewrite eval_predf_Pand. cbn -[eval_predf].
        rewrite H0. auto. 
        rewrite forest_reg_gso. inv H3. inv H8. auto.
        unfold not; intros; apply n0. now inv H1.
      * constructor; intros. rewrite forest_reg_pred. inv H3. inv H9. auto.
      * rewrite forest_reg_gso. inv H3. auto. unfold not; intros. inversion H1.
      * inv H3. auto.
    - unfold Option.bind in *. destr. inv H2.
      constructor.
      * constructor. intros. destruct (peq x dst); subst.
        rewrite forest_reg_gss. cbn.
        eapply sem_pred_expr_prune_predicated; eauto.
        eapply sem_pred_expr_app_predicated_false. inv H3. inv H8. auto.
        inv H3. inv H9. eauto. rewrite eval_predf_Pand. cbn -[eval_predf].
        rewrite H0. auto. 
        rewrite forest_reg_gso. inv H3. inv H8. auto.
        unfold not; intros; apply n0. now inv H1.
      * constructor; intros. rewrite forest_reg_pred. inv H3. inv H9. auto.
      * rewrite forest_reg_gso. inv H3. auto. unfold not; intros. inversion H1.
      * inv H3. auto.
    - unfold Option.bind in *. destr. inv H2.
      constructor.
      * constructor. intros. rewrite forest_reg_gso by discriminate. inv H3. inv H8. auto.
      * constructor; intros. rewrite forest_reg_pred. inv H3. inv H9. auto.
      * rewrite forest_reg_gss. cbn. eapply sem_pred_expr_prune_predicated; eauto.
        eapply sem_pred_expr_app_predicated_false. inv H3. auto. inv H3. inv H9. eauto.
        rewrite eval_predf_Pand. cbn -[eval_predf]. rewrite H0. auto.
      * inv H3. auto.
    - unfold Option.bind in *. destr. destr. inv H2.
      constructor.
      * constructor; intros. rewrite forest_pred_reg. apply sem_pred_not_in.
        inv H3. inv H8. auto. apply pred_not_in_forestP. unfold assert_ in Heqo. now destr.
      * constructor. intros. destruct (peq x pred); subst.
        rewrite forest_pred_gss. replace (ps !! pred) with (true && ps !! pred) by auto.
        assert (sem_pexpr state0 (¬ (from_pred_op (forest_preds f) p0 ∧ from_pred_op (forest_preds f) p')) true).
        { replace true with (negb false) by auto. apply sem_pexpr_negate.
          constructor. left. eapply sem_pexpr_eval. inv H3. inv H9. eauto.
          auto.
        }
        apply sem_pexpr_Pand. constructor; tauto.
        apply sem_pexpr_impl. inv H3. inv H10. eauto.
        { constructor. left. eapply sem_pexpr_eval. inv H3. inv H10. eauto.
          rewrite eval_predf_negate. rewrite H0. auto.
        }
        rewrite forest_pred_gso by auto. inv H3. inv H9. auto.
      * rewrite forest_pred_reg. apply sem_pred_not_in. inv H3. auto.
        apply pred_not_in_forestP. unfold assert_ in Heqo. now destr.
      * apply sem_pred_not_in. inv H3; auto. cbn.
        apply pred_not_in_forest_exitP. unfold assert_ in Heqo. now destr.
    - unfold Option.bind in *. destr. inv H2. inv H3. constructor.
      * constructor. inv H8. auto.
      * constructor. intros. inv H9. eauto.
      * auto.
      * cbn. eapply sem_pred_expr_prune_predicated; [|eauto].
        eapply sem_pred_expr_app_predicated_false; auto.
        inv H9. eauto.
        rewrite eval_predf_Pand. cbn -[eval_predf]. rewrite H0. auto.
  Qed.

  Lemma sem_update_falsy_input:
    forall A state f f' rs ps m p a p' exitcf,
      eval_predf ps p = false ->
      update (p, f) a = Some (p', f') ->
      sem state f (mk_instr_state rs ps m, exitcf) ->
      @sem A state f' (mk_instr_state rs ps m, exitcf)
        /\ eval_predf ps p' = false.
  Proof.
    intros; destruct a; cbn [update] in *; intros.
    - inv H0. auto.
    - unfold Option.bind in *. destr. inv H0. split; [|solve [auto]].
      constructor.
      * constructor. intros. destruct (peq x r); subst.
        rewrite forest_reg_gss. cbn.
        eapply sem_pred_expr_prune_predicated; eauto.
        eapply sem_pred_expr_app_predicated_false. inv H1. inv H7. auto.
        inv H1. inv H8. eauto. rewrite eval_predf_Pand.
        rewrite H. eauto with bool.
        rewrite forest_reg_gso. inv H1. inv H7. auto.
        unfold not; intros; apply n0. now inv H0.
      * constructor; intros. rewrite forest_reg_pred. inv H1. inv H8. auto.
      * rewrite forest_reg_gso. inv H1. auto. unfold not; intros. inversion H0.
      * inv H1. auto.
    - unfold Option.bind in *. destr. inv H0. split; [|solve [auto]].
      constructor.
      * constructor. intros. destruct (peq x r); subst.
        rewrite forest_reg_gss. cbn.
        eapply sem_pred_expr_prune_predicated; eauto.
        eapply sem_pred_expr_app_predicated_false. inv H1. inv H7. auto.
        inv H1. inv H8. eauto. rewrite eval_predf_Pand. cbn -[eval_predf].
        rewrite H. eauto with bool.
        rewrite forest_reg_gso. inv H1. inv H7. auto.
        unfold not; intros; apply n0. now inv H0.
      * constructor; intros. rewrite forest_reg_pred. inv H1. inv H8. auto.
      * rewrite forest_reg_gso. inv H1. auto. unfold not; intros. inversion H0.
      * inv H1. auto.
    - unfold Option.bind in *. destr. inv H0. split; [|solve [auto]].
      constructor.
      * constructor. intros. rewrite forest_reg_gso by discriminate. inv H1. inv H7. auto.
      * constructor; intros. rewrite forest_reg_pred. inv H1. inv H8. auto.
      * rewrite forest_reg_gss. cbn. eapply sem_pred_expr_prune_predicated; eauto.
        eapply sem_pred_expr_app_predicated_false. inv H1. auto. inv H1. inv H8. eauto.
        rewrite eval_predf_Pand. cbn -[eval_predf]. rewrite H. eauto with bool.
      * inv H1. auto.
    - unfold Option.bind in *. destr. destr. inv H0. split; [|solve [auto]].
      constructor.
      * constructor; intros. rewrite forest_pred_reg. apply sem_pred_not_in.
        inv H1. inv H7. auto. apply pred_not_in_forestP. unfold assert_ in Heqo0. now destr.
      * constructor. intros. destruct (peq x p0); subst.
        rewrite forest_pred_gss. replace (ps !! p0) with (true && ps !! p0) by auto.
        assert (sem_pexpr state0 (¬ (from_pred_op (forest_preds f) (dfltp o)from_pred_op (forest_preds f) p')) true).
        { replace true with (negb false) by auto. apply sem_pexpr_negate.
          constructor. right. eapply sem_pexpr_eval. inv H1. inv H8. eauto.
          auto.
        }
        apply sem_pexpr_Pand. constructor; tauto.
        apply sem_pexpr_impl. inv H1. inv H9. eauto.
        { constructor. right. eapply sem_pexpr_eval. inv H1. inv H9. eauto.
          rewrite eval_predf_negate. rewrite H. auto.
        }
        rewrite forest_pred_gso by auto. inv H1. inv H8. auto.
      * rewrite forest_pred_reg. apply sem_pred_not_in. inv H1. auto.
        apply pred_not_in_forestP. unfold assert_ in Heqo0. now destr.
      * apply sem_pred_not_in. inv H1; auto. cbn.
        apply pred_not_in_forest_exitP. unfold assert_ in Heqo0. now destr.
    - unfold Option.bind in *. destr. inv H0. inv H1. split.
      -- constructor.
         * constructor. inv H7. auto.
         * constructor. intros. inv H8. eauto.
         * auto.
         * cbn. eapply sem_pred_expr_prune_predicated; [|eauto].
           eapply sem_pred_expr_app_predicated_false; auto.
           inv H8. eauto.
           rewrite eval_predf_Pand. cbn -[eval_predf]. rewrite H. eauto with bool.
      -- rewrite eval_predf_simplify. rewrite eval_predf_Pand. rewrite H. eauto with bool.
  Qed.

  Definition setpred_wf (i: instr): bool :=
    match i with
    | RBsetpred (Some op) _ _ p => negb (predin peq p op)
    | _ => true
    end.

  Lemma sem_update_instr :
    forall f i' i'' a sp p i p' f',
      step_instr ge sp (Iexec i') a (Iexec i'') ->
      valid_mem (is_mem i) (is_mem i') ->
      sem (mk_ctx i sp ge) f (i', None) ->
      update (p, f) a = Some (p', f') ->
      eval_predf (is_ps i') p = true ->
      sem (mk_ctx i sp ge) f' (i'', None).
  Proof.
    inversion 1; subst; clear H; intros VALID SEM UPD EVAL_PRED; pose proof SEM as SEM2.
    - inv UPD; auto.
    - eauto using sem_update_Iop_top.
    - eauto using sem_update_Iload_top.
    - eauto using sem_update_Istore_top.
    - eauto using sem_update_Isetpred_top.
    - destruct i''. eauto using sem_update_falsy.
  Qed.

  Lemma Pand_true_left :
    forall ps a b,
      eval_predf ps a = false ->
      eval_predf ps (a ∧ b) = false.
  Proof.
    intros.
    rewrite eval_predf_Pand. now rewrite H.
  Qed.

  Lemma Pand_true_right :
    forall ps a b,
      eval_predf ps b = false ->
      eval_predf ps (a ∧ b) = false.
  Proof.
    intros.
    rewrite eval_predf_Pand. rewrite H.
    eauto with bool.
  Qed.

  Lemma sem_update_instr_term :
    forall f i' i'' sp i cf p p' p'' f',
      sem (mk_ctx i sp ge) f (i', None) ->
      step_instr ge sp (Iexec i') (RBexit p cf) (Iterm i'' cf) ->
      update (p', f) (RBexit p cf) = Some (p'', f') ->
      eval_predf (is_ps i') p' = true ->
      sem (mk_ctx i sp ge) f' (i'', Some cf)
           /\ eval_predf (is_ps i') p'' = false.
  Proof.
    intros. inv H0. simpl in *.
    unfold Option.bind in *. destruct_match; try discriminate.
    apply truthy_dflt in H6. inv H1.
    assert (eval_predf (Gible.is_ps i'') (¬ dfltp p) = false).
    { rewrite eval_predf_negate. now rewrite negb_false_iff. }
    apply Pand_true_left with (b := p') in H0.
    rewrite <- eval_predf_simplify in H0. split; auto.
    unfold "<-e". destruct i''.
    inv H. constructor; auto.
    constructor. inv H9. intros. cbn. eauto.
    inv H10. constructor; intros. eauto.
    cbn.
    eapply sem_pred_expr_prune_predicated; eauto.
    eapply sem_pred_expr_app_predicated.
    constructor. constructor. constructor.
    inv H10. eauto. cbn -[eval_predf] in *.
    rewrite eval_predf_Pand. rewrite H2. now rewrite H6.
  Qed.

  Lemma step_instr_lessdef_term :
    forall sp a i i' ti cf,
      step_instr ge sp (Iexec i) a (Iterm i' cf) ->
      state_lessdef i ti ->
      exists ti', step_instr ge sp (Iexec ti) a (Iterm ti' cf) /\ state_lessdef i' ti'.
  Proof.
    inversion 1; intros; subst.
    econstructor. split; eauto. constructor.
    destruct p. constructor. erewrite eval_predf_pr_equiv. inv H4.
    eauto. inv H6. eauto. constructor.
  Qed.

  Lemma combined_falsy :
    forall i o1 o,
      falsy i o1 ->
      falsy i (combine_pred o o1).
  Proof.
    inversion 1; subst; crush. destruct o; simplify.
    constructor. rewrite eval_predf_Pand. rewrite H0. crush.
    constructor. auto.
  Qed.

  Lemma state_lessdef_sem :
    forall i sp f i' ti cf,
      sem (mk_ctx i sp ge) f (i', cf) ->
      state_lessdef i ti ->
      exists ti', sem (mk_ctx ti sp ge) f (ti', cf) /\ state_lessdef i' ti'.
  Proof. Admitted. (* This needs a bit more in Abstr.v *)

  Lemma mfold_left_update_Some :
    forall xs x v,
      mfold_left update xs x = Some v ->
      exists y, x = Some y.
  Proof.
    induction xs; intros.
    { cbn in *. inv H. eauto. }
    cbn in *. unfold Option.bind in *. exploit IHxs; eauto.
    intros. simplify. destruct x; crush.
    eauto.
  Qed.

  Lemma step_instr_term_exists :
    forall A B ge sp v x v2 cf,
      @step_instr A B ge sp (Iexec v) x (Iterm v2 cf) ->
      exists p, x = RBexit p cf.
  Proof using. inversion 1; eauto. Qed.

  Lemma eval_predf_update_true :
    forall i i' curr_p next_p f f_next instr sp,
      update (curr_p, f) instr = Some (next_p, f_next) ->
      step_instr ge sp (Iexec i) instr (Iexec i') ->
      eval_predf (is_ps i) curr_p = true ->
      eval_predf (is_ps i') next_p = true.
  Proof.
    intros * UPD STEP EVAL. destruct instr; cbn [update] in UPD;
      try solve [unfold Option.bind in *; try destr; inv UPD; inv STEP; auto].
    - unfold Option.bind in *. destr. destr. inv UPD. inv STEP; auto. cbn [is_ps] in *.
      unfold is_initial_pred_and_notin in Heqo1. unfold assert_ in Heqo1. destr. destr.
      destr. destr. destr. destr. subst. assert (~ PredIn p2 next_p).
      unfold not; intros. apply negb_true_iff in Heqb0. apply not_true_iff_false in Heqb0.
      apply Heqb0. now apply predin_PredIn. rewrite eval_predf_not_PredIn; auto.
    - unfold Option.bind in *. destr. inv UPD. inv STEP. inv H3. cbn.
      rewrite eval_predf_simplify. rewrite eval_predf_Pand. rewrite eval_predf_negate.
      destruct i'; cbn in *. rewrite H0. auto.
  Qed.

  Lemma forest_evaluable_regset :
    forall A f (ctx: @ctx A) n x,
      forest_evaluable ctx f ->
      forest_evaluable ctx f #r x <- n.
  Proof.
    unfold forest_evaluable, pred_forest_evaluable; intros.
    eapply H. eauto.
  Qed.

  Lemma evaluable_impl :
    forall A (ctx: @ctx A) a b,
      p_evaluable ctx a ->
      p_evaluable ctx b ->
      p_evaluable ctx (a → b).
  Proof.
    unfold evaluable.
    inversion_clear 1 as [b1 SEM1].
    inversion_clear 1 as [b2 SEM2].
    unfold Pimplies.
    econstructor. apply sem_pexpr_Por;
    eauto using sem_pexpr_negate.
  Qed.

  Lemma parts_evaluable :
    forall A (ctx: @ctx A) b p0,
      evaluable sem_pred ctx p0 ->
      evaluable sem_pexpr ctx (Plit (b, p0)).
  Proof.
    intros. unfold evaluable in *. inv H.
    destruct b. do 2 econstructor. eauto.
    exists (negb x). constructor. rewrite negb_involutive. auto.
  Qed.

  Lemma p_evaluable_Pand :
    forall A (ctx: @ctx A) a b,
      p_evaluable ctx a ->
      p_evaluable ctx b ->
      p_evaluable ctx (a ∧ b).
  Proof.
    intros. inv H. inv H0.
    econstructor. apply sem_pexpr_Pand; eauto.
  Qed.

  Lemma from_predicated_evaluable :
    forall A (ctx: @ctx A) f b a,
      pred_forest_evaluable ctx f ->
      all_evaluable2 ctx sem_pred a ->
      p_evaluable ctx (from_predicated b f a).
  Proof.
    induction a.
    cbn. destruct_match; intros.
    eapply evaluable_impl.
    eauto using predicated_evaluable.
    unfold all_evaluable2 in H0. unfold p_evaluable.
    eapply parts_evaluable. eapply H0. econstructor.

    intros. cbn. destruct_match.
    eapply p_evaluable_Pand.
    eapply all_evaluable2_cons2 in H0.
    eapply evaluable_impl.
    eauto using predicated_evaluable.
    unfold all_evaluable2 in H0. unfold p_evaluable.
    eapply parts_evaluable. eapply H0.
    eapply all_evaluable2_cons in H0. eauto.
  Qed.

  Lemma seq_app_cons :
    forall A B  f a l p0 p1,
      @seq_app A B (pred_ret f) (NE.cons a l) = NE.cons p0 p1 ->
      @seq_app A B (pred_ret f) l = p1.
  Proof. intros. cbn in *. inv H. eauto. Qed.

  Lemma p_evaluable_imp :
    forall A (ctx: @ctx A) a b,
      sem_pexpr ctx a false ->
      p_evaluable ctx (a → b).
  Proof.
    intros. unfold "→".
    unfold p_evaluable, evaluable. exists true.
    constructor. replace true with (negb false) by trivial. left.
    now apply sem_pexpr_negate.
  Qed.

  Lemma sem_update_valid_mem :
    forall i i' i'' curr_p next_p f f_next instr sp,
      step_instr ge sp (Iexec i') instr (Iexec i'') ->
      update (curr_p, f) instr = Some (next_p, f_next) ->
      sem (mk_ctx i sp ge) f (i', None) ->
      valid_mem (is_mem i') (is_mem i'').
  Proof.
    inversion 1; crush.
    unfold Option.bind in *. destr. inv H7.
    eapply storev_valid_pointer; eauto.
  Qed.

  Lemma eval_predf_lessdef :
    forall p a b,
      state_lessdef a b ->
      eval_predf (is_ps a) p = eval_predf (is_ps b) p.
  Proof using.
    induction p; crush.
    - inv H. simpl. unfold eval_predf. simpl.
      repeat destr. inv Heqp0. rewrite H1. auto.
    - rewrite !eval_predf_Pand.
      erewrite IHp1 by eassumption.
      now erewrite IHp2 by eassumption.
    - rewrite !eval_predf_Por.
      erewrite IHp1 by eassumption.
      now erewrite IHp2 by eassumption.
  Qed.

(*|
``abstr_fold_falsy``: This lemma states that when we are at the end of an
execution, the values in the register map do not continue to change.
|*)

  Lemma abstr_fold_falsy :
    forall A ilist i sp ge f res p f' p',
      @sem A (mk_ctx i sp ge) f res ->
      mfold_left update ilist (Some (p, f)) = Some (p', f') ->
      eval_predf (is_ps (fst res)) p = false ->
      sem (mk_ctx i sp ge) f' res.
  Proof.
    induction ilist.
    - intros. cbn in *. inv H0. auto.
    - intros. cbn -[update] in H0.
      exploit mfold_left_update_Some. eauto. intros. inv H2.
      rewrite H3 in H0. destruct x.
      destruct res. destruct i0.
      exploit sem_update_falsy_input; try eassumption; intros.
      inversion_clear H2.
      eapply IHilist; eassumption.
  Qed.

  Lemma abstr_fold_correct :
    forall sp x i i' i'' cf f p f' curr_p
        (VALID: valid_mem (is_mem i) (is_mem i')),
      SeqBB.step ge sp (Iexec i') x (Iterm i'' cf) ->
      sem (mk_ctx i sp ge) f (i', None) ->
      eval_predf (is_ps i') curr_p = true ->
      mfold_left update x (Some (curr_p, f)) = Some (p, f') ->
      forall ti,
        state_lessdef i ti ->
        exists ti', sem (mk_ctx ti sp ge) f' (ti', Some cf)
               /\ state_lessdef i'' ti'
               /\ valid_mem (is_mem i) (is_mem i'').
  Proof.
    induction x as [| x xs IHx ]; intros; cbn -[update] in *; inv H; cbn [fst snd] in *.
    - (* inductive case *)
      exploit mfold_left_update_Some; eauto; intros Hexists;
        inversion Hexists as [[curr_p_inter f_inter] EXEQ]; clear Hexists.
        exploit eval_predf_update_true;
        eauto; intros EVALTRUE.
      rewrite EXEQ in H2. eapply IHx in H2; cbn [fst snd] in *.
      eauto.
      transitivity (is_mem i'); auto.
      eapply sem_update_valid_mem; eauto.
      eauto.
      eapply sem_update_instr; eauto. eauto. eauto.
    - (* terminal case *)
      exploit mfold_left_update_Some; eauto; intros Hexists;
        inversion Hexists as [[curr_p_inter f_inter] EXEQ]; clear Hexists. rewrite EXEQ in H2.
      exploit state_lessdef_sem; (* TODO *)
      eauto; intros H; inversion H as [v [Hi LESSDEF]]; clear H.
      exploit step_instr_lessdef_term;
      eauto; intros H; inversion H as [v2 [Hi2 LESSDEF2]]; clear H.
      exploit step_instr_term_exists; eauto; inversion 1 as [? ?]; subst; clear H.
      erewrite eval_predf_lessdef in H1 by eassumption.
      exploit sem_update_instr_term;
      eauto; intros [A B].
      exists v2.
      exploit abstr_fold_falsy.
      apply A.
      eassumption. auto. cbn. inversion Hi2; subst. auto. intros.
      split; auto. split; auto.
      inversion H7; subst; auto.
  Qed.

  Lemma sem_regset_empty :
    forall A ctx, @sem_regset A ctx empty (ctx_rs ctx).
  Proof using.
    intros; constructor; intros.
    constructor; auto. constructor.
    constructor.
  Qed.

  Lemma sem_predset_empty :
    forall A ctx, @sem_predset A ctx empty (ctx_ps ctx).
  Proof using.
    intros; constructor; intros.
    constructor; auto. constructor.
  Qed.

  Lemma sem_empty :
    forall A ctx, @sem A ctx empty (ctx_is ctx, None).
  Proof using.
    intros. destruct ctx. destruct ctx_is.
    constructor; try solve [constructor; constructor; crush].
    eapply sem_regset_empty.
    eapply sem_predset_empty.
  Qed.

  Lemma abstr_sequence_correct :
    forall sp x i i'' cf x',
      SeqBB.step ge sp (Iexec i) x (Iterm i'' cf) ->
      abstract_sequence x = Some x' ->
      forall ti,
        state_lessdef i ti ->
        exists ti', sem (mk_ctx ti sp ge) x' (ti', Some cf)
               /\ state_lessdef i'' ti'.
  Proof.
    unfold abstract_sequence. intros. unfold Option.map in H0.
    destruct_match; try easy.
    destruct p as [p TMP]; simplify.
    exploit abstr_fold_correct; eauto; crush.
    { apply sem_empty. }
    exists x0. auto.
  Qed.

  Lemma abstr_seq_reverse_correct :
    forall sp x i i' ti cf x',
      abstract_sequence x = Some x' ->
      sem (mk_ctx i sp ge) x' (i', (Some cf)) ->
      state_lessdef i ti ->
     exists ti', SeqBB.step ge sp (Iexec ti) x (Iterm ti' cf)
             /\ state_lessdef i' ti'.
  Proof.

(*|
Proof Sketch:

We do an induction over the list of instructions ``x``.  This is trivial for the
empty case and then for the inductive case we know that there exists an
execution that matches the abstract execution, so we need to know that adding
another instructions to it will still mean that the execution will result in the
same value.

Arithmetic operations will be a problem because we will have to show that these
can be executed.  However, this should mostly be a problem in the abstract state
comparison, because there two abstract states can be equal without one being
evaluable.
|*)

  Admitted.

(*|
This is the top-level lemma which uses the following proofs to complete the
square:

- ``abstr_sequence_correct``: This is the lemma that states the forward
  translation form ``GibleSeq`` to ``Abstr`` was correct.
- ``abstr_check_correct``: This is the lemma that states that if a check between
  two ``Abstr`` programs succeeds, that they will also behave the same.  This
  depends on the SAT solver correctness, as the predicates might be
  syntactically different to each other.
- ``abstr_seq_reverse_correct``: This is the lemma that shows that the backwards
  simulation between the abstract translation and the concrete execution also
  holds.  We only have a translation from the concrete into the abstract, but
  then prove that if we have an execution in the abstract, we can observe that
  same execution in the concrete.
- ``seqbb_step_parbb_step``: Finally, this lemma states that the parallel
  execution of the basic block is equivalent to the sequential execution of the
  concatenation of that parallel block.  This is because even in the translation
  to HTL, the Verilog semantics are sequential within a clock cycle, but will
  then be parallelised by the synthesis tool.  The argument for why this is
  still useful is because we are identifying and scheduling instructions into
  clock cycles.
|*)

  Lemma schedule_oracle_correct :
    forall x y sp i i' ti cf,
      schedule_oracle x y = true ->
      SeqBB.step ge sp (Iexec i) x (Iterm i' cf) ->
      state_lessdef i ti ->
      exists ti', ParBB.step tge sp (Iexec ti) y (Iterm ti' cf)
             /\ state_lessdef i' ti'.
  Proof.
    unfold schedule_oracle; intros. repeat (destruct_match; try discriminate). simplify.
    exploit abstr_sequence_correct; eauto; simplify.
    exploit abstr_check_correct; eauto. apply state_lessdef_refl. simplify.
    exploit abstr_seq_reverse_correct; eauto. apply state_lessdef_refl. simplify.
    exploit seqbb_step_parbb_step; eauto; intros.
    econstructor; split; eauto.
    etransitivity; eauto.
    etransitivity; eauto.
  Qed.

  Lemma step_cf_correct :
    forall cf ts s s' t,
      GibleSeq.step_cf_instr ge s cf t s' ->
      match_states s ts ->
      exists ts', step_cf_instr tge ts cf t ts'
             /\ match_states s' ts'.
  Proof.

(*|
Proof Sketch:  Trivial because of structural equality.
|*)

  Admitted.

  Lemma match_states_stepBB :
    forall s f sp pc rs pr m sf' f' trs tps tm rs' pr' m' trs' tpr' tm',
      match_states (GibleSeq.State s f sp pc rs pr m) (State sf' f' sp pc trs tps tm) ->
      state_lessdef (mk_instr_state rs' pr' m') (mk_instr_state trs' tpr' tm') ->
      match_states (GibleSeq.State s f sp pc rs' pr' m') (State sf' f' sp pc trs' tpr' tm').
  Proof.
    inversion 1; subst; simplify.
    inv H0. econstructor; eauto.
  Qed.

  Theorem transl_step_correct :
    forall (S1 : GibleSeq.state) t S2,
      GibleSeq.step ge S1 t S2 ->
      forall (R1 : GiblePar.state),
        match_states S1 R1 ->
        exists R2, Smallstep.plus GiblePar.step tge R1 t R2 /\ match_states S2 R2.
  Proof.
    induction 1; repeat semantics_simpl.
    { exploit schedule_oracle_correct; eauto. constructor; eauto. simplify.
      destruct x0.
      pose proof H2 as X. eapply match_states_stepBB in X; eauto.
      exploit step_cf_correct; eauto. simplify.
      eexists; split. apply Smallstep.plus_one.
      econstructor; eauto. auto.
    }
    { unfold bind in *. inv TRANSL0. clear Learn. inv H0. destruct_match; crush.
      inv H2. unfold transl_function in Heqr. destruct_match; crush.
      inv Heqr.
      repeat econstructor; eauto.
      unfold bind in *. destruct_match; crush. }
    { inv TRANSL0.
      repeat econstructor;
        eauto using Events.E0_right. }
    { inv STACKS. inv H2. repeat econstructor; eauto.
      intros. apply PTree_matches; eauto. }
    Qed.

  Lemma transl_initial_states:
    forall S,
      GibleSeq.initial_state prog S ->
      exists R, GiblePar.initial_state tprog R /\ match_states S R.
  Proof.
    induction 1.
    exploit function_ptr_translated; eauto. intros [tf [A B]].
    econstructor; split.
    econstructor. apply (Genv.init_mem_transf_partial TRANSL); eauto.
    replace (prog_main tprog) with (prog_main prog). rewrite symbols_preserved; eauto.
    symmetry; eapply match_program_main; eauto.
    eexact A.
    rewrite <- H2. apply sig_transl_function; auto.
    constructor. auto. constructor.
  Qed.

  Lemma transl_final_states:
    forall S R r,
      match_states S R -> GibleSeq.final_state S r -> GiblePar.final_state R r.
  Proof. intros. inv H0. inv H. inv STACKS. constructor. Qed.

  Theorem transf_program_correct:
    Smallstep.forward_simulation (GibleSeq.semantics prog) (GiblePar.semantics tprog).
  Proof.
    eapply Smallstep.forward_simulation_plus.
    apply senv_preserved.
    eexact transl_initial_states.
    eexact transl_final_states.
    exact transl_step_correct.
  Qed.

End CORRECTNESS.