aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/GiblePargenproof.v
blob: eae309bb91969796d845ee726d3cbbee4260cf65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2020-2022 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Require Import compcert.backend.Registers.
Require Import compcert.common.AST.
Require Import compcert.common.Errors.
Require Import compcert.common.Linking.
Require Import compcert.common.Globalenvs.
Require Import compcert.common.Memory.
Require Import compcert.common.Values.
Require Import compcert.lib.Maps.

Require Import vericert.common.Vericertlib.
Require Import vericert.hls.GibleSeq.
Require Import vericert.hls.GiblePar.
Require Import vericert.hls.Gible.
Require Import vericert.hls.GiblePargen.
Require Import vericert.hls.Predicate.
Require Import vericert.hls.Abstr.

#[local] Open Scope positive.
#[local] Open Scope forest.
#[local] Open Scope pred_op.

(*|
==============
RTLPargenproof
==============

RTLBlock to abstract translation
================================

Correctness of translation from RTLBlock to the abstract interpretation language.
|*)

Definition is_regs i := match i with mk_instr_state rs _ _ => rs end.
Definition is_mem i := match i with mk_instr_state _ _ m => m end.
Definition is_ps i := match i with mk_instr_state _ p _ => p end.

Inductive state_lessdef : instr_state -> instr_state -> Prop :=
  state_lessdef_intro :
    forall rs1 rs2 ps1 ps2 m1,
      (forall x, rs1 !! x = rs2 !! x) ->
      (forall x, ps1 !! x = ps2 !! x) ->
      state_lessdef (mk_instr_state rs1 ps1 m1) (mk_instr_state rs2 ps2 m1).

Lemma state_lessdef_refl x : state_lessdef x x.
Proof. destruct x; constructor; auto. Qed.

Lemma state_lessdef_symm x y : state_lessdef x y -> state_lessdef y x.
Proof. destruct x; destruct y; inversion 1; subst; simplify; constructor; auto. Qed.

Lemma state_lessdef_trans :
  forall a b c,
    state_lessdef a b ->
    state_lessdef b c ->
    state_lessdef a c.
Proof.
  inversion 1; inversion 1; subst; simplify.
  constructor; eauto; intros. rewrite H0. auto.
Qed.

#[global] Instance Equivalence_state_lessdef : Equivalence state_lessdef :=
  { Equivalence_Reflexive := state_lessdef_refl;
    Equivalence_Symmetric := state_lessdef_symm;
    Equivalence_Transitive := state_lessdef_trans;
  }.

Definition check_dest i r' :=
  match i with
  | RBop p op rl r => (r =? r')%positive
  | RBload p chunk addr rl r => (r =? r')%positive
  | _ => false
  end.

Lemma check_dest_dec i r : {check_dest i r = true} + {check_dest i r = false}.
Proof. destruct (check_dest i r); tauto. Qed.

Fixpoint check_dest_l l r :=
  match l with
  | nil => false
  | a :: b => check_dest a r || check_dest_l b r
  end.

Lemma check_dest_l_forall :
  forall l r,
  check_dest_l l r = false ->
  Forall (fun x => check_dest x r = false) l.
Proof. induction l; crush. Qed.

Lemma check_dest_l_dec i r : {check_dest_l i r = true} + {check_dest_l i r = false}.
Proof. destruct (check_dest_l i r); tauto. Qed.

(* Lemma check_dest_update : *)
(*   forall f f' i r, *)
(*   check_dest i r = false -> *)
(*   update (Some f) i = Some f' -> *)
(*   (snd f') # (Reg r) = (snd f) # (Reg r). *)
(* Proof. *)
(*   destruct i; crush; try apply Pos.eqb_neq in H; unfold update; destruct_match; crush. *)
(*   inv Heqp. *)
(*   Admitted. *)

(* Lemma check_dest_l_forall2 : *)
(*   forall l r, *)
(*   Forall (fun x => check_dest x r = false) l -> *)
(*   check_dest_l l r = false. *)
(* Proof. *)
(*   induction l; crush. *)
(*   inv H. apply orb_false_intro; crush. *)
(* Qed. *)

(* Lemma check_dest_l_ex2 : *)
(*   forall l r, *)
(*   (exists a, In a l /\ check_dest a r = true) -> *)
(*   check_dest_l l r = true. *)
(* Proof. *)
(*   induction l; crush. *)
(*   specialize (IHl r). inv H. *)
(*   apply orb_true_intro; crush. *)
(*   apply orb_true_intro; crush. *)
(*   right. apply IHl. exists x. auto. *)
(* Qed. *)

(* Lemma check_list_l_false : *)
(*   forall l x r, *)
(*   check_dest_l (l ++ x :: nil) r = false -> *)
(*   check_dest_l l r = false /\ check_dest x r = false. *)
(* Proof. *)
(*   simplify. *)
(*   apply check_dest_l_forall in H. apply Forall_app in H. *)
(*   simplify. apply check_dest_l_forall2; auto. *)
(*   apply check_dest_l_forall in H. apply Forall_app in H. *)
(*   simplify. inv H1. auto. *)
(* Qed. *)

(* Lemma check_dest_l_ex : *)
(*   forall l r, *)
(*   check_dest_l l r = true -> *)
(*   exists a, In a l /\ check_dest a r = true. *)
(* Proof. *)
(*   induction l; crush. *)
(*   destruct (check_dest a r) eqn:?; try solve [econstructor; crush]. *)
(*   simplify. *)
(*   exploit IHl. apply H. simplify. econstructor. simplify. right. eassumption. *)
(*   auto. *)
(* Qed. *)

(* Lemma check_list_l_true : *)
(*   forall l x r, *)
(*   check_dest_l (l ++ x :: nil) r = true -> *)
(*   check_dest_l l r = true \/ check_dest x r = true. *)
(* Proof. *)
(*   simplify. *)
(*   apply check_dest_l_ex in H; simplify. *)
(*   apply in_app_or in H. inv H. left. *)
(*   apply check_dest_l_ex2. exists x0. auto. *)
(*   inv H0; auto. *)
(* Qed. *)

(* Lemma check_dest_l_dec2 l r : *)
(*   {Forall (fun x => check_dest x r = false) l} *)
(*   + {exists a, In a l /\ check_dest a r = true}. *)
(* Proof. *)
(*   destruct (check_dest_l_dec l r); [right | left]; *)
(*   auto using check_dest_l_ex, check_dest_l_forall. *)
(* Qed. *)

(* Lemma abstr_comp : *)
(*   forall l i f x x0, *)
(*   fold_left update (l ++ i :: nil) f = x -> *)
(*   fold_left update l f = x0 -> *)
(*   x = update x0 i. *)
(* Proof. induction l; intros; crush; eapply IHl; eauto. Qed. *)

(*

Lemma gen_list_base:
  forall FF ge sp l rs exps st1,
  (forall x, @sem_value FF ge sp st1 (exps # (Reg x)) (rs !! x)) ->
  sem_val_list ge sp st1 (list_translation l exps) rs ## l.
Proof.
  induction l.
  intros. simpl. constructor.
  intros. simpl. eapply Scons; eauto.
Qed.

Lemma check_dest_update2 :
  forall f r rl op p,
  (update f (RBop p op rl r)) # (Reg r) = Eop op (list_translation rl f) (f # Mem).
Proof. crush; rewrite map2; auto. Qed.

Lemma check_dest_update3 :
  forall f r rl p addr chunk,
  (update f (RBload p chunk addr rl r)) # (Reg r) = Eload chunk addr (list_translation rl f) (f # Mem).
Proof. crush; rewrite map2; auto. Qed.

Lemma abstract_seq_correct_aux:
  forall FF ge sp i st1 st2 st3 f,
    @step_instr FF ge sp st3 i st2 ->
    sem ge sp st1 f st3 ->
    sem ge sp st1 (update f i) st2.
Proof.
  intros; inv H; simplify.
  { simplify; eauto. } (*apply match_states_refl. }*)
  { inv H0. inv H6. destruct st1. econstructor. simplify.
    constructor. intros.
    destruct (resource_eq (Reg res) (Reg x)). inv e.
    rewrite map2. econstructor. eassumption. apply gen_list_base; eauto.
    rewrite Regmap.gss. eauto.
    assert (res <> x). { unfold not in *. intros. apply n. rewrite H0. auto. }
    rewrite Regmap.gso by auto.
    rewrite genmap1 by auto. auto.

    rewrite genmap1; crush. }
  { inv H0. inv H7. constructor. constructor. intros.
    destruct (Pos.eq_dec dst x); subst.
    rewrite map2. econstructor; eauto.
    apply gen_list_base. auto. rewrite Regmap.gss. auto.
    rewrite genmap1. rewrite Regmap.gso by auto. auto.
    unfold not in *; intros. inv H0. auto.
    rewrite genmap1; crush.
  }
  { inv H0. inv H7. constructor. constructor; intros.
    rewrite genmap1; crush.
    rewrite map2. econstructor; eauto.
    apply gen_list_base; auto.
  }
Qed.

Lemma regmap_list_equiv :
  forall A (rs1: Regmap.t A) rs2,
    (forall x, rs1 !! x = rs2 !! x) ->
    forall rl, rs1##rl = rs2##rl.
Proof. induction rl; crush. Qed.

Lemma sem_update_Op :
  forall A ge sp st f st' r l o0 o m rs v,
  @sem A ge sp st f st' ->
  Op.eval_operation ge sp o0 rs ## l m = Some v ->
  match_states st' (mk_instr_state rs m) ->
  exists tst,
  sem ge sp st (update f (RBop o o0 l r)) tst /\ match_states (mk_instr_state (Regmap.set r v rs) m) tst.
Proof.
  intros. inv H1. simplify.
  destruct st.
  econstructor. simplify.
  { constructor.
    { constructor. intros. destruct (Pos.eq_dec x r); subst.
      { pose proof (H5 r). rewrite map2. pose proof H. inv H. econstructor; eauto.
        { inv H9. eapply gen_list_base; eauto. }
        { instantiate (1 := (Regmap.set r v rs0)). rewrite Regmap.gss. erewrite regmap_list_equiv; eauto. } }
      { rewrite Regmap.gso by auto. rewrite genmap1; crush. inv H. inv H7; eauto. } }
    { inv H. rewrite genmap1; crush. eauto. } }
  { constructor; eauto. intros.
    destruct (Pos.eq_dec r x);
    subst; [repeat rewrite Regmap.gss | repeat rewrite Regmap.gso]; auto. }
Qed.

Lemma sem_update_load :
  forall A ge sp st f st' r o m a l m0 rs v a0,
  @sem A ge sp st f st' ->
  Op.eval_addressing ge sp a rs ## l = Some a0 ->
  Mem.loadv m m0 a0 = Some v ->
  match_states st' (mk_instr_state rs m0) ->
  exists tst : instr_state,
    sem ge sp st (update f (RBload o m a l r)) tst
    /\ match_states (mk_instr_state (Regmap.set r v rs) m0) tst.
Proof.
  intros. inv H2. pose proof H. inv H. inv H9.
  destruct st.
  econstructor; simplify.
  { constructor.
    { constructor. intros.
      destruct (Pos.eq_dec x r); subst.
      { rewrite map2. econstructor; eauto. eapply gen_list_base. intros.
        rewrite <- H6. eauto.
        instantiate (1 := (Regmap.set r v rs0)). rewrite Regmap.gss. auto. }
      { rewrite Regmap.gso by auto. rewrite genmap1; crush. } }
    { rewrite genmap1; crush. eauto. } }
  { constructor; auto; intros. destruct (Pos.eq_dec r x);
    subst; [repeat rewrite Regmap.gss | repeat rewrite Regmap.gso]; auto. }
Qed.

Lemma sem_update_store :
  forall A ge sp a0 m a l r o f st m' rs m0 st',
  @sem A ge sp st f st' ->
  Op.eval_addressing ge sp a rs ## l = Some a0 ->
  Mem.storev m m0 a0 rs !! r = Some m' ->
  match_states st' (mk_instr_state rs m0) ->
  exists tst, sem ge sp st (update f (RBstore o m a l r)) tst
              /\ match_states (mk_instr_state rs m') tst.
Proof.
  intros. inv H2. pose proof H. inv H. inv H9.
  destruct st.
  econstructor; simplify.
  { econstructor.
    { econstructor; intros. rewrite genmap1; crush. }
    { rewrite map2. econstructor; eauto. eapply gen_list_base. intros. rewrite <- H6.
      eauto. specialize (H6 r). rewrite H6. eauto. } }
  { econstructor; eauto. }
Qed.

Lemma sem_update :
  forall A ge sp st x st' st'' st''' f,
  sem ge sp st f st' ->
  match_states st' st''' ->
  @step_instr A ge sp st''' x st'' ->
  exists tst, sem ge sp st (update f x) tst /\ match_states st'' tst.
Proof.
  intros. destruct x; inv H1.
  { econstructor. split.
    apply sem_update_RBnop. eassumption.
    apply match_states_commut. auto. }
  { eapply sem_update_Op; eauto. }
  { eapply sem_update_load; eauto. }
  { eapply sem_update_store; eauto. }
Qed.

Lemma sem_update2_Op :
  forall A ge sp st f r l o0 o m rs v,
  @sem A ge sp st f (mk_instr_state rs m) ->
  Op.eval_operation ge sp o0 rs ## l m = Some v ->
  sem ge sp st (update f (RBop o o0 l r)) (mk_instr_state (Regmap.set r v rs) m).
Proof.
  intros. destruct st. constructor.
  inv H. inv H6.
  { constructor; intros. simplify.
    destruct (Pos.eq_dec r x); subst.
    { rewrite map2. econstructor. eauto.
      apply gen_list_base. eauto.
      rewrite Regmap.gss. auto. }
    { rewrite genmap1; crush. rewrite Regmap.gso; auto.  } }
  { simplify. rewrite genmap1; crush. inv H. eauto. }
Qed.

Lemma sem_update2_load :
  forall A ge sp st f r o m a l m0 rs v a0,
    @sem A ge sp st f (mk_instr_state rs m0) ->
    Op.eval_addressing ge sp a rs ## l = Some a0 ->
    Mem.loadv m m0 a0 = Some v ->
    sem ge sp st (update f (RBload o m a l r)) (mk_instr_state (Regmap.set r v rs) m0).
Proof.
  intros. simplify. inv H. inv H7. constructor.
  { constructor; intros. destruct (Pos.eq_dec r x); subst.
    { rewrite map2. rewrite Regmap.gss. econstructor; eauto.
      apply gen_list_base; eauto. }
    { rewrite genmap1; crush. rewrite Regmap.gso; eauto. }
  }
  { simplify. rewrite genmap1; crush. }
Qed.

Lemma sem_update2_store :
  forall A ge sp a0 m a l r o f st m' rs m0,
    @sem A ge sp st f (mk_instr_state rs m0) ->
    Op.eval_addressing ge sp a rs ## l = Some a0 ->
    Mem.storev m m0 a0 rs !! r = Some m' ->
    sem ge sp st (update f (RBstore o m a l r)) (mk_instr_state rs m').
Proof.
  intros. simplify. inv H. inv H7. constructor; simplify.
  { econstructor; intros. rewrite genmap1; crush. }
  { rewrite map2. econstructor; eauto. apply gen_list_base; eauto. }
Qed.

Lemma sem_update2 :
  forall A ge sp st x st' st'' f,
  sem ge sp st f st' ->
  @step_instr A ge sp st' x st'' ->
  sem ge sp st (update f x) st''.
Proof.
  intros.
  destruct x; inv H0;
  eauto using sem_update_RBnop, sem_update2_Op, sem_update2_load, sem_update2_store.
Qed.

Lemma abstr_sem_val_mem :
  forall A B ge tge st tst sp a,
    ge_preserved ge tge ->
    forall v m,
    (@sem_mem A ge sp st a m /\ match_states st tst -> @sem_mem B tge sp tst a m) /\
    (@sem_value A ge sp st a v /\ match_states st tst -> @sem_value B tge sp tst a v).
Proof.
  intros * H.
  apply expression_ind2 with

    (P := fun (e1: expression) =>
    forall v m,
    (@sem_mem A ge sp st e1 m /\ match_states st tst -> @sem_mem B tge sp tst e1 m) /\
    (@sem_value A ge sp st e1 v /\ match_states st tst -> @sem_value B tge sp tst e1 v))

    (P0 := fun (e1: expression_list) =>
    forall lv, @sem_val_list A ge sp st e1 lv /\ match_states st tst -> @sem_val_list B tge sp tst e1 lv);
  simplify; intros; simplify.
  { inv H1. inv H2. constructor. }
  { inv H2. inv H1. rewrite H0. constructor. }
  { inv H3. }
  { inv H3. inv H4. econstructor. apply H1; auto. simplify. eauto. constructor. auto. auto.
    apply H0; simplify; eauto. constructor; eauto.
    unfold ge_preserved in *. simplify. rewrite <- H2. auto.
  }
  { inv H3. }
  { inv H3. inv H4. econstructor. apply H1; eauto; simplify; eauto. constructor; eauto.
    apply H0; simplify; eauto. constructor; eauto.
    inv H. rewrite <- H4. eauto.
    auto.
  }
  { inv H4. inv H5. econstructor. apply H0; eauto. simplify; eauto. constructor; eauto.
    apply H2; eauto. simplify; eauto. constructor; eauto.
    apply H1; eauto. simplify; eauto. constructor; eauto.
    inv H. rewrite <- H5. eauto. auto.
  }
  { inv H4. }
  { inv H1. constructor. }
  { inv H3. constructor; auto. apply H0; eauto. apply Mem.empty. }
Qed.

Lemma abstr_sem_value :
  forall a A B ge tge sp st tst v,
    @sem_value A ge sp st a v ->
    ge_preserved ge tge ->
    match_states st tst ->
    @sem_value B tge sp tst a v.
Proof. intros; eapply abstr_sem_val_mem; eauto; apply Mem.empty. Qed.

Lemma abstr_sem_mem :
  forall a A B ge tge sp st tst v,
    @sem_mem A ge sp st a v ->
    ge_preserved ge tge ->
    match_states st tst ->
    @sem_mem B tge sp tst a v.
Proof. intros; eapply abstr_sem_val_mem; eauto. Qed.

Lemma abstr_sem_regset :
  forall a a' A B ge tge sp st tst rs,
    @sem_regset A ge sp st a rs ->
    ge_preserved ge tge ->
    (forall x, a # x = a' # x) ->
    match_states st tst ->
    exists rs', @sem_regset B tge sp tst a' rs' /\ (forall x, rs !! x = rs' !! x).
Proof.
  inversion 1; intros.
  inv H7.
  econstructor. simplify. econstructor. intros.
  eapply abstr_sem_value; eauto. rewrite <- H6.
  eapply H0. constructor; eauto.
  auto.
Qed.

Lemma abstr_sem :
  forall a a' A B ge tge sp st tst st',
    @sem A ge sp st a st' ->
    ge_preserved ge tge ->
    (forall x, a # x = a' # x) ->
    match_states st tst ->
    exists tst', @sem B tge sp tst a' tst' /\ match_states st' tst'.
Proof.
  inversion 1; subst; intros.
  inversion H4; subst.
  exploit abstr_sem_regset; eauto; inv_simp.
  do 3 econstructor; eauto.
  rewrite <- H3.
  eapply abstr_sem_mem; eauto.
Qed.

Lemma abstract_execution_correct':
  forall A B ge tge sp st' a a' st tst,
  @sem A ge sp st a st' ->
  ge_preserved ge tge ->
  check a a' = true ->
  match_states st tst ->
  exists tst', @sem B tge sp tst a' tst' /\ match_states st' tst'.
Proof.
  intros;
  pose proof (check_correct a a' H1);
  eapply abstr_sem; eauto.
Qed.

Lemma states_match :
  forall st1 st2 st3 st4,
  match_states st1 st2 ->
  match_states st2 st3 ->
  match_states st3 st4 ->
  match_states st1 st4.
Proof.
  intros * H1 H2 H3; destruct st1; destruct st2; destruct st3; destruct st4.
  inv H1. inv H2. inv H3; constructor.
  unfold regs_lessdef in *. intros.
  repeat match goal with
         | H: forall _, _, r : positive |- _ => specialize (H r)
         end.
  congruence.
  auto.
Qed.

Lemma step_instr_block_same :
  forall ge sp st st',
  step_instr_block ge sp st nil st' ->
  st = st'.
Proof. inversion 1; auto. Qed.

Lemma step_instr_seq_same :
  forall ge sp st st',
  step_instr_seq ge sp st nil st' ->
  st = st'.
Proof. inversion 1; auto. Qed.

Lemma sem_update' :
  forall A ge sp st a x st',
  sem ge sp st (update (abstract_sequence empty a) x) st' ->
  exists st'',
  @step_instr A ge sp st'' x st' /\
  sem ge sp st (abstract_sequence empty a) st''.
Proof.
  Admitted.

Lemma rtlpar_trans_correct :
  forall bb ge sp sem_st' sem_st st,
  sem ge sp sem_st (abstract_sequence empty (concat (concat bb))) sem_st' ->
  match_states sem_st st ->
  exists st', RTLPar.step_instr_block ge sp st bb st'
              /\ match_states sem_st' st'.
Proof.
  induction bb using rev_ind.
  { repeat econstructor. eapply abstract_interp_empty3 in H.
    inv H. inv H0. constructor; congruence. }
  { simplify. inv H0. repeat rewrite concat_app in H. simplify.
    rewrite app_nil_r in H.
    exploit sem_separate; eauto; inv_simp.
    repeat econstructor. admit. admit.
  }
Admitted.

(*Lemma abstract_execution_correct_ld:
  forall bb bb' cfi ge tge sp st st' tst,
    RTLBlock.step_instr_list ge sp st bb st' ->
    ge_preserved ge tge ->
    schedule_oracle (mk_bblock bb cfi) (mk_bblock bb' cfi) = true ->
    match_states_ld st tst ->
    exists tst', RTLPar.step_instr_block tge sp tst bb' tst'
                 /\ match_states st' tst'.
Proof.
  intros.*)
*)

Lemma match_states_list :
  forall A (rs: Regmap.t A) rs',
  (forall r, rs !! r = rs' !! r) ->
  forall l, rs ## l = rs' ## l.
Proof. induction l; crush. Qed.

Lemma PTree_matches :
  forall A (v: A) res rs rs',
  (forall r, rs !! r = rs' !! r) ->
  forall x, (Regmap.set res v rs) !! x = (Regmap.set res v rs') !! x.
Proof.
  intros; destruct (Pos.eq_dec x res); subst;
  [ repeat rewrite Regmap.gss by auto
  | repeat rewrite Regmap.gso by auto ]; auto.
Qed.

(*Lemma abstract_interp_empty3 :
  forall A ctx st',
    @sem A ctx empty st' -> match_states (ctx_is ctx) st'.
Proof.
  inversion 1; subst; simplify. destruct ctx.
  destruct ctx_is.
  constructor; intros.
  - inv H0. specialize (H3 x). inv H3. inv H8. reflexivity.
  - inv H1. specialize (H3 x). inv H3. inv H8. reflexivity.
  - inv H2. inv H8. reflexivity.
Qed.

Lemma step_instr_matches :
  forall A a ge sp st st',
    @step_instr A ge sp st a st' ->
    forall tst,
      match_states st tst ->
      exists tst', step_instr ge sp tst a tst'
                   /\ match_states st' tst'.
Proof.
  induction 1; simplify;
  match goal with H: match_states _ _ |- _ => inv H end;
  try solve [repeat econstructor; try erewrite match_states_list;
  try apply PTree_matches; eauto;
  match goal with
    H: forall _, _ |- context[Mem.storev] => erewrite <- H; eauto
  end].
  - destruct p. match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
    repeat econstructor; try erewrite match_states_list; eauto.
    erewrite <- eval_predf_pr_equiv; eassumption.
    apply PTree_matches; assumption.
    repeat (econstructor; try apply eval_pred_false); eauto. try erewrite match_states_list; eauto.
    erewrite <- eval_predf_pr_equiv; eassumption.
    econstructor; auto.
    match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
    repeat econstructor; try erewrite match_states_list; eauto.
  (*- destruct p. match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
    repeat econstructor; try erewrite match_states_list; eauto.
    erewrite <- eval_predf_pr_equiv; eassumption.
    apply PTree_matches; assumption.
    repeat (econstructor; try apply eval_pred_false); eauto. try erewrite match_states_list; eauto.
    erewrite <- eval_predf_pr_equiv; eassumption.
    econstructor; auto.
    match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
    repeat econstructor; try erewrite match_states_list; eauto.
  - destruct p. match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
    repeat econstructor; try erewrite match_states_list; eauto.
    match goal with
    H: forall _, _ |- context[Mem.storev] => erewrite <- H; eauto
    end.
    erewrite <- eval_predf_pr_equiv; eassumption.
    repeat (econstructor; try apply eval_pred_false); eauto. try erewrite match_states_list; eauto.
    match goal with
    H: forall _, _ |- context[Mem.storev] => erewrite <- H; eauto
    end.
    erewrite <- eval_predf_pr_equiv; eassumption.
    match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
    repeat econstructor; try erewrite match_states_list; eauto.
    match goal with
    H: forall _, _ |- context[Mem.storev] => erewrite <- H; eauto
    end.
  - admit.*) Admitted.

Lemma step_instr_list_matches :
  forall a ge sp st st',
  step_instr_list ge sp st a st' ->
  forall tst, match_states st tst ->
              exists tst', step_instr_list ge sp tst a tst'
                           /\ match_states st' tst'.
Proof.
  induction a; intros; inv H;
  try (exploit step_instr_matches; eauto; []; simplify;
       exploit IHa; eauto; []; simplify); repeat econstructor; eauto.
Qed.

Lemma step_instr_seq_matches :
  forall a ge sp st st',
   step_instr_seq ge sp st a st' ->
  forall tst, match_states st tst ->
              exists tst', step_instr_seq ge sp tst a tst'
                           /\ match_states st' tst'.
Proof.
  induction a; intros; inv H;
  try (exploit step_instr_list_matches; eauto; []; simplify;
       exploit IHa; eauto; []; simplify); repeat econstructor; eauto.
Qed.

Lemma step_instr_block_matches :
  forall bb ge sp st st',
  step_instr_block ge sp st bb st' ->
  forall tst, match_states st tst ->
              exists tst', step_instr_block ge sp tst bb tst'
                           /\ match_states st' tst'.
Proof.
  induction bb; intros; inv H;
  try (exploit step_instr_seq_matches; eauto; []; simplify;
       exploit IHbb; eauto; []; simplify); repeat econstructor; eauto.
Qed.

Lemma rtlblock_trans_correct' :
  forall bb ge sp st x st'',
  RTLBlock.step_instr_list ge sp st (bb ++ x :: nil) st'' ->
  exists st', RTLBlock.step_instr_list ge sp st bb st'
              /\ step_instr ge sp st' x st''.
Proof.
  induction bb.
  crush. exists st.
  split. constructor. inv H. inv H6. auto.
  crush. inv H. exploit IHbb. eassumption. simplify.
  econstructor. split.
  econstructor; eauto. eauto.
Qed.

Lemma abstract_interp_empty A st : @sem A st empty (ctx_is st).
Proof. destruct st, ctx_is. simpl. repeat econstructor. Qed.

Lemma abstract_seq :
  forall l f i,
    abstract_sequence f (l ++ i :: nil) = update (abstract_sequence f l) i.
Proof. induction l; crush. Qed.

Lemma abstract_sequence_update :
  forall l r f,
  check_dest_l l r = false ->
  (abstract_sequence f l) # (Reg r) = f # (Reg r).
Proof.
  induction l using rev_ind; crush.
  rewrite abstract_seq. rewrite check_dest_update. apply IHl.
  apply check_list_l_false in H. tauto.
  apply check_list_l_false in H. tauto.
Qed.

(*Lemma sem_separate :
  forall A ctx b a st',
    sem ctx (abstract_sequence empty (a ++ b)) st' ->
    exists st'',
         @sem A ctx (abstract_sequence empty a) st''
      /\ @sem A (mk_ctx st'' (ctx_sp ctx) (ctx_ge ctx)) (abstract_sequence empty b) st'.
Proof.
  induction b using rev_ind; simplify.
  { econstructor. simplify. rewrite app_nil_r in H. eauto. apply abstract_interp_empty. }
  { simplify. rewrite app_assoc in H. rewrite abstract_seq in H.
    exploit sem_update'; eauto; simplify.
    exploit IHb; eauto; inv_simp.
    econstructor; split; eauto.
    rewrite abstract_seq.
    eapply sem_update2; eauto.
  }
Qed.*)

Lemma sem_update_RBnop :
  forall A ctx f st',
  @sem A ctx f st' -> sem ctx (update f RBnop) st'.
Proof. auto. Qed.

Lemma sem_update_Op :
  forall A ge sp ist f st' r l o0 o m rs v ps,
  @sem A (mk_ctx ist sp ge) f st' ->
  eval_predf ps o = true ->
  Op.eval_operation ge sp o0 (rs ## l) m = Some v ->
  match_states st' (mk_instr_state rs ps m) ->
  exists tst,
  sem (mk_ctx ist sp ge) (update f (RBop (Some o) o0 l r)) tst
  /\ match_states (mk_instr_state (Regmap.set r v rs) ps m) tst.
Proof.
  intros. inv H1. inv H. inv H1. inv H3. simplify.
  econstructor. simplify.
  { constructor; try constructor; intros; try solve [rewrite genmap1; now eauto].
    destruct (Pos.eq_dec x r); subst.
    { rewrite map2. specialize (H1 r). inv H1.
(*}
  }
  destruct st.
  econstructor. simplify.
  { constructor.
    { constructor. intros. destruct (Pos.eq_dec x r); subst.
      { pose proof (H5 r). rewrite map2. pose proof H. inv H. econstructor; eauto.
        { inv H9. eapply gen_list_base; eauto. }
        { instantiate (1 := (Regmap.set r v rs0)). rewrite Regmap.gss. erewrite regmap_list_equiv; eauto. } }
      { rewrite Regmap.gso by auto. rewrite genmap1; crush. inv H. inv H7; eauto. } }
    { inv H. rewrite genmap1; crush. eauto. } }
  { constructor; eauto. intros.
    destruct (Pos.eq_dec r x);
    subst; [repeat rewrite Regmap.gss | repeat rewrite Regmap.gso]; auto. }
Qed.*) Admitted.

Lemma sem_update :
  forall A ge sp st x st' st'' st''' f,
  sem (mk_ctx st sp ge) f st' ->
  match_states st' st''' ->
  @step_instr A ge sp st''' x st'' ->
  exists tst, sem (mk_ctx st sp ge) (update f x) tst /\ match_states st'' tst.
Proof.
  intros. destruct x.
  - inv H1. econstructor. simplify. eauto. symmetry; auto.
  - inv H1. inv H0. econstructor.
    Admitted.

Lemma rtlblock_trans_correct :
  forall bb ge sp st st',
    RTLBlock.step_instr_list ge sp st bb st' ->
    forall tst,
      match_states st tst ->
      exists tst', sem (mk_ctx tst sp ge) (abstract_sequence empty bb) tst'
                   /\ match_states st' tst'.
Proof.
  induction bb using rev_ind; simplify.
  { econstructor. simplify. apply abstract_interp_empty.
    inv H. auto. }
  { apply rtlblock_trans_correct' in H. simplify.
    rewrite abstract_seq.
    exploit IHbb; try eassumption; []; simplify.
    exploit sem_update. apply H1. symmetry; eassumption.
    eauto. simplify. econstructor. split. apply H3.
    auto. }
Qed.

Lemma abstract_execution_correct:
  forall bb bb' cfi cfi' ge tge sp st st' tst,
    RTLBlock.step_instr_list ge sp st bb st' ->
    ge_preserved ge tge ->
    schedule_oracle (mk_bblock bb cfi) (mk_bblock bb' cfi') = true ->
    match_states st tst ->
    exists tst', RTLPar.step_instr_block tge sp tst bb' tst'
                 /\ match_states st' tst'.
Proof.
  intros.
  unfold schedule_oracle in *. simplify. unfold empty_trees in H4.
  exploit rtlblock_trans_correct; try eassumption; []; simplify.
(*)  exploit abstract_execution_correct';
  try solve [eassumption | apply state_lessdef_match_sem; eassumption].
  apply match_states_commut. eauto. inv_simp.
  exploit rtlpar_trans_correct; try eassumption; []; inv_simp.
  exploit step_instr_block_matches; eauto. apply match_states_commut; eauto. inv_simp.
  repeat match goal with | H: match_states _ _ |- _ => inv H end.
  do 2 econstructor; eauto.
  econstructor; congruence.
Qed.*)Admitted.*)

Definition match_prog (prog : GibleSeq.program) (tprog : GiblePar.program) :=
  match_program (fun cu f tf => transl_fundef f = Errors.OK tf) eq prog tprog.

(* TODO: Fix the `bb` and add matches for them. *)
Inductive match_stackframes: GibleSeq.stackframe -> GiblePar.stackframe -> Prop :=
| match_stackframe:
    forall f tf res sp pc rs rs' ps ps',
      transl_function f = OK tf ->
      (forall x, rs !! x = rs' !! x) ->
      (forall x, ps !! x = ps' !! x) ->
      match_stackframes (GibleSeq.Stackframe res f sp pc rs ps)
                        (Stackframe res tf sp pc rs' ps').

Inductive match_states: GibleSeq.state -> GiblePar.state -> Prop :=
| match_state:
    forall sf f sp pc rs rs' m sf' tf ps ps'
      (TRANSL: transl_function f = OK tf)
      (STACKS: list_forall2 match_stackframes sf sf')
      (REG: forall x, rs !! x = rs' !! x)
      (REG: forall x, ps !! x = ps' !! x),
      match_states (GibleSeq.State sf f sp pc rs ps m)
                   (State sf' tf sp pc rs' ps' m)
| match_returnstate:
    forall stack stack' v m
      (STACKS: list_forall2 match_stackframes stack stack'),
      match_states (GibleSeq.Returnstate stack v m)
                   (Returnstate stack' v m)
| match_callstate:
    forall stack stack' f tf args m
      (TRANSL: transl_fundef f = OK tf)
      (STACKS: list_forall2 match_stackframes stack stack'),
      match_states (GibleSeq.Callstate stack f args m)
                   (Callstate stack' tf args m).

Section CORRECTNESS.

  Context (prog: GibleSeq.program) (tprog : GiblePar.program).
  Context (TRANSL: match_prog prog tprog).

  Let ge : GibleSeq.genv := Globalenvs.Genv.globalenv prog.
  Let tge : GiblePar.genv := Globalenvs.Genv.globalenv tprog.

  Lemma symbols_preserved:
    forall (s: AST.ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
  Proof using TRANSL. intros. eapply (Genv.find_symbol_match TRANSL). Qed.
  Hint Resolve symbols_preserved : rtlgp.

  Lemma function_ptr_translated:
    forall (b: Values.block) (f: GibleSeq.fundef),
      Genv.find_funct_ptr ge b = Some f ->
      exists tf,
        Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = Errors.OK tf.
  Proof using TRANSL.
    intros. exploit (Genv.find_funct_ptr_match TRANSL); eauto.
    intros (cu & tf & P & Q & R); exists tf; auto.
  Qed.

  Lemma functions_translated:
    forall (v: Values.val) (f: GibleSeq.fundef),
      Genv.find_funct ge v = Some f ->
      exists tf,
        Genv.find_funct tge v = Some tf /\ transl_fundef f = Errors.OK tf.
  Proof using TRANSL.
    intros. exploit (Genv.find_funct_match TRANSL); eauto.
    intros (cu & tf & P & Q & R); exists tf; auto.
  Qed.

  Lemma senv_preserved:
    Senv.equiv (Genv.to_senv ge) (Genv.to_senv tge).
  Proof (Genv.senv_transf_partial TRANSL).
  Hint Resolve senv_preserved : rtlgp.

  Lemma sig_transl_function:
    forall (f: GibleSeq.fundef) (tf: GiblePar.fundef),
      transl_fundef f = OK tf ->
      funsig tf = GibleSeq.funsig f.
  Proof using .
    unfold transl_fundef, transf_partial_fundef, transl_function; intros;
    repeat destruct_match; crush;
    match goal with H: OK _ = OK _ |- _ => inv H end; auto.
  Qed.
  Hint Resolve sig_transl_function : rtlgp.

  Hint Resolve Val.lessdef_same : rtlgp.
  Hint Resolve regs_lessdef_regs : rtlgp.

  Lemma find_function_translated:
    forall ros rs rs' f,
      (forall x, rs !! x = rs' !! x) ->
      GibleSeq.find_function ge ros rs = Some f ->
      exists tf, find_function tge ros rs' = Some tf
                 /\ transl_fundef f = OK tf.
  Proof using TRANSL.
    Ltac ffts := match goal with
                 | [ H: forall _, Val.lessdef _ _, r: Registers.reg |- _ ] =>
                   specialize (H r); inv H
                 | [ H: Vundef = ?r, H1: Genv.find_funct _ ?r = Some _ |- _ ] =>
                   rewrite <- H in H1
                 | [ H: Genv.find_funct _ Vundef = Some _ |- _] => solve [inv H]
                 | _ => solve [exploit functions_translated; eauto]
                 end.
    destruct ros; simplify; try rewrite <- H;
    [| rewrite symbols_preserved; destruct_match;
      try (apply function_ptr_translated); crush ];
    intros;
    repeat ffts.
  Qed.

  Lemma schedule_oracle_nil:
    forall bb,
      schedule_oracle nil bb = true ->
      bb = nil.
  Proof using .
    unfold schedule_oracle, check_control_flow_instr.
    simplify; repeat destruct_match; crush.
  Qed.

  Lemma schedule_oracle_nil2:
      schedule_oracle nil nil = true.
  Proof using .
    unfold schedule_oracle, check_control_flow_instr.
    simplify; repeat destruct_match; crush.
  Admitted.

  Lemma eval_op_eq:
    forall (sp0 : Values.val) (op : Op.operation) (vl : list Values.val) m,
      Op.eval_operation ge sp0 op vl m = Op.eval_operation tge sp0 op vl m.
  Proof using TRANSL.
    intros.
    destruct op; auto; unfold Op.eval_operation, Genv.symbol_address, Op.eval_addressing32;
    [| destruct a; unfold Genv.symbol_address ];
    try rewrite symbols_preserved; auto.
  Qed.
  Hint Resolve eval_op_eq : rtlgp.

  Lemma eval_addressing_eq:
    forall sp addr vl,
      Op.eval_addressing ge sp addr vl = Op.eval_addressing tge sp addr vl.
  Proof using TRANSL.
    intros.
    destruct addr;
    unfold Op.eval_addressing, Op.eval_addressing32;
    unfold Genv.symbol_address;
    try rewrite symbols_preserved; auto.
  Qed.
  Hint Resolve eval_addressing_eq : rtlgp.

  Lemma ge_preserved_lem:
    ge_preserved ge tge.
  Proof using TRANSL.
    unfold ge_preserved.
    eauto with rtlgp.
  Qed.
  Hint Resolve ge_preserved_lem : rtlgp.

  Lemma lessdef_regmap_optget:
    forall or rs rs',
      regs_lessdef rs rs' ->
      Val.lessdef (regmap_optget or Vundef rs) (regmap_optget or Vundef rs').
  Proof using. destruct or; crush. Qed.
  Hint Resolve lessdef_regmap_optget : rtlgp.

  Lemma regmap_equiv_lessdef:
    forall rs rs',
      (forall x, rs !! x = rs' !! x) ->
      regs_lessdef rs rs'.
  Proof using.
    intros; unfold regs_lessdef; intros.
    rewrite H. apply Val.lessdef_refl.
  Qed.
  Hint Resolve regmap_equiv_lessdef : rtlgp.

  Lemma int_lessdef:
    forall rs rs',
      regs_lessdef rs rs' ->
      (forall arg v,
          rs !! arg = Vint v ->
          rs' !! arg = Vint v).
  Proof using. intros ? ? H; intros; specialize (H arg); inv H; crush. Qed.
  Hint Resolve int_lessdef : rtlgp.

  Ltac semantics_simpl :=
    match goal with
    | [ H: match_states _ _ |- _ ] =>
      let H2 := fresh "H" in
      learn H as H2; inv H2
    | [ H: transl_function ?f = OK _ |- _ ] =>
      let H2 := fresh "TRANSL" in
      learn H as H2;
      unfold transl_function in H2;
      destruct (check_scheduled_trees
                  (GibleSeq.fn_code f)
                  (fn_code (schedule f))) eqn:?;
               [| discriminate ]; inv H2
    | [ H: context[check_scheduled_trees] |- _ ] =>
      let H2 := fresh "CHECK" in
      learn H as H2;
      eapply check_scheduled_trees_correct in H2; [| solve [eauto] ]
    | [ H: schedule_oracle nil ?bb = true |- _ ] =>
      let H2 := fresh "SCHED" in
      learn H as H2;
      apply schedule_oracle_nil in H2
    | [ H: find_function _ _ _ = Some _, H2: forall x, ?rs !! x = ?rs' !! x |- _ ] =>
      learn H; exploit find_function_translated; try apply H2; eauto; inversion 1
    | [ H: Mem.free ?m _ _ _ = Some ?m', H2: Mem.extends ?m ?m'' |- _ ] =>
      learn H; exploit Mem.free_parallel_extends; eauto; intros
    | [ H: Events.eval_builtin_args _ _ _ _ _ _, H2: regs_lessdef ?rs ?rs' |- _ ] =>
      let H3 := fresh "H" in
      learn H; exploit Events.eval_builtin_args_lessdef; [apply H2 | | |];
      eauto with rtlgp; intro H3; learn H3
    | [ H: Events.external_call _ _ _ _ _ _ _ |- _ ] =>
      let H2 := fresh "H" in
      learn H; exploit Events.external_call_mem_extends;
      eauto; intro H2; learn H2
    | [ H: exists _, _ |- _ ] => inv H
    | _ => progress simplify
    end.

  Hint Resolve Events.eval_builtin_args_preserved : rtlgp.
  Hint Resolve Events.external_call_symbols_preserved : rtlgp.
  Hint Resolve set_res_lessdef : rtlgp.
  Hint Resolve set_reg_lessdef : rtlgp.
  Hint Resolve Op.eval_condition_lessdef : rtlgp.

  Hint Constructors Events.eval_builtin_arg: barg.

  Lemma eval_builtin_arg_eq:
    forall A ge a v1 m1 e1 e2 sp,
      (forall x, e1 x = e2 x) ->
      @Events.eval_builtin_arg A ge e1 sp m1 a v1 ->
      Events.eval_builtin_arg ge e2 sp m1 a v1.
Proof. induction 2; try rewrite H; eauto with barg. Qed.

  Lemma eval_builtin_args_eq:
    forall A ge e1 sp m1 e2 al vl1,
      (forall x, e1 x = e2 x) ->
      @Events.eval_builtin_args A ge e1 sp m1 al vl1 ->
      Events.eval_builtin_args ge e2 sp m1 al vl1.
  Proof.
    induction 2.
    - econstructor; split.
    - exploit eval_builtin_arg_eq; eauto. intros.
      destruct IHlist_forall2 as [| y]. constructor; eauto.
      constructor. constructor; auto.
      constructor; eauto.
  Qed.

  #[local] Hint Resolve Events.external_call_symbols_preserved : core.
  #[local] Hint Resolve eval_builtin_args_eq : core.
  #[local] Hint Resolve symbols_preserved : core.
  #[local] Hint Resolve senv_preserved : core.
  #[local] Hint Resolve eval_op_eq : core.
  #[local] Hint Resolve eval_addressing_eq : core.

  Lemma step_instr_ge :
    forall sp a i i',
      step_instr ge sp i a i' ->
      step_instr tge sp i a i'.
  Proof.
    inversion 1; subst; simplify; try solve [econstructor; eauto].
    - constructor; auto; rewrite <- eval_op_eq; eauto.
    - econstructor; eauto; rewrite <- eval_addressing_eq; eauto.
    - econstructor; eauto; rewrite <- eval_addressing_eq; eauto.
  Qed.
  #[local] Hint Resolve step_instr_ge : core.

  Lemma seqbb_step_step_instr_list :
    forall sp a i i',
      SeqBB.step ge sp i a i' ->
      ParBB.step_instr_list tge sp i a i'.
  Proof.
    induction a; simplify; inv H.
    econstructor; eauto. eapply IHa; eauto.
    econstructor; eauto. constructor.
  Qed.
  #[local] Hint Resolve seqbb_step_step_instr_list : core.

  Lemma step_list2_step_instr_list :
    forall sp a i i',
      step_list2 (step_instr ge) sp i a i' ->
      ParBB.step_instr_list tge sp i a i'.
  Proof.
    induction a; simplify; inv H.
    econstructor; eauto.
    destruct i; try solve [inv H4].
    econstructor; eauto. apply IHa; auto.
  Qed.
  #[local] Hint Resolve step_list2_step_instr_list : core.

  Lemma seqbb_step_step_instr_seq :
    forall sp x i i' cf,
      SeqBB.step ge sp (Iexec i) (concat x) (Iterm i' cf) ->
      ParBB.step_instr_seq tge sp (Iexec i) x (Iterm i' cf).
  Proof.
    induction x; crush. inv H. eapply step_options in H.
    inv H. econstructor. eauto. constructor.
    simplify. econstructor; eauto.
    eapply IHx; eauto.
  Qed.

  Lemma step_list2_step_instr_seq :
    forall sp x i i',
      step_list2 (step_instr ge) sp (Iexec i) (concat x) (Iexec i') ->
      ParBB.step_instr_seq tge sp (Iexec i) x (Iexec i').
  Proof.
    induction x; crush. inv H. constructor.
    eapply step_options2 in H. simplify.
    econstructor; eauto.
    eapply IHx; eauto.
  Qed.

  Lemma seqbb_step_parbb_step :
    forall sp x i i' cf,
      SeqBB.step ge sp (Iexec i) (concat (concat x)) (Iterm i' cf) ->
      ParBB.step tge sp (Iexec i) x (Iterm i' cf).
  Proof.
    induction x; crush. inv H.
    rewrite concat_app in H.
    eapply step_options in H. inv H.
    constructor. eapply seqbb_step_step_instr_seq; eauto.
    simplify. econstructor.
    eapply step_list2_step_instr_seq; eauto.
    eapply IHx; eauto.
  Qed.

  Lemma eval_predf_negate :
    forall ps p,
      eval_predf ps (negate p) = negb (eval_predf ps p).
  Proof.
    unfold eval_predf; intros. rewrite negate_correct. auto.
  Qed.

  Lemma is_truthy_negate :
    forall ps p pred,
      truthy ps p ->
      falsy ps (combine_pred (Some (negate (Option.default T p))) pred).
  Proof.
    inversion 1; subst; simplify.
    - destruct pred; constructor; auto.
    - destruct pred; constructor.
      rewrite eval_predf_Pand. rewrite eval_predf_negate. rewrite H0. auto.
      rewrite eval_predf_negate. rewrite H0. auto.
  Qed.

  Lemma sem_update_instr :
    forall f i' i'' a sp p i p' f',
      sem (mk_ctx i sp ge) f (i', None) ->
      step_instr ge sp (Iexec i') a (Iexec i'') ->
      update (Some (p, f)) a = Some (p', f') ->
      sem (mk_ctx i sp ge) f' (i'', None).
  Proof. Admitted.

  (* Lemma sem_update_instr_term : *)
  (*   forall f i' i'' a sp i cf p p' p'' f', *)
  (*     sem (mk_ctx i sp ge) f (i', None) -> *)
  (*     step_instr ge sp (Iexec i') (RBexit p cf) (Iterm i'' cf) -> *)
  (*     update (Some (p', f)) a = Some (p'', f') -> *)
  (*     sem (mk_ctx i sp ge) f' (i'', Some cf) *)
  (*          /\ eval_apred (mk_ctx i sp ge) p'' false. *)
  (* Proof. Admitted. *)

  (* Lemma step_instr_lessdef : *)
  (*   forall sp a i i' ti, *)
  (*     step_instr ge sp (Iexec i) a (Iexec i') -> *)
  (*     state_lessdef i ti -> *)
  (*     exists ti', step_instr ge sp (Iexec ti) a (Iexec ti') /\ state_lessdef i' ti'. *)
  (* Proof. Admitted. *)

  (* Lemma step_instr_lessdef_term : *)
  (*   forall sp a i i' ti cf, *)
  (*     step_instr ge sp (Iexec i) a (Iterm i' cf) -> *)
  (*     state_lessdef i ti -> *)
  (*     exists ti', step_instr ge sp (Iexec ti) a (Iterm ti' cf) /\ state_lessdef i' ti'. *)
  (* Proof. Admitted. *)

(*  Lemma app_predicated_semregset :
    forall A ctx o f res r y,
      @sem_regset A ctx f res ->
      falsy (ctx_ps ctx) o ->
      @sem_regset A ctx f # r <- (app_predicated o f#r y) res.
  Proof.
    inversion 1; subst; crush.
    constructor; intros.
    destruct (resource_eq r (Reg x)); subst.
    + rewrite map2; eauto. unfold app_predicated. inv H1. admit.
    + rewrite genmap1; auto.
  Admitted.

  Lemma app_predicated_sempredset :
    forall A ctx o f rs r y ps,
      @sem_predset A ctx f rs ->
      falsy ps o ->
      @sem_predset A ctx f # r <- (app_predicated o f#r y) rs.
  Proof. Admitted.

  Lemma app_predicated_sem :
    forall A ctx o f i cf r y,
      @sem A ctx f (i, cf) ->
      falsy (is_ps i) o ->
      @sem A ctx f # r <- (app_predicated o f#r y) (i, cf).
  Proof.
    inversion 1; subst; crush.
    constructor.
  Admitted.*)

  Lemma combined_falsy :
    forall i o1 o,
      falsy i o1 ->
      falsy i (combine_pred o o1).
  Proof.
    inversion 1; subst; crush. destruct o; simplify.
    constructor. rewrite eval_predf_Pand. rewrite H0. crush.
    constructor. auto.
  Qed.

  (* Inductive is_predicate_expr: expression -> Prop := *)
  (* | is_predicate_expr_Epredset : *)
  (*   forall c a, is_predicate_expr (Esetpred c a) *)
  (* | is_predicate_expr_Ebase : *)
  (*   forall p, is_predicate_expr (Ebase (Pred p)). *)

  (* Inductive apred_wf: apred_op -> Prop := *)
  (* | apred_wf_Plit: forall b p, *)
  (*     is_predicate_expr p -> *)
  (*     apred_wf (Plit (b, p)) *)
  (* | apred_wf_Ptrue: apred_wf Ptrue *)
  (* | apred_wf_Pfalse: apred_wf Pfalse *)
  (* | apred_wf_Pand: forall a b, *)
  (*   apred_wf a -> apred_wf b -> apred_wf (a ∧ b) *)
  (* | apred_wf_Por: forall a b, *)
  (*   apred_wf a -> apred_wf b -> apred_wf (a ∨ b). *)

  (* Lemma apred_and_false1 : *)
  (*   forall A ctx a b c, *)
  (*     @eval_apred A ctx a false -> *)
  (*     @eval_apred A ctx b c -> *)
  (*     eval_apred ctx (a ∧ b) false. *)
  (* Proof. *)
  (*   intros. *)
  (*   replace false with (false && c) by auto. *)
  (*   constructor; auto. *)
  (* Qed. *)

  (* Lemma apred_and_false2 : *)
  (*   forall A ctx a b c, *)
  (*     @eval_apred A ctx a c -> *)
  (*     eval_apred ctx b false -> *)
  (*     eval_apred ctx (a ∧ b) false. *)
  (* Proof. *)
  (*   intros. *)
  (*   replace false with (c && false) by eauto with bool. *)
  (*   constructor; auto. *)
  (* Qed. *)

  (* #[local] Opaque simplify. *)

  (* Lemma apred_simplify: *)
  (*   forall A ctx a b, *)
  (*     @eval_apred A ctx a b -> *)
  (*     @eval_apred A ctx (simplify a) b. *)
  (* Proof. Admitted. *)

  (* Lemma exists_get_pred_eval : *)
  (*   forall A ctx f p, *)
  (*   exists c, @eval_apred A ctx (get_pred' f p) c. *)
  (* Proof. *)
  (*   induction p; crush; try solve [econstructor; constructor; eauto]. *)
  (*   destruct_match. inv Heqp0. econstructor. *)
  (*   unfold apredicated_to_apred_op. *)
  (*   Admitted. (*probably not provable.*) *)

  (* Lemma falsy_update : *)
  (*   forall A f a ctx p f', *)
  (*     @eval_apred A ctx (fst f) false -> *)
  (*     update (Some f) a = Some (p, f') -> *)
  (*     eval_apred ctx p false. *)
  (* Proof. *)
  (*   destruct f; destruct a; inversion 1; subst; crush; *)
  (*   destruct_match; simplify; auto; *)
  (*   unfold Option.bind, Option.bind2 in *; *)
  (*   repeat (destruct_match; try discriminate; []); simplify; auto. *)
  (*   apply apred_simplify. eapply apred_and_false2; eauto. admit. *)
  (*   apply apred_simplify. eapply apred_and_false2; eauto. admit. *)
  (*   constructor; auto. *)
  (*   constructor; auto. *)
  (*   constructor; auto. *)
  (*   constructor; auto. *)
  (*   constructor; auto. *)
  (*   rewrite H2. *)
  (*   apply apred_simplify. eapply apred_and_false2; eauto. admit. *)
  (*   apply apred_simplify. eapply apred_and_false2; eauto. admit. *)
  (*   Unshelve. all: exact true. *)
  (* Admitted. *)

  (* Lemma abstr_fold_falsy : *)
  (*   forall x i0 sp cf i f p p' f', *)
  (*   sem (mk_ctx i0 sp ge) f (i, cf) -> *)
  (*   eval_apred (mk_ctx i0 sp ge) p false -> *)
  (*   fold_left update x (Some (p, f)) =  Some (p', f') -> *)
  (*   sem (mk_ctx i0 sp ge) f' (i, cf). *)
  (* Proof. *)
  (*   induction x; crush. *)
  (*   eapply IHx. *)
  (*   destruct a; destruct f; crush; *)
  (*     try solve [eapply app_predicated_sem; eauto; apply combined_falsy; auto]. *)
  (*   (* now apply falsy_update. *) *)
  (* (* Qed. *) Admitted. *)

  (* Lemma state_lessdef_sem : *)
  (*   forall i sp f i' ti cf, *)
  (*     sem (mk_ctx i sp ge) f (i', cf) -> *)
  (*     state_lessdef i ti -> *)
  (*     exists ti', sem (mk_ctx ti sp ge) f (ti', cf) /\ state_lessdef i' ti'. *)
  (* Proof. Admitted. *)

  (* Lemma update_Some : *)
  (*   forall x n y, *)
  (*     fold_left update x n = Some y -> *)
  (*     exists n', n = Some n'. *)
  (* Proof. *)
  (*   induction x; crush. *)
  (*   econstructor; eauto. *)
  (*   exploit IHx; eauto; simplify. *)
  (*   unfold update, Option.bind2, Option.bind in H1. *)
  (*   repeat (destruct_match; try discriminate); econstructor; eauto. *)
  (* Qed. *)

  (* #[local] Opaque update. *)

  (* Lemma abstr_fold_correct : *)
  (*   forall sp x i i' i'' cf f p f', *)
  (*     SeqBB.step ge sp (Iexec i') x (Iterm i'' cf) -> *)
  (*     sem (mk_ctx i sp ge) (snd f) (i', None) -> *)
  (*     fold_left update x (Some f) = Some (p, f') -> *)
  (*     forall ti, *)
  (*       state_lessdef i ti -> *)
  (*       exists ti', sem (mk_ctx ti sp ge) f' (ti', Some cf) *)
  (*              /\ state_lessdef i'' ti'. *)
  (* Proof. *)
  (*   induction x; simplify; inv H. *)
  (*   - destruct f. exploit update_Some; eauto; intros. simplify. *)
  (*     rewrite H3 in H1. destruct x0. *)
  (*     exploit IHx; eauto. eapply sem_update_instr; eauto. *)
  (*   - destruct f. *)
  (*     exploit state_lessdef_sem; eauto; intros. simplify. *)
  (*     exploit step_instr_lessdef_term; eauto; intros. simplify. *)
  (*     inv H6. exploit update_Some; eauto; simplify. destruct x2. *)
  (*     exploit sem_update_instr_term; eauto; simplify. *)
  (*     eexists; split. *)
  (*     eapply abstr_fold_falsy; eauto. *)
  (*     rewrite H6 in H1. eauto. auto. *)
  (* Qed. *)

  (* Lemma sem_regset_empty : *)
  (*   forall A ctx, @sem_regset A ctx empty (ctx_rs ctx). *)
  (* Proof. *)
  (*   intros; constructor; intros. *)
  (*   constructor; auto. constructor. *)
  (*   constructor. *)
  (* Qed. *)

  (* Lemma sem_predset_empty : *)
  (*   forall A ctx, @sem_predset A ctx empty (ctx_ps ctx). *)
  (* Proof. *)
  (*   intros; constructor; intros. *)
  (*   constructor; auto. constructor. *)
  (*   constructor. *)
  (* Qed. *)

  (* Lemma sem_empty : *)
  (*   forall A ctx, @sem A ctx empty (ctx_is ctx, None). *)
  (* Proof. *)
  (*   intros. destruct ctx. destruct ctx_is. *)
  (*   constructor; try solve [constructor; constructor; crush]. *)
  (*   eapply sem_regset_empty. *)
  (*   eapply sem_predset_empty. *)
  (* Qed. *)

  Lemma abstr_sequence_correct :
    forall sp x i i'' cf x',
      SeqBB.step ge sp (Iexec i) x (Iterm i'' cf) ->
      abstract_sequence x = Some x' ->
      forall ti,
        state_lessdef i ti ->
        exists ti', sem (mk_ctx ti sp ge) x' (ti', Some cf)
               /\ state_lessdef i'' ti'.
  Proof.
    unfold abstract_sequence. intros. unfold Option.map in H0.
    destruct_match; try easy.
    destruct p; simplify.
    (* eapply abstr_fold_correct; eauto. *)
  (*   simplify. eapply sem_empty. *)
  (* Qed. *)
    Admitted.

  Lemma abstr_check_correct :
    forall sp i i' a b cf ti,
      check a b = true ->
      sem (mk_ctx i sp ge) a (i', cf) ->
      state_lessdef i ti ->
      exists ti', sem (mk_ctx ti sp ge) b (ti', cf)
             /\ state_lessdef i' ti'.
  Proof. Admitted.

  Lemma abstr_seq_reverse_correct :
    forall sp x i i' ti cf x',
      abstract_sequence x = Some x' ->
      sem (mk_ctx i sp ge) x' (i', (Some cf)) ->
      state_lessdef i ti ->
      exists ti', SeqBB.step ge sp (Iexec ti) x (Iterm ti' cf)
             /\ state_lessdef i' ti'.
  Proof. Admitted.

  Lemma schedule_oracle_correct :
    forall x y sp i i' ti cf,
      schedule_oracle x y = true ->
      SeqBB.step ge sp (Iexec i) x (Iterm i' cf) ->
      state_lessdef i ti ->
      exists ti', ParBB.step tge sp (Iexec ti) y (Iterm ti' cf)
             /\ state_lessdef i' ti'.
  Proof.
    unfold schedule_oracle; intros. repeat (destruct_match; try discriminate). simplify.
    exploit abstr_sequence_correct; eauto; simplify.
    exploit abstr_check_correct; eauto. apply state_lessdef_refl. simplify.
    exploit abstr_seq_reverse_correct; eauto. apply state_lessdef_refl. simplify.
    exploit seqbb_step_parbb_step; eauto; intros.
    econstructor; split; eauto.
    etransitivity; eauto.
    etransitivity; eauto.
  Qed.

  Lemma step_cf_correct :
    forall cf ts s s' t,
      GibleSeq.step_cf_instr ge s cf t s' ->
      match_states s ts ->
      exists ts', step_cf_instr tge ts cf t ts'
             /\ match_states s' ts'.
  Proof. Admitted.

  Lemma match_states_stepBB :
    forall s f sp pc rs pr m sf' f' trs tps tm rs' pr' m' trs' tpr' tm',
      match_states (GibleSeq.State s f sp pc rs pr m) (State sf' f' sp pc trs tps tm) ->
      state_lessdef (mk_instr_state rs' pr' m') (mk_instr_state trs' tpr' tm') ->
      match_states (GibleSeq.State s f sp pc rs' pr' m') (State sf' f' sp pc trs' tpr' tm').
  Proof.
    inversion 1; subst; simplify.
    inv H0. econstructor; eauto.
  Qed.

  Theorem transl_step_correct :
    forall (S1 : GibleSeq.state) t S2,
      GibleSeq.step ge S1 t S2 ->
      forall (R1 : GiblePar.state),
        match_states S1 R1 ->
        exists R2, Smallstep.plus GiblePar.step tge R1 t R2 /\ match_states S2 R2.
  Proof.
    induction 1; repeat semantics_simpl.
    {
      exploit schedule_oracle_correct; eauto. constructor; eauto. simplify.
      destruct x0.
      pose proof H2 as X. eapply match_states_stepBB in X; eauto.
      exploit step_cf_correct; eauto. simplify.
      eexists; split. apply Smallstep.plus_one.
      econstructor; eauto. auto.
    }
    { unfold bind in *. inv TRANSL0. clear Learn. inv H0. destruct_match; crush.
      inv H2. unfold transl_function in Heqr. destruct_match; crush.
      inv Heqr.
      repeat econstructor; eauto.
      unfold bind in *. destruct_match; crush. }
    { inv TRANSL0.
      repeat econstructor;
        eauto using Events.E0_right. }
    { inv STACKS. inv H2. repeat econstructor; eauto.
      intros. apply PTree_matches; eauto. }
    Qed.

  Lemma transl_initial_states:
    forall S,
      GibleSeq.initial_state prog S ->
      exists R, GiblePar.initial_state tprog R /\ match_states S R.
  Proof.
    induction 1.
    exploit function_ptr_translated; eauto. intros [tf [A B]].
    econstructor; split.
    econstructor. apply (Genv.init_mem_transf_partial TRANSL); eauto.
    replace (prog_main tprog) with (prog_main prog). rewrite symbols_preserved; eauto.
    symmetry; eapply match_program_main; eauto.
    eexact A.
    rewrite <- H2. apply sig_transl_function; auto.
    constructor. auto. constructor.
  Qed.

  Lemma transl_final_states:
    forall S R r,
      match_states S R -> GibleSeq.final_state S r -> GiblePar.final_state R r.
  Proof.
    intros. inv H0. inv H. inv STACKS. constructor.
  Qed.

  Theorem transf_program_correct:
    Smallstep.forward_simulation (GibleSeq.semantics prog) (GiblePar.semantics tprog).
  Proof.
    eapply Smallstep.forward_simulation_plus.
    apply senv_preserved.
    eexact transl_initial_states.
    eexact transl_final_states.
    exact transl_step_correct.
  Qed.

End CORRECTNESS.