aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/GiblePargenproofBackward.v
blob: 911cd9bf293279aa5085ac656aeb0a33504595a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2023 Yann Herklotz <git@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Require Import compcert.backend.Registers.
Require Import compcert.common.AST.
Require Import compcert.common.Errors.
Require Import compcert.common.Linking.
Require Import compcert.common.Globalenvs.
Require Import compcert.common.Memory.
Require Import compcert.common.Values.
Require Import compcert.lib.Maps.

Require Import vericert.common.Vericertlib.
Require Import vericert.hls.GibleSeq.
Require Import vericert.hls.GiblePar.
Require Import vericert.hls.Gible.
Require Import vericert.hls.GiblePargenproofEquiv.
Require Import vericert.hls.GiblePargenproofCommon.
Require Import vericert.hls.GiblePargenproofForward.
Require Import vericert.hls.GiblePargen.
Require Import vericert.hls.Predicate.
Require Import vericert.hls.Abstr.
Require Import vericert.hls.AbstrSemIdent.
Require Import vericert.common.Monad.

Require Import Optionmonad.
Module Import OptionExtra := MonadExtra(Option).

#[local] Open Scope positive.
#[local] Open Scope forest.
#[local] Open Scope pred_op.

#[local] Opaque simplify.
#[local] Opaque deep_simplify.

#[local] Ltac destr := destruct_match; try discriminate; [].

Definition state_lessdef := GiblePargenproofEquiv.match_states.

(* Set Nested Proofs Allowed. *)

(*|
===================================
GiblePar to Abstr Translation Proof
===================================

This proof is for the correctness of the translation from the parallel Gible
program into the Abstr language, which is the symbolic execution language.  The
main characteristic of this proof is that it has to be performed backwards, as
the translation goes from GiblePar to Abstr, whereas the correctness proof is
needed from Abstr to GiblePar to get the proper direction of the proof.
|*)

Section CORRECTNESS.

Context (prog: GibleSeq.program) (tprog : GiblePar.program).

Let ge : GibleSeq.genv := Globalenvs.Genv.globalenv prog.
Let tge : GiblePar.genv := Globalenvs.Genv.globalenv tprog.

(*Lemma sem_equiv_execution :
  forall sp x i i' ti cf x' ti',
    abstract_sequence x = Some x' ->
    sem (mk_ctx i sp ge) x' (i', (Some cf)) ->
    SeqBB.step ge sp (Iexec ti) x (Iterm ti' cf) ->
    state_lessdef i ti ->
    state_lessdef i' ti'.
Proof. Admitted.

Lemma sem_exists_execution :
  forall sp x i i' ti cf x',
    abstract_sequence x = Some x' ->
    sem (mk_ctx i sp ge) x' (i', (Some cf)) ->
    exists ti', SeqBB.step ge sp (Iexec ti) x (Iterm ti' cf).
Proof. Admitted. *)

Definition remember_expr (f : forest) (lst: list pred_expr) (i : instr): list pred_expr :=
  match i with
  | RBnop => lst
  | RBop p op rl r => (f #r (Reg r)) :: lst
  | RBload  p chunk addr rl r => (f #r (Reg r)) :: lst
  | RBstore p chunk addr rl r => lst
  | RBsetpred p' c args p => lst
  | RBexit p c => lst
  end.

Definition remember_expr_m (f : forest) (lst: list pred_expr) (i : instr): list pred_expr :=
  match i with
  | RBnop => lst
  | RBop p op rl r => lst
  | RBload  p chunk addr rl r => lst
  | RBstore p chunk addr rl r => (f #r Mem) :: lst
  | RBsetpred p' c args p => lst
  | RBexit p c => lst
  end.

Definition update' (s: pred_op * forest * list pred_expr * list pred_expr) (i: instr): option (pred_op * forest * list pred_expr * list pred_expr) :=
  let '(p, f, l, lm) := s in
  Option.bind2 (fun p' f' => Option.ret (p', f', remember_expr f l i, remember_expr_m f lm i)) (update (p, f) i).

Definition gather_predicates (preds : PTree.t unit) (i : instr): option (PTree.t unit) :=
  match i with
  | RBop (Some p) _ _ _
  | RBload (Some p) _ _ _ _
  | RBstore (Some p) _ _ _ _
  | RBexit (Some p) _ =>
    Some (fold_right (fun x => PTree.set x tt) preds (predicate_use p))
  | RBsetpred p' c args p =>
    let preds' := match p' with
                  | Some p'' => fold_right (fun x => PTree.set x tt) preds (predicate_use p'')
                  | None => preds
                  end
    in
    match preds' ! p with
    | Some _ => None
    | None => Some preds'
    end
  | _ => Some preds
  end.

Definition abstract_sequence' (b : list instr) : option (forest * list pred_expr * list pred_expr) :=
  Option.bind (fun x => Option.bind (fun _ => Some x)
    (mfold_left gather_predicates b (Some (PTree.empty _))))
      (Option.map (fun x => let '(_, y, z, zm) := x in (y, z, zm))
        (mfold_left update' b (Some (Ptrue, empty, nil, nil)))).

Definition i_state (s: istate): instr_state :=
  match s with
  | Iexec t => t
  | Iterm t _ => t
  end.

Definition cf_state (s: istate): option cf_instr :=
  match s with
  | Iexec _ => None
  | Iterm _ cf => Some cf
  end.

Definition evaluable_pred_expr {G} (ctx: @Abstr.ctx G) pr p :=
  exists r, sem_pred_expr pr sem_value ctx p r.

Definition evaluable_pred_expr_m {G} (ctx: @Abstr.ctx G) pr p :=
  exists r, sem_pred_expr pr sem_mem ctx p r.

Definition evaluable_pred_list {G} ctx pr l :=
  forall p,
    In p l ->
    @evaluable_pred_expr G ctx pr p.

Definition evaluable_pred_list_m {G} ctx pr l :=
  forall p,
    In p l ->
    @evaluable_pred_expr_m G ctx pr p.

(* Lemma evaluable_pred_expr_exists : *)
(*   forall sp pr f i0 exit_p exit_p' f' cf i ti p op args dst, *)
(*     update (exit_p, f) (RBop p op args dst) = Some (exit_p', f') -> *)
(*     sem (mk_ctx i0 sp ge) f (i, cf) -> *)
(*     evaluable_pred_expr (mk_ctx i0 sp ge) pr (f' #r (Reg dst)) -> *)
(*     state_lessdef i ti -> *)
(*     exists i', sem (mk_ctx i0 sp ge) f' (i', cf). *)
(* Proof. *)
(*   intros. cbn in H. unfold Option.bind in H. destr. inv H. *)
(*   destruct ti. econstructor. econstructor. *)
(*   unfold evaluable_pred_expr in H1. Admitted. *)

Lemma evaluable_pred_expr_exists_RBop :
  forall sp f i0 exit_p exit_p' f' i ti p op args dst,
    eval_predf (is_ps i) exit_p = true ->
    valid_mem (is_mem i0) (is_mem i) ->
    update (exit_p, f) (RBop p op args dst) = Some (exit_p', f') ->
    sem (mk_ctx i0 sp ge) f (i, None) ->
    evaluable_pred_expr (mk_ctx i0 sp ge) f'.(forest_preds) (f' #r (Reg dst)) ->
    state_lessdef i ti ->
    exists ti',
      step_instr ge sp (Iexec ti) (RBop p op args dst) (Iexec ti').
Proof.
  intros * HEVAL VALID_MEM **. cbn -[seq_app] in H. unfold Option.bind in H. destr. inv H.
  assert (HPRED': sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i))
    by now inv H0.
  inversion_clear HPRED' as [? ? ? HPRED].
  destruct ti as [is_trs is_tps is_tm].
  unfold evaluable_pred_expr in H1. destruct H1 as (r & Heval).
  rewrite forest_reg_gss in Heval.
  exploit sem_pred_expr_prune_predicated2; eauto; intros.
  pose proof (truthy_dec (is_ps i) p) as YH. inversion_clear YH as [YH'|YH'].
  - assert (eval_predf (is_ps i) (dfltp p ∧ exit_p') = true).
    { pose proof (truthy_dflt _ _ YH'). rewrite eval_predf_Pand.
      rewrite H1. now rewrite HEVAL. }
    exploit sem_pred_expr_app_predicated2; eauto; intros.
    exploit sem_pred_expr_seq_app_val2; eauto; simplify.
    unfold pred_ret in *. inv H4. inv H12.
    destruct i as [is_rs_1 is_ps_1 is_m_1]. exploit sem_merge_list; eauto; intros.
    instantiate (1 := args) in H4.
    eapply sem_pred_expr_ident2 in H4. simplify.
    exploit sem_pred_expr_ident_det. eapply H5. eapply H4.
    intros. subst. inv H7.
    eapply sem_val_list_det in H8; eauto; [|reflexivity]. subst.
    inv H2.
    econstructor. constructor.
    + cbn in *. eapply eval_operation_valid_pointer. symmetry; eauto.
      unfold ctx_mem in H14. cbn in H14. erewrite <- match_states_list; eauto.
    + inv H0.
      assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps_1))
        by (now constructor).
      pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H0 H17).
      assert (truthy is_ps_1 p).
      { eapply truthy_match_state; eassumption. }
      eapply truthy_match_state; eassumption.
  - inv YH'. cbn -[seq_app] in H.
    assert (eval_predf (is_ps i) (p0 ∧ exit_p') = false).
    { rewrite eval_predf_Pand. now rewrite H1. }
    eapply sem_pred_expr_app_predicated_false2 in H; eauto.
    eexists. eapply exec_RB_falsy. constructor. auto. cbn.
    assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i))
        by (now constructor).
    inv H0. pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H4 H8).
    inv H2.
    erewrite <- eval_predf_pr_equiv by exact H16.
    now erewrite <- eval_predf_pr_equiv by exact H0.
Qed.

Lemma evaluable_pred_expr_exists_RBload :
  forall sp f i0 exit_p exit_p' f' i ti p chunk addr args dst,
    eval_predf (is_ps i) exit_p = true ->
    valid_mem (is_mem i0) (is_mem i) ->
    update (exit_p, f) (RBload p chunk addr args dst) = Some (exit_p', f') ->
    sem (mk_ctx i0 sp ge) f (i, None) ->
    evaluable_pred_expr (mk_ctx i0 sp ge) f'.(forest_preds) (f' #r (Reg dst)) ->
    state_lessdef i ti ->
    exists ti',
      step_instr ge sp (Iexec ti) (RBload p chunk addr args dst) (Iexec ti').
Proof.
  intros * HEVAL VALID_MEM **. cbn -[seq_app] in H. unfold Option.bind in H. destr. inv H.
  assert (HPRED': sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i))
    by now inv H0.
  inversion_clear HPRED' as [? ? ? HPRED].
  destruct ti as [is_trs is_tps is_tm].
  unfold evaluable_pred_expr in H1. destruct H1 as (r & Heval).
  rewrite forest_reg_gss in Heval.
  exploit sem_pred_expr_prune_predicated2; eauto; intros.
  pose proof (truthy_dec (is_ps i) p) as YH. inversion_clear YH as [YH'|YH'].
  - assert (eval_predf (is_ps i) (dfltp p ∧ exit_p') = true).
    { pose proof (truthy_dflt _ _ YH'). rewrite eval_predf_Pand.
      rewrite H1. now rewrite HEVAL. }
    exploit sem_pred_expr_app_predicated2; eauto; intros.
    exploit sem_pred_expr_seq_app_val2; eauto; simplify.
    exploit sem_pred_expr_seq_app_val2; eauto; simplify.
    unfold pred_ret in *. inv H6. inv H15. clear H13. inv H10.
    destruct i as [is_rs_1 is_ps_1 is_m_1]. exploit sem_merge_list; eauto; intros.
    instantiate (1 := args) in H6.
    eapply sem_pred_expr_ident2 in H6. simplify.
    exploit sem_pred_expr_ident_det. eapply H8. eapply H6.
    intros. subst. inv H7.
    eapply sem_val_list_det in H10; eauto; [|reflexivity]. subst.
    cbn in *. inv H2.
    econstructor. econstructor; eauto.
    + erewrite <- match_states_list; eauto.
    + inv H0. exploit sem_pred_expr_ident. eapply H5. eapply H15. intros.
      eapply sem_pred_expr_det in H0. rewrite H0. eassumption.
      reflexivity. eapply sem_mem_det. reflexivity. auto.
    + inv H0.
      assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps_1))
        by (now constructor).
      pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H0 H20).
      assert (truthy is_ps_1 p).
      { eapply truthy_match_state; eassumption. }
      eapply truthy_match_state; eassumption.
  - inv YH'. cbn -[seq_app] in H.
    assert (eval_predf (is_ps i) (p0 ∧ exit_p') = false).
    { rewrite eval_predf_Pand. now rewrite H1. }
    eapply sem_pred_expr_app_predicated_false2 in H; eauto.
    eexists. eapply exec_RB_falsy. constructor. auto. cbn.
    assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i))
        by (now constructor).
    inv H0. pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H4 H8).
    inv H2.
    erewrite <- eval_predf_pr_equiv by exact H16.
    now erewrite <- eval_predf_pr_equiv by exact H0.
Qed.

Lemma evaluable_pred_expr_exists_RBstore :
  forall sp f i0 exit_p exit_p' f' i ti p chunk addr args src,
    eval_predf (is_ps i) exit_p = true ->
    valid_mem (is_mem i0) (is_mem i) ->
    update (exit_p, f) (RBstore p chunk addr args src) = Some (exit_p', f') ->
    sem (mk_ctx i0 sp ge) f (i, None) ->
    evaluable_pred_expr_m (mk_ctx i0 sp ge) f'.(forest_preds) (f' #r Mem) ->
    state_lessdef i ti ->
    exists ti',
      step_instr ge sp (Iexec ti) (RBstore p chunk addr args src) (Iexec ti').
Proof.
  intros * HEVAL VALID_MEM **. cbn -[seq_app] in H. unfold Option.bind in H. destr. inv H.
  assert (HPRED': sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i))
    by now inv H0.
  inversion_clear HPRED' as [? ? ? HPRED].
  destruct ti as [is_trs is_tps is_tm].
  unfold evaluable_pred_expr in H1. destruct H1 as (r & Heval).
  rewrite forest_reg_gss in Heval.
  exploit sem_pred_expr_prune_predicated2; eauto; intros.
  pose proof (truthy_dec (is_ps i) p) as YH. inversion_clear YH as [YH'|YH'].
  - assert (eval_predf (is_ps i) (dfltp p ∧ exit_p') = true).
    { pose proof (truthy_dflt _ _ YH'). rewrite eval_predf_Pand.
      rewrite H1. now rewrite HEVAL. }
    exploit sem_pred_expr_app_predicated2; eauto; intros.
    exploit sem_pred_expr_seq_app_val2; eauto; simplify.
    exploit sem_pred_expr_seq_app_val2; eauto; simplify.
    exploit sem_pred_expr_flap2_2; eauto; simplify.
    exploit sem_pred_expr_seq_app_val2; eauto; simplify.
    unfold pred_ret in *. inv H14. inv H11. inv H18. clear H16. inv H10. inv H7.
    destruct i as [is_rs_1 is_ps_1 is_m_1]. exploit sem_merge_list; eauto; intros.
    instantiate (1 := args) in H7.
    eapply sem_pred_expr_ident2 in H7. simplify.
    exploit sem_pred_expr_ident_det. eapply H8. eapply H7.
    intros. subst.
    eapply sem_val_list_det in H20; eauto; [|reflexivity]. subst.
    cbn in *. inv H2. inv H0. inv H20. pose proof H0 as YH0. specialize (YH0 src).
    exploit sem_pred_expr_ident. eapply H5. eauto. intros.
    exploit sem_pred_expr_ident. eapply H12. eauto. intros.
    eapply sem_pred_expr_det in H25; eauto; [|reflexivity|eapply sem_mem_det; reflexivity].
    eapply sem_pred_expr_det in YH0; eauto; [|reflexivity|eapply sem_value_det; reflexivity].
    subst.
    econstructor. econstructor; eauto.
    + erewrite <- match_states_list; eauto.
    + rewrite <- H16. eassumption.
    + assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps_1))
        by (now constructor).
      pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H24 H13).
      assert (truthy is_ps_1 p).
      { eapply truthy_match_state; eassumption. }
      eapply truthy_match_state; eassumption.
  - inv YH'. cbn -[seq_app] in H.
    assert (eval_predf (is_ps i) (p0 ∧ exit_p') = false).
    { rewrite eval_predf_Pand. now rewrite H1. }
    eapply sem_pred_expr_app_predicated_false2 in H; eauto.
    eexists. eapply exec_RB_falsy. constructor. auto. cbn.
    assert (sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i))
        by (now constructor).
    inv H0. pose proof (sem_predset_det _ _ ltac:(reflexivity) _ _ _ H4 H8).
    inv H2.
    erewrite <- eval_predf_pr_equiv by exact H16.
    now erewrite <- eval_predf_pr_equiv by exact H0.
Qed.

Lemma evaluable_pred_expr_exists_RBsetpred :
  forall sp f i0 exit_p exit_p' f' i ti p c args src ps',
    eval_predf (is_ps i) exit_p = true ->
    valid_mem (is_mem i0) (is_mem i) ->
    update (exit_p, f) (RBsetpred p c args src) = Some (exit_p', f') ->
    sem (mk_ctx i0 sp ge) f (i, None) ->
    sem_predset (mk_ctx i0 sp ge) f' ps' ->
    state_lessdef i ti ->
    exists ti',
      step_instr ge sp (Iexec ti) (RBsetpred p c args src) (Iexec ti').
Proof.
  intros * HEVAL VALID_MEM **. cbn -[seq_app] in H. unfold Option.bind in H. destr. inv H.
  assert (HPRED': sem_predset {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |} f (is_ps i))
    by now inv H0.
  inversion_clear HPRED' as [? ? ? HPRED].
  destruct ti as [is_trs is_tps is_tm]. destr. inv H4. inv H1.
  pose proof H as YH. specialize (YH src). rewrite forest_pred_gss in YH.
  inv YH; try inv H3.
  + inv H1. inv H6. replace false with (negb true) in H4 by auto.
    replace false with (negb true) in H8 by auto.
    eapply sem_pexpr_negate2 in H4. eapply sem_pexpr_negate2 in H8.
    destruct i.
    exploit from_predicated_sem_pred_expr2; eauto; intros.
    exploit sem_pred_expr_seq_app_val2. eapply HPRED. eauto. simplify.
    inv H3. inv H15. clear H13.
    exploit sem_merge_list; eauto; intros. instantiate (1:=args) in H3.
    eapply sem_pred_expr_ident2 in H3; simplify. exploit sem_pred_expr_ident_det.
    eapply H6. eauto. intros. subst.
    intros. inv H10. eapply sem_val_list_det in H11; eauto. subst.
    inv H2.
    econstructor. econstructor. erewrite <- match_states_list; eauto.
    erewrite <- storev_eval_condition; eauto.
    assert (truthy is_ps p).
    { destruct p. cbn in H4. constructor.
      eapply sem_pexpr_forward_eval; eauto. constructor.
    }
    eapply truthy_match_state; eassumption.
    reflexivity.
  + inv H1. inv H6. inv H3.
    * replace false with (negb true) in H1 by auto. eapply sem_pexpr_negate2 in H1.
      eapply sem_pexpr_forward_eval in H1; eauto. rewrite eval_predf_negate in H1.
      assert ((eval_predf (is_ps i) (dfltp p)) = false).
      { replace false with (negb true) by auto. rewrite <- H1. now rewrite negb_involutive. }
      econstructor. apply exec_RB_falsy. cbn. destruct p. constructor; auto. inv H2.
      erewrite <- eval_predf_pr_equiv; eauto. now cbn in H3.
    * replace false with (negb true) in H1 by auto. eapply sem_pexpr_negate2 in H1.
      eapply sem_pexpr_forward_eval in H1; eauto. rewrite eval_predf_negate in H1.
      now rewrite HEVAL in H1.
  + inv H5. inv H3.
    * inv H1. inv H5.
      -- replace true with (negb false) in H1 by auto. eapply sem_pexpr_negate2 in H1.
         eapply sem_pexpr_forward_eval in H1; eauto.
         econstructor. apply exec_RB_falsy. cbn. destruct p. constructor; auto. inv H2.
         erewrite <- eval_predf_pr_equiv; eauto. now cbn in H1.
      -- replace true with (negb false) in H1 by auto. eapply sem_pexpr_negate2 in H1.
         eapply sem_pexpr_forward_eval in H1; eauto. now rewrite HEVAL in H1.
    * case_eq (eval_predf (is_ps i) (dfltp p)); intros.
      -- eapply sem_pexpr_eval in H3; eauto.
         destruct i.
         exploit from_predicated_sem_pred_expr2; eauto; intros.
         exploit sem_pred_expr_seq_app_val2. eapply HPRED. eauto. simplify.
         inv H7. inv H15. clear H13.
         exploit sem_merge_list; eauto; intros. instantiate (1:=args) in H7.
         eapply sem_pred_expr_ident2 in H7; simplify. exploit sem_pred_expr_ident_det.
         eapply H8. eauto. intros. subst.
         inv H10. clear H8. eapply sem_val_list_det in H11; eauto. subst.
         inv H2.
         econstructor. econstructor. erewrite <- match_states_list; eauto.
         erewrite <- storev_eval_condition; eauto.
         assert (truthy is_ps p).
         { destruct p. cbn in H4. constructor.
           eapply sem_pexpr_forward_eval; eauto.
           constructor.
         }
         eapply truthy_match_state; eassumption.
         reflexivity.
      -- econstructor. apply exec_RB_falsy.
         destruct p. constructor. inv H2. erewrite <- eval_predf_pr_equiv; eauto.
         easy.
Qed.

Lemma remember_expr_in :
  forall x l f a,
    In x l -> In x (remember_expr f l a).
Proof.
  unfold remember_expr; destruct a; eauto using in_cons.
Qed.

Lemma remember_expr_in_m :
  forall x l f a,
    In x l -> In x (remember_expr_m f l a).
Proof.
  unfold remember_expr; destruct a; eauto using in_cons.
Qed.

Lemma in_mfold_left_abstr :
  forall instrs p f l p' f' l' x lm lm',
    mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') ->
    In x l -> In x l'.
Proof.
  induction instrs; intros.
  - cbn in *; now inv H.
  - cbn -[update] in *.
    pose proof H as Y.
    apply OptionExtra.mfold_left_Some in Y. inv Y.
    rewrite H1 in H. destruct x0 as (((p_int & f_int) & l_int) & lm_int).
    exploit IHinstrs; eauto.
    unfold Option.bind2, Option.ret in H1; repeat destr. inv H1.
    auto using remember_expr_in.
Qed.

Lemma in_mfold_left_abstr_m :
  forall instrs p f l p' f' l' x lm lm',
    mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') ->
    In x lm -> In x lm'.
Proof.
  induction instrs; intros.
  - cbn in *; now inv H.
  - cbn -[update] in *.
    pose proof H as Y.
    apply OptionExtra.mfold_left_Some in Y. inv Y.
    rewrite H1 in H. destruct x0 as (((p_int & f_int) & l_int) & lm_int).
    exploit IHinstrs; eauto.
    unfold Option.bind2, Option.ret in H1; repeat destr. inv H1.
    auto using remember_expr_in_m.
Qed.

Lemma not_remembered_in_forest :
  forall a p f p_mid f_mid l x,
    update (p, f) a = Some (p_mid, f_mid) ->
    ~ In f #r (Reg x) (remember_expr f l a) ->
    f #r (Reg x) = f_mid #r (Reg x).
Proof.
  intros; destruct a; cbn in *;
    unfold Option.bind in H; repeat destr; inv H; try easy.
  - assert (~ (f #r (Reg r) = f #r (Reg x)) /\ ~ (In f #r (Reg x) l)) by tauto.
    inv H. destruct (resource_eq (Reg r) (Reg x));
      try (rewrite e in *; contradiction).
    now rewrite forest_reg_gso by auto.
  - assert (~ (f #r (Reg r) = f #r (Reg x)) /\ ~ (In f #r (Reg x) l)) by tauto.
    inv H. destruct (resource_eq (Reg r) (Reg x));
      try (rewrite e in *; contradiction).
    now rewrite forest_reg_gso by auto.
  - destruct (resource_eq Mem (Reg x)); try discriminate.
    now rewrite forest_reg_gso by auto.
Qed.

Lemma not_remembered_in_forest_m :
  forall a p f p_mid f_mid l,
    update (p, f) a = Some (p_mid, f_mid) ->
    ~ In f #r Mem (remember_expr_m f l a) ->
    f #r Mem = f_mid #r Mem.
Proof.
  intros; destruct a; cbn in *;
    unfold Option.bind in H; repeat destr; inv H; try easy.
  - rewrite forest_reg_gso; auto. easy.
  - rewrite forest_reg_gso; auto. easy.
  - assert (~ (f #r Mem = f #r Mem) /\ ~ (In f #r Mem l)) by tauto. inv H.
    contradiction.
Qed.

Lemma in_forest_or_remembered :
  forall instrs p f l p' f' l' lm lm',
    mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') ->
    forall x, In (f #r (Reg x)) l' \/ f #r (Reg x) = f' #r (Reg x).
Proof.
  induction instrs; try solve [crush]; []; intros.
  cbn -[update] in H.
  pose proof H as YX.
  apply OptionExtra.mfold_left_Some in YX. inv YX.
  rewrite H0 in H.
  destruct x0 as (((p_mid & f_mid) & l_mid) & lm_mid).
  pose proof (IHinstrs _ _ _ _ _ _ _ _ H).
  unfold Option.bind2, Option.ret in H0; cbn -[update] in H0; repeat destr.
  inv H0. specialize (H1 x).
  pose proof H as Y.
  destruct (in_dec pred_expr_eqb (f #r (Reg x)) (remember_expr f l a));
    eauto using in_mfold_left_abstr.
  inv H1; eapply not_remembered_in_forest with (f_mid := f_mid) in n; eauto;
    rewrite n in *; tauto.
Qed.

Lemma in_forest_or_remembered_m :
  forall instrs p f l p' f' l' lm lm',
    mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') ->
    In (f #r Mem) lm' \/ f #r Mem = f' #r Mem.
Proof.
  induction instrs; try solve [crush]; []; intros.
  cbn -[update] in H.
  pose proof H as YX.
  apply OptionExtra.mfold_left_Some in YX. inv YX.
  rewrite H0 in H.
  destruct x as (((p_mid & f_mid) & l_mid) & lm_mid).
  pose proof (IHinstrs _ _ _ _ _ _ _ _ H).
  unfold Option.bind2, Option.ret in H0; cbn -[update] in H0; repeat destr.
  inv H0.
  pose proof H as Y.
  destruct (in_dec pred_expr_eqb (f #r Mem) (remember_expr_m f lm a));
    eauto using in_mfold_left_abstr_m.
  inv H1; eapply not_remembered_in_forest_m with (f_mid := f_mid) in n; eauto;
    rewrite n in *; tauto.
Qed.

Lemma in_forest_evaluable :
  forall G sp ge i' cf instrs p f l p' f' l' x i0 lm lm',
    mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') ->
    sem (mk_ctx i0 sp ge) f' (i', cf) ->
    @evaluable_pred_list G (mk_ctx i0 sp ge) f'.(forest_preds) l' ->
    evaluable_pred_expr (mk_ctx i0 sp ge) f'.(forest_preds) (f #r (Reg x)).
Proof.
  intros.
  pose proof H as Y. apply in_forest_or_remembered with (x := x) in Y.
  inv Y; eauto.
  inv H0. inv H5. rewrite H2. 
  unfold evaluable_pred_expr. eauto.
Qed.

Lemma in_forest_evaluable_m :
  forall G sp ge i' cf instrs p f l p' f' l' i0 lm lm',
    mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') ->
    sem (mk_ctx i0 sp ge) f' (i', cf) ->
    @evaluable_pred_list_m G (mk_ctx i0 sp ge) f'.(forest_preds) lm' ->
    evaluable_pred_expr_m (mk_ctx i0 sp ge) f'.(forest_preds) (f #r Mem).
Proof.
  intros.
  pose proof H as Y. apply in_forest_or_remembered_m in Y.
  inv Y; eauto.
  inv H0. inv H5. rewrite H2. 
  unfold evaluable_pred_expr_m. eauto.
Qed.

Lemma abstr_seq_revers_correct_fold_sem_pexpr :
  forall instrs p f l p' f' l' preds preds' lm lm',
    mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') ->
    mfold_left gather_predicates instrs (Some preds) = Some preds' ->
    forall pred, preds ! pred = Some tt ->
      f #p pred = f' #p pred.
Proof. Admitted.

Lemma abstr_seq_revers_correct_fold_sem_pexpr_eval :
  forall G instrs p f l p' f' l' i0 sp ge ps preds preds' ps' lm lm',
    mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') ->
    mfold_left gather_predicates instrs (Some preds) = Some preds' ->
    forall pred, preds ! pred = Some tt ->
      sem_predset (mk_ctx i0 sp ge) f ps ->
      sem_predset (@mk_ctx G i0 sp ge) f' ps' ->
      ps !! pred = ps' !! pred.
Proof. Admitted.

Definition all_preds_in f preds :=
  (forall x, NE.Forall (fun x => forall pred, PredIn pred (fst x)
                       -> PTree.get pred preds = Some tt) (f #r x))
  /\ NE.Forall (fun x => forall pred, PredIn pred (fst x)
                 -> PTree.get pred preds = Some tt) f.(forest_exit).

Lemma gather_predicates_in_forest :
  forall p i f p' f' preds preds',
    update (p, f) i = Some (p', f') ->
    gather_predicates preds i = Some preds' ->
    all_preds_in f preds ->
    all_preds_in f' preds'.
Proof. Admitted.

Lemma abstr_seq_revers_correct_fold_sem_pexpr_eval3 :
  forall A B G a_sem instrs p f l p' f' l' i0 sp ge preds preds' pe pe_val lm lm',
    mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') ->
    mfold_left gather_predicates instrs (Some preds) = Some preds' ->
    @sem_pred_expr G A B f'.(forest_preds) a_sem (mk_ctx i0 sp ge) pe pe_val ->
    NE.Forall (fun x => forall pred, PredIn pred (fst x)
                 -> PTree.get pred preds = Some tt) pe ->
    sem_pred_expr f.(forest_preds) a_sem (mk_ctx i0 sp ge) pe pe_val.
Proof.
  induction instrs; try solve [crush]; intros.
  cbn -[update] in *.
  exploit OptionExtra.mfold_left_Some. eapply H.
  intros [[[[p_mid f_mid] l_mid] lm_mid] HBind]. rewrite HBind in H.
  exploit OptionExtra.mfold_left_Some. eapply H0.
  intros [preds_mid HGather]. rewrite HGather in H0.
  exploit IHinstrs. eassumption. eassumption. eassumption. admit.
  intros.
  Admitted.
(* exploit exists_sem_pred. exact H1. *)
(*   intros [[p_val e_val] [HIN HSEM]]. *)

Lemma abstr_seq_revers_correct_fold_sem_pexpr_eval2 :
  forall G instrs p f l p' f' l' i0 sp ge preds preds' pe lm lm',
    mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') ->
    mfold_left gather_predicates instrs (Some preds) = Some preds' ->
    @evaluable_pred_expr G (mk_ctx i0 sp ge) f'.(forest_preds) pe ->
    NE.Forall (fun x => forall pred, PredIn pred (fst x)
                 -> PTree.get pred preds = Some tt) pe ->
    evaluable_pred_expr (mk_ctx i0 sp ge) f.(forest_preds) pe.
Proof.
  unfold evaluable_pred_expr in *.
  intros. inv H1. exists x.
  eapply abstr_seq_revers_correct_fold_sem_pexpr_eval3; eauto.
Qed.

Lemma abstr_seq_revers_correct_fold_sem_pexpr_eval4 :
  forall G instrs p f l p' f' l' i0 sp ge preds preds' pe lm lm',
    mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') ->
    mfold_left gather_predicates instrs (Some preds) = Some preds' ->
    @evaluable_pred_expr_m G (mk_ctx i0 sp ge) f'.(forest_preds) pe ->
    NE.Forall (fun x => forall pred, PredIn pred (fst x)
                 -> PTree.get pred preds = Some tt) pe ->
    evaluable_pred_expr_m (mk_ctx i0 sp ge) f.(forest_preds) pe.
Proof.
  unfold evaluable_pred_expr in *.
  intros. inv H1. exists x.
  eapply abstr_seq_revers_correct_fold_sem_pexpr_eval3; eauto.
Qed.

Lemma state_lessdef_state_equiv :
  forall x y, state_lessdef x y <-> state_equiv x y.
Proof. split; intros; inv H; constructor; auto. Qed.

(* [[id:5e6486bb-fda2-4558-aed8-243a9698de85]] *)
Lemma abstr_seq_reverse_correct_fold :
  forall sp instrs i0 i i' ti cf f' l p p' l' f preds preds' lm lm',
    valid_mem (is_mem i0) (is_mem i) ->
    all_preds_in f preds ->
    eval_predf (is_ps i) p = true ->
    sem (mk_ctx i0 sp ge) f (i, None) ->
    mfold_left update' instrs (Some (p, f, l, lm)) = Some (p', f', l', lm') ->
    mfold_left gather_predicates instrs (Some preds) = Some preds' ->
    evaluable_pred_list (mk_ctx i0 sp ge) f'.(forest_preds) l' ->
    evaluable_pred_list_m (mk_ctx i0 sp ge) f'.(forest_preds) lm' ->
    sem (mk_ctx i0 sp ge) f' (i', Some cf) ->
    state_lessdef i ti ->
    exists ti',
      SeqBB.step ge sp (Iexec ti) instrs (Iterm ti' cf)
      /\ state_lessdef i' ti'.
Proof.
  induction instrs; intros * YVALID YALL YEVAL Y3 Y YGATHER Y0 YEVALUABLE Y1 Y2.
  - cbn in *. inv Y.
    assert (X: similar {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |}
                       {| ctx_is := i0; ctx_sp := sp; ctx_ge := ge |})
      by reflexivity.
    now eapply sem_det in X; [| exact Y1 | exact Y3 ].
  - cbn -[update] in Y.
    pose proof Y as YX.
    apply OptionExtra.mfold_left_Some in YX. inv YX.
    cbn in YGATHER.
    pose proof YGATHER as YX.
    apply OptionExtra.mfold_left_Some in YX. inv YX. rewrite H0 in YGATHER.
    pose proof H0 as YGATHER_SINGLE. clear H0.
    rewrite H in Y.
    destruct x as ((p_mid & f_mid) & l_mid).
    unfold Option.bind2, Option.ret in H. repeat destr.
    inv H.

    destruct a.
    + cbn in Heqo. inv Heqo. cbn in YGATHER_SINGLE. inv YGATHER_SINGLE.
      exploit IHinstrs; eauto; simplify.
      exists x; split; auto. econstructor. constructor. auto.
    + exploit evaluable_pred_expr_exists_RBop; eauto.
      eapply abstr_seq_revers_correct_fold_sem_pexpr_eval2; eauto.
      unfold evaluable_pred_list in Y0. eapply in_forest_evaluable; eauto.
      eapply gather_predicates_in_forest in YALL; eauto.
      unfold all_preds_in in YALL. inv YALL. eauto.
      intros [ti_mid HSTEP].
      
      pose proof Y3 as YH.
      pose proof HSTEP as YHSTEP.
      pose proof Y2 as Y2SPLIT; inv Y2SPLIT.
      eapply step_exists in YHSTEP.
      2: { symmetry. econstructor; try eassumption; auto. }
      inv YHSTEP. inv H1.
      exploit sem_update_instr. auto. eauto. eauto. eauto. eauto. auto. intros.
      exploit IHinstrs. 4: { eauto. }
      cbn in YVALID. transitivity m'; auto.
      replace m' with (is_mem {| is_rs := rs; Gible.is_ps := ps; Gible.is_mem := m' |}) by auto.
      eapply sem_update_valid_mem; eauto.
      eapply gather_predicates_in_forest; eauto.
      eapply eval_predf_update_true; eauto.
      eauto. eauto. eauto. eauto. eauto. symmetry.
      eapply state_lessdef_state_equiv; eauto.
      intros [ti' [YHH HLD]].
      exists ti'; split; eauto. econstructor; eauto.
    + exploit evaluable_pred_expr_exists_RBload; eauto.
      eapply abstr_seq_revers_correct_fold_sem_pexpr_eval2; eauto.
      unfold evaluable_pred_list in Y0. eapply in_forest_evaluable; eauto.
      eapply gather_predicates_in_forest in YALL; eauto.
      unfold all_preds_in in YALL. inv YALL. eauto.
      intros [ti_mid HSTEP].
      
      pose proof Y3 as YH.
      pose proof HSTEP as YHSTEP.
      pose proof Y2 as Y2SPLIT; inv Y2SPLIT.
      eapply step_exists in YHSTEP.
      2: { symmetry. econstructor; try eassumption; auto. }
      inv YHSTEP. inv H1.
      exploit sem_update_instr. auto. eauto. eauto. eauto. eauto. auto. intros.
      exploit IHinstrs. 4: { eauto. }
      cbn in YVALID. transitivity m'; auto.
      replace m' with (is_mem {| is_rs := rs; Gible.is_ps := ps; Gible.is_mem := m' |}) by auto.
      eapply sem_update_valid_mem; eauto.
      eapply gather_predicates_in_forest; eauto.
      eapply eval_predf_update_true; eauto.
      eauto. eauto. eauto. eauto. eauto. symmetry.
      eapply state_lessdef_state_equiv; eauto.
      intros [ti' [YHH HLD]].
      exists ti'; split; eauto. econstructor; eauto.
    + exploit evaluable_pred_expr_exists_RBstore; eauto.
      eapply abstr_seq_revers_correct_fold_sem_pexpr_eval4; eauto.
      unfold evaluable_pred_list in Y0. eapply in_forest_evaluable_m; eauto.
      eapply gather_predicates_in_forest in YALL; eauto.
      unfold all_preds_in in YALL. inv YALL. eauto.
      intros [ti_mid HSTEP].
      
      pose proof Y3 as YH.
      pose proof HSTEP as YHSTEP.
      pose proof Y2 as Y2SPLIT; inv Y2SPLIT.
      eapply step_exists in YHSTEP.
      2: { symmetry. econstructor; try eassumption; auto. }
      inv YHSTEP. inv H1.
      exploit sem_update_instr. auto. eauto. eauto. eauto. eauto. auto. intros.
      exploit IHinstrs. 4: { eauto. }
      cbn in YVALID. transitivity m'; auto.
      replace m' with (is_mem {| is_rs := rs; Gible.is_ps := ps; Gible.is_mem := m' |}) by auto.
      eapply sem_update_valid_mem; eauto.
      eapply gather_predicates_in_forest; eauto.
      eapply eval_predf_update_true; eauto.
      eauto. eauto. eauto. eauto. eauto. symmetry.
      eapply state_lessdef_state_equiv; eauto.
      intros [ti' [YHH HLD]].
      exists ti'; split; eauto. econstructor; eauto.
    + admit.
    + admit.
Admitted.

Lemma sem_empty :
  forall G (ctx: @Abstr.ctx G),
    sem ctx empty (ctx_is ctx, None).
Proof.
  intros. destruct ctx. cbn. destruct ctx_is.
  constructor.
  constructor. cbn. intros. rewrite get_empty.
  constructor. cbn. constructor. constructor. constructor. intros.
  rewrite get_empty_p. constructor. constructor.
  rewrite get_empty. constructor. cbn. constructor.
  constructor. constructor. cbn. constructor. constructor.
Qed.

Lemma abstr_seq_reverse_correct:
  forall sp x i i' ti cf x' l,
    abstract_sequence' x = Some (x', l) ->
    evaluable_pred_list (mk_ctx i sp ge) x'.(forest_preds) l ->
    sem (mk_ctx i sp ge) x' (i', (Some cf)) ->
    state_lessdef i ti ->
   exists ti', SeqBB.step ge sp (Iexec ti) x (Iterm ti' cf)
           /\ state_lessdef i' ti'.
Proof.
  intros. unfold abstract_sequence' in H.
  unfold Option.map, Option.bind in H. repeat destr. inv H. inv Heqo.
  eapply abstr_seq_reverse_correct_fold;
    try eassumption; try reflexivity; apply sem_empty.
Qed.

(*|
Proof Sketch:

We do an induction over the list of instructions ``x``.  This is trivial for the
empty case and then for the inductive case we know that there exists an
execution that matches the abstract execution, so we need to know that adding
another instructions to it will still mean that the execution will result in the
same value.

Arithmetic operations will be a problem because we will have to show that these
can be executed.  However, this should mostly be a problem in the abstract state
comparison, because there two abstract states can be equal without one being
evaluable.
|*)

End CORRECTNESS.