aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/IfConversionproof.v
blob: 70d5fe36ad0f8ace1227b824694a7fa79e7d69c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
(*|
..
   Vericert: Verified high-level synthesis.
   Copyright (C) 2022 Yann Herklotz <yann@yannherklotz.com>

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <https://www.gnu.org/licenses/>.

===================
If Conversion Proof
===================

.. coq:: none
|*)

Require Import compcert.common.AST.
Require Import compcert.common.Errors.
Require Import compcert.common.Globalenvs.
Require Import compcert.lib.Maps.
Require Import compcert.backend.Registers.
Require Import compcert.common.Smallstep.
Require Import compcert.common.Events.
Require Import compcert.common.Memory.
Require Import compcert.common.Values.
Require Import compcert.common.Linking.

Require Import vericert.common.Vericertlib.
Require Import vericert.common.DecEq.
Require Import vericert.hls.Gible.
Require Import vericert.hls.GibleSeq.
Require Import vericert.hls.IfConversion.
Require Import vericert.hls.Predicate.

#[local] Opaque decide_if_convert.
#[local] Opaque get_loops.
#[local] Opaque ifconv_list.

#[local] Open Scope positive.
#[local] Notation "'mki'" := (mk_instr_state) (at level 1).

Variant match_stackframe : stackframe -> stackframe -> Prop :=
  | match_stackframe_init :
    forall res f tf sp pc rs p l i
           (TF: transf_function l i f = tf),
      match_stackframe (Stackframe res f sp pc rs p) (Stackframe res tf sp pc rs p).

Definition bool_order (b: bool): nat := if b then 1 else 0.

Inductive if_conv_block_spec (c: code): SeqBB.t -> SeqBB.t -> Prop :=
| if_conv_block_intro :
  if_conv_block_spec c nil nil
| if_conv_block_eq :
  forall a b tb,
    if_conv_block_spec c b tb ->
    if_conv_block_spec c (a::b) (a::tb)
| if_conv_block_conv :
  forall b tb ta p pc' b',
    if_conv_block_spec c b tb ->
    c ! pc' = Some b' ->
    if_conv_block_spec c b' ta ->
    if_conv_block_spec c (RBexit p (RBgoto pc')::b) (map (map_if_convert p) ta++tb).

Inductive replace_spec_unit (f: instr -> SeqBB.t)
  : SeqBB.t -> SeqBB.t -> Prop :=
| replace_spec_cons : forall i b b',
  replace_spec_unit f b b' ->
  replace_spec_unit f (i :: b) (f i ++ b')
| replace_spec_nil :
  replace_spec_unit f nil nil
.

Definition if_conv_replace n nb := replace_spec_unit (if_convert_block n nb).

Inductive if_conv_spec (c c': code) (pc: node): Prop :=
| if_conv_unchanged :
  c ! pc = c' ! pc ->
  if_conv_spec c c' pc
| if_conv_changed : forall b b' pc' tb,
  if_conv_replace pc' b' b tb ->
  c ! pc = Some b ->
  c ! pc' = Some b' ->
  c' ! pc = Some tb ->
  if_conv_spec c c' pc.

Lemma transf_spec_correct_notin :
  forall l pc c b d,
  ~ In pc (map fst l) ->
  b ! pc = d ! pc ->
  (fold_left (fun s n => if_convert c s (fst n) (snd n)) l b) ! pc = d ! pc.
Proof.
  induction l; crush.
  assert (fst a <> pc /\ ~ In pc (map fst l)).
  split. destruct (peq (fst a) pc); auto.
  unfold not; intros. apply H. tauto.
  simplify. eapply IHl; eauto.
  destruct a; simplify. unfold if_convert.
  repeat (destruct_match; auto; []).
  rewrite PTree.gso; auto.
Qed.

Lemma transf_spec_correct_None :
  forall l pc c b,
  c ! pc = None ->
  b ! pc = None ->
  (fold_left (fun s n => if_convert c s (fst n) (snd n)) l b) ! pc = None.
Proof.
  induction l; crush.
  eapply IHl; eauto.
  destruct (peq (fst a) pc); subst.
  unfold if_convert. rewrite H. auto.
  unfold if_convert. repeat (destruct_match; auto; []).
  now rewrite PTree.gso by auto.
Qed.

Lemma if_convert_neq :
  forall pc pc' pc'' c b,
    pc'' <> pc ->
    (if_convert c b pc'' pc') ! pc = b ! pc.
Proof.
  unfold if_convert; intros.
  repeat (destruct_match; auto; []).
  rewrite PTree.gso; auto.
Qed.

Lemma if_convert_ne_pc :
  forall pc pc' c b,
    c ! pc = None ->
    (if_convert c b pc pc') ! pc = b ! pc.
Proof.
  unfold if_convert; intros.
  repeat (destruct_match; auto; []).
  discriminate.
Qed.

Lemma if_convert_ne_pc' :
  forall pc pc' c b,
    c ! pc' = None ->
    (if_convert c b pc pc') ! pc = b ! pc.
Proof.
  unfold if_convert; intros.
  repeat (destruct_match; auto; []).
  discriminate.
Qed.

Lemma if_convert_decide_false :
  forall pc pc' c b y,
    c ! pc' = Some y ->
    decide_if_convert y = false ->
    (if_convert c b pc pc') ! pc = b ! pc.
Proof.
  unfold if_convert; intros.
  repeat (destruct_match; auto; []).
  setoid_rewrite Heqo0 in H; crush.
Qed.

Lemma if_convert_decide_true :
  forall pc pc' c b y z,
    c ! pc = Some z ->
    c ! pc' = Some y ->
    decide_if_convert y = true ->
    (if_convert c b pc pc') ! pc = Some (snd (replace_section (wrap_unit (if_convert_block pc' y)) tt z)).
Proof.
  unfold if_convert; intros.
  setoid_rewrite H.
  setoid_rewrite H0.
  rewrite H1. rewrite PTree.gss. auto.
Qed.

Lemma transf_spec_correct_in :
  forall l pc c b c' z,
    (fold_left (fun s n => if_convert c s (fst n) (snd n)) l b) = c' ->
    b ! pc = Some z \/ (exists pc' y,
                          c ! pc' = Some y
                          /\ decide_if_convert y = true
                          /\ b ! pc = Some (snd (replace_section (wrap_unit (if_convert_block pc' y)) tt z))) ->
    c ! pc = Some z ->
    c' ! pc = Some z \/ exists pc' y,
                          c ! pc' = Some y
                          /\ decide_if_convert y = true
                          /\ c' ! pc = Some (snd (replace_section (wrap_unit (if_convert_block pc' y)) tt z)).
Proof.
  induction l; crush. inv H0. tauto.
  simplify. right. eauto.
  exploit IHl; eauto. inv H0.
  destruct a; simplify.

  destruct (peq p pc); [|left; rewrite <- H2; eapply if_convert_neq; eauto]; subst; [].
  destruct (c ! p0) eqn:?; [|left; rewrite <- H2; eapply if_convert_ne_pc'; eauto]; [].
  destruct (decide_if_convert t) eqn:?; [|left; rewrite <- H2; eapply if_convert_decide_false; eauto]; [].
  right. do 2 econstructor; simplify; eauto.
  apply if_convert_decide_true; auto.

  simplify. right. destruct a; simplify.
  destruct (peq p pc);
    [|do 2 econstructor; simplify; eauto;
      rewrite <- H3; eapply if_convert_neq; auto]; []; subst.
  destruct (c ! p0) eqn:?;
           [|do 2 econstructor; simplify; eauto;
             rewrite <- H3; eapply if_convert_ne_pc'; auto]; [].
  destruct (decide_if_convert t) eqn:?;
           [|do 2 econstructor; simplify; try eapply H; eauto;
             rewrite <- H3; eapply if_convert_decide_false; eauto].
  do 2 econstructor; simplify; eauto.
  apply if_convert_decide_true; auto.
Qed.

Lemma replace_spec_true' :
  forall f x,
    replace_spec_unit f x (snd (replace_section (wrap_unit f) tt x)).
Proof.
  induction x; crush. constructor.
  destruct_match; simplify. constructor. eauto.
Qed.

Lemma replace_spec_true :
  forall x0 x1 x,
    if_conv_replace x0 x1 x (snd (replace_section (wrap_unit (if_convert_block x0 x1)) tt x)).
Proof.
  unfold if_conv_replace; intros.
  apply replace_spec_true'.
Qed.

Lemma transf_spec_correct :
  forall f pc l i,
    if_conv_spec f.(fn_code) (transf_function l i f).(fn_code) pc.
Proof.
  intros; unfold transf_function; destruct_match; cbn.
  unfold if_convert_code.
  destruct (f.(fn_code) ! pc) eqn:?.
  - simplify.
    match goal with
      |- context [fold_left ?a ?b ?c] =>
        remember (fold_left a b c) as c'
    end. symmetry in Heqc'.
    eapply transf_spec_correct_in in Heqc'; eauto. inv Heqc'. constructor.
    crush.
    simplify. eapply if_conv_changed; eauto.
    apply replace_spec_true.
  - pose proof Heqo as X. eapply transf_spec_correct_None in Heqo; eauto.
    constructor. rewrite Heqo. auto.
Qed.

Inductive wf_trans : option pred_op -> SeqBB.t -> Prop :=
| wf_trans_None: forall b, wf_trans None b
| wf_trans_Some: forall p b,
    (forall op c args p',
        In (RBsetpred op c args p') b ->
        ~ In p' (predicate_use p)) ->
    wf_trans (Some p) b.

Lemma wf_transition_block_opt_prop :
  forall b p,
    wf_transition_block_opt p b = true <-> wf_trans p b.
Proof.
  destruct p.
  2: {
    split. unfold wf_transition_block_opt; intros.
    constructor.
    intros. unfold wf_transition_block_opt. simplify; auto.
  }
  generalize dependent p. induction b; split; crush.
  - constructor; crush.
  - unfold wf_transition_block_opt in H. simplify.
    constructor; auto. intros. unfold wf_transition in H0.
    unfold not; intros. inv H.
    assert (existsb (Pos.eqb p') (predicate_use p) = true).
    { apply existsb_exists; econstructor. split; eauto. apply Pos.eqb_refl. }
    now rewrite H in H0.
    unfold wf_transition_block in *. eapply forallb_forall in H1; eauto.
    unfold wf_transition in *.
    assert (existsb (Pos.eqb p') (predicate_use p) = true).
    { apply existsb_exists; econstructor. split; eauto. apply Pos.eqb_refl. }
    now rewrite H in H1.
  - inv H. unfold wf_transition_block_opt. cbn [Option.default Option.map].
    unfold wf_transition_block. apply forallb_forall. intros.
    unfold wf_transition. destruct x; auto.
    apply H1 in H.
    rewrite <- negb_involutive. f_equal; cbn.
    destruct (existsb (Pos.eqb p0) (predicate_use p)) eqn:?; auto.
    exfalso; apply H. apply existsb_exists in Heqb0; simplify.
    apply Pos.eqb_eq in H3. subst. auto.
Qed.

Section CORRECTNESS.

  Context (prog tprog : program).

  Let ge : genv := Globalenvs.Genv.globalenv prog.
  Let tge : genv := Globalenvs.Genv.globalenv tprog.

  Definition sem_extrap f pc sp in_s in_s' block :=
    forall out_s block2,
      SeqBB.step tge sp in_s block out_s ->
      f.(fn_code) ! pc = Some block2 ->
      SeqBB.step tge sp in_s' block2 out_s.

  Variant match_states : option SeqBB.t -> state -> state -> Prop :=
    | match_state_some :
      forall stk stk' f tf sp pc rs p m b pc0 rs0 p0 m0 l i
             (TF: transf_function l i f = tf)
             (STK: Forall2 match_stackframe stk stk')
             (* This can be improved with a recursive relation for a more general structure of the
                if-conversion proof. *)
             (IS_B: f.(fn_code)!pc = Some b)
             (IS_TB: forall b',
                 f.(fn_code)!pc0 = Some b' ->
                 exists tb, tf.(fn_code)!pc0 = Some tb /\ if_conv_replace pc b b' tb)
             (EXTRAP: sem_extrap tf pc0 sp (Iexec (mki rs p m)) (Iexec (mki rs0 p0 m0)) b)
             (SIM: step ge (State stk f sp pc0 rs0 p0 m0) E0 (State stk f sp pc rs p m)),
        match_states (Some b) (State stk f sp pc rs p m) (State stk' tf sp pc0 rs0 p0 m0)
    | match_state_none :
      forall stk stk' f tf sp pc rs p m l i
             (TF: transf_function l i f = tf)
             (STK: Forall2 match_stackframe stk stk'),
        match_states None (State stk f sp pc rs p m) (State stk' tf sp pc rs p m)
    | match_callstate :
      forall cs cs' f tf args m l i
             (TF: transf_fundef l i f = tf)
             (STK: Forall2 match_stackframe cs cs'),
        match_states None (Callstate cs f args m) (Callstate cs' tf args m)
    | match_returnstate :
      forall cs cs' v m
             (STK: Forall2 match_stackframe cs cs'),
        match_states None (Returnstate cs v m) (Returnstate cs' v m).

  Definition match_prog (p: program) (tp: program) :=
    Linking.match_program (fun cu f tf => forall l i, tf = transf_fundef l i f) eq p tp.

  Context (TRANSL : match_prog prog tprog).

  Lemma symbols_preserved:
    forall (s: AST.ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
  Proof using TRANSL. intros. eapply (Genv.find_symbol_match TRANSL). Qed.

  Lemma senv_preserved:
    Senv.equiv (Genv.to_senv ge) (Genv.to_senv tge).
  Proof using TRANSL.
    Admitted.
    (*intros; eapply (Genv.senv_transf TRANSL). Qed.*)

  Lemma function_ptr_translated:
    forall b f l i,
      Genv.find_funct_ptr ge b = Some f ->
      Genv.find_funct_ptr tge b = Some (transf_fundef l i f).
  Proof. Admitted.

  Lemma sig_transf_function:
    forall (f tf: fundef) l i,
      funsig (transf_fundef l i f) = funsig f.
  Proof using.
    unfold transf_fundef. unfold AST.transf_fundef; intros. destruct f.
    unfold transf_function. destruct_match. auto. auto.
  Qed.

  Lemma functions_translated:
    forall (v: Values.val) (f: GibleSeq.fundef) l i,
      Genv.find_funct ge v = Some f ->
      Genv.find_funct tge v = Some (transf_fundef l i f).
  Proof using TRANSL.
    intros. exploit (Genv.find_funct_match TRANSL); eauto. simplify. eauto.
    Admitted.

  Lemma find_function_translated:
    forall ros rs f l i,
      find_function ge ros rs = Some f ->
      find_function tge ros rs = Some (transf_fundef l i f).
  Proof using TRANSL.
    Ltac ffts := match goal with
                 | [ H: forall _, Val.lessdef _ _, r: Registers.reg |- _ ] =>
                     specialize (H r); inv H
                 | [ H: Vundef = ?r, H1: Genv.find_funct _ ?r = Some _ |- _ ] =>
                     rewrite <- H in H1
                 | [ H: Genv.find_funct _ Vundef = Some _ |- _] => solve [inv H]
                 | _ => solve [exploit functions_translated; eauto]
                 end.
    destruct ros; simplify; try rewrite <- H;
      [| rewrite symbols_preserved; destruct_match;
         try (apply function_ptr_translated); crush ];
      intros;
      repeat ffts.
  Qed.

  Lemma transf_initial_states :
    forall s1,
      initial_state prog s1 ->
      exists s2, initial_state tprog s2 /\ match_states None s1 s2.
  Proof using TRANSL.
    induction 1.
    exploit function_ptr_translated; eauto; intros.
    do 2 econstructor; simplify. econstructor.
    (*apply (Genv.init_mem_transf TRANSL); eauto.
    replace (prog_main tprog) with (prog_main prog). rewrite symbols_preserved; eauto.
    symmetry; eapply Linking.match_program_main; eauto. eauto.
    erewrite sig_transf_function; eauto. constructor. auto. auto.
  Qed.*) Admitted.

  Lemma transf_final_states :
    forall s1 s2 r b,
      match_states b s1 s2 -> final_state s1 r -> final_state s2 r.
  Proof using.
    inversion 2; crush. subst. inv H. inv STK. econstructor.
  Qed.

  Lemma eval_op_eq:
    forall (sp0 : Values.val) (op : Op.operation) (vl : list Values.val) m,
      Op.eval_operation ge sp0 op vl m = Op.eval_operation tge sp0 op vl m.
  Proof using TRANSL.
    intros.
    destruct op; auto; unfold Op.eval_operation, Genv.symbol_address, Op.eval_addressing32;
    [| destruct a; unfold Genv.symbol_address ];
    try rewrite symbols_preserved; auto.
  Qed.

  Lemma eval_addressing_eq:
    forall sp addr vl,
      Op.eval_addressing ge sp addr vl = Op.eval_addressing tge sp addr vl.
  Proof using TRANSL.
    intros.
    destruct addr;
      unfold Op.eval_addressing, Op.eval_addressing32;
      unfold Genv.symbol_address;
      try rewrite symbols_preserved; auto.
  Qed.

  #[local] Hint Resolve eval_builtin_args_preserved : core.
  #[local] Hint Resolve symbols_preserved : core.
  #[local] Hint Resolve external_call_symbols_preserved : core.
  #[local] Hint Resolve senv_preserved : core.
  #[local] Hint Resolve find_function_translated : core.
  #[local] Hint Resolve sig_transf_function : core.

  Definition measure (b: option SeqBB.t): nat :=
    match b with
    | None => 1
    | Some _ => 0
    end.

  Lemma sim_star :
    forall s1 b t s,
      (exists b' s2,
          star step tge s1 t s2 /\ ltof _ measure b' b
          /\ match_states b' s s2) ->
      exists b' s2,
        (plus step tge s1 t s2 \/
           star step tge s1 t s2 /\ ltof _ measure b' b) /\
          match_states b' s s2.
  Proof using. intros; simplify. do 3 econstructor; eauto. Qed.

  Lemma sim_plus :
    forall s1 b t s,
      (exists b' s2, plus step tge s1 t s2 /\ match_states b' s s2) ->
      exists b' s2,
        (plus step tge s1 t s2 \/
           star step tge s1 t s2 /\ ltof _ measure b' b) /\
          match_states b' s s2.
  Proof using. intros; simplify. do 3 econstructor; eauto. Qed.

  Lemma step_instr :
    forall sp s1 s2 a,
      step_instr ge sp s1 a s2 ->
      step_instr tge sp s1 a s2.
  Proof using TRANSL.
    inversion 1; subst; econstructor; eauto.
    - now rewrite <- eval_op_eq.
    - now rewrite <- eval_addressing_eq.
    - now rewrite <- eval_addressing_eq.
  Qed.

  Lemma seqbb_eq :
    forall bb sp rs pr m rs' pr' m' cf,
      SeqBB.step ge sp (Iexec (mki rs pr m)) bb (Iterm (mki rs' pr' m') cf) ->
      SeqBB.step tge sp (Iexec (mki rs pr m)) bb (Iterm (mki rs' pr' m') cf).
  Proof using TRANSL.
    induction bb; crush; inv H.
    - econstructor; eauto. apply step_instr; eassumption.
      destruct state'. eapply IHbb; eauto.
    - constructor; apply step_instr; auto.
  Qed.

  Lemma step_list_2_eq :
    forall bb sp a b,
      step_list2 (Gible.step_instr ge) sp a bb b ->
      step_list2 (Gible.step_instr tge) sp a bb b.
  Proof.
    induction bb; crush; inv H.
    - econstructor; eauto.
    - econstructor; eauto. now apply step_instr.
  Qed.

  Lemma fn_all_eq :
    forall f tf l i,
      transf_function l i f = tf ->
      fn_stacksize f = fn_stacksize tf
      /\ fn_sig f = fn_sig tf
      /\ fn_params f = fn_params tf
      /\ fn_entrypoint f = fn_entrypoint tf
      /\ exists l, if_convert_code (fn_code f) l = fn_code tf.
  Proof.
    intros; simplify; unfold transf_function in *; destruct_match; inv H; auto.
    eexists; simplify; eauto.
  Qed.

  Ltac func_info :=
    match goal with
      H: transf_function _ _ _ = _ |- _ =>
        let H2 := fresh "ALL_EQ" in
        pose proof (fn_all_eq _ _ _ _ H) as H2; simplify
    end.

  Lemma step_cf_eq :
    forall stk stk' f tf sp pc rs pr m cf s t pc' l i,
      step_cf_instr ge (State stk f sp pc rs pr m) cf t s ->
      Forall2 match_stackframe stk stk' ->
      transf_function l i f = tf ->
      exists s', step_cf_instr tge (State stk' tf sp pc' rs pr m) cf t s'
                 /\ match_states None s s'.
  Proof.
    inversion 1; subst; simplify;
      try solve [func_info; do 2 econstructor; econstructor; eauto].
    - do 2 econstructor. constructor; eauto. econstructor; eauto. constructor; auto.
      econstructor. auto.
    - do 2 econstructor. constructor; eauto.
      func_info.
      rewrite H2 in *. rewrite H12. auto. econstructor; auto.
    - func_info. do 2 econstructor. econstructor; eauto. rewrite H2 in *.
      eauto. econstructor; auto.
  Admitted.

  Definition cf_dec :
    forall a pc, {a = RBgoto pc} + {a <> RBgoto pc}.
  Proof.
    destruct a; try solve [right; crush].
    intros. destruct (peq n pc); subst.
    left; auto.
    right. unfold not in *; intros. inv H. auto.
  Defined.

  Definition wf_trans_dec :
    forall p b, {wf_trans p b} + {~ wf_trans p b}.
  Proof using.
    intros; destruct (wf_transition_block_opt p b) eqn:?.
    left. apply wf_transition_block_opt_prop; auto.
    right. unfold not; intros. apply wf_transition_block_opt_prop in H.
    rewrite H in Heqb0. discriminate.
  Defined.

  Definition cf_wf_dec :
    forall p b a pc, {a = RBgoto pc /\ wf_trans p b} + {a <> RBgoto pc \/ ~ wf_trans p b}.
  Proof using.
    intros; destruct (cf_dec a pc); destruct (wf_trans_dec p b); tauto.
  Qed.

  Lemma wf_trans_comp_false :
    forall n pc' x b',
      RBgoto n <> RBgoto pc' \/ ~ wf_trans x b' ->
      (pc' =? n) && wf_transition_block_opt x b' = false.
  Proof using.
    inversion 1; subst; simplify.
    destruct (peq n pc'); subst; [exfalso; auto|]; [].
    apply Pos.eqb_neq in n0. rewrite Pos.eqb_sym in n0.
    rewrite n0. auto.
    destruct (wf_transition_block_opt x b') eqn:?.
    - exfalso; apply H0. apply wf_transition_block_opt_prop; auto.
    - apply andb_false_r.
  Qed.

  Lemma step_list2_app :
    forall A B (ge: Genv.t A B) sp a b i i' i'',
      step_list2 (Gible.step_instr ge) sp i'' b i' ->
      step_list2 (Gible.step_instr ge) sp i a i'' ->
      step_list2 (Gible.step_instr ge) sp i (a ++ b) i'.
  Proof using.
    induction a; crush.
    - inv H0; auto.
    - inv H0. econstructor.
      eauto. eapply IHa; eauto.
  Qed.

  Lemma map_if_convert_None :
    forall b',
      map (map_if_convert None) b' = b'.
  Proof using.
    induction b'; crush.
    rewrite IHb'; f_equal. destruct a; crush; destruct o; auto.
  Qed.

    Lemma truthy_true :
    forall pr x p,
      truthy pr x ->
      truthy pr p ->
      truthy pr (combine_pred x p).
  Proof using.
    intros.
    inv H; inv H0; cbn [combine_pred] in *; constructor; auto;
    rewrite eval_predf_Pand; apply andb_true_intro; auto.
  Qed.
  #[local] Hint Resolve truthy_true : core.

  Lemma falsy_false :
    forall i' a x,
      instr_falsy (is_ps i') a ->
      instr_falsy (is_ps i') (map_if_convert x a).
  Proof using.
    inversion 1; subst; destruct x; crush; constructor; rewrite eval_predf_Pand;
      auto using andb_false_intro2.
  Qed.
  #[local] Hint Resolve falsy_false : core.

  Lemma map_truthy_instr :
    forall A B (ge: Genv.t A B) sp i a x i',
      truthy (is_ps i) x ->
      Gible.step_instr ge sp (Iexec i) a i' ->
      Gible.step_instr ge sp (Iexec i) (map_if_convert x a) i'.
  Proof using.
    inversion 2; subst; crush;
      try (solve [econstructor; eauto]).
  Qed.

  Lemma map_falsy_instr :
    forall A B (ge: Genv.t A B) sp i a x,
      eval_predf (is_ps i) x = false ->
      Gible.step_instr ge sp (Iexec i) (map_if_convert (Some x) a) (Iexec i).
  Proof using.
    intros; destruct a; constructor; cbn; destruct o; constructor; auto;
      rewrite eval_predf_Pand; rewrite H; auto.
  Qed.

  Lemma map_falsy_list :
    forall A B (ge: Genv.t A B) sp b' p i0,
      eval_predf (is_ps i0) p = false ->
      step_list2 (Gible.step_instr ge) sp (Iexec i0) (map (map_if_convert (Some p)) b') (Iexec i0).
  Proof using.
    induction b'; crush; try constructor.
    econstructor; eauto.
    apply map_falsy_instr; auto.
  Qed.

  Lemma exec_if_conv3 :
    forall A B (ge: Genv.t A B) sp a pc' b' i i0,
      Gible.step_instr ge sp (Iexec i) a (Iexec i0) ->
      step_list2 (Gible.step_instr ge) sp (Iexec i) (if_convert_block pc' b' a) (Iexec i0).
  Proof with (simplify; try (solve [econstructor; eauto; constructor])) using.
    inversion 1; subst... destruct a... destruct c...
    destruct ((pc' =? n) && wf_transition_block_opt o b') eqn:?...
    apply wf_transition_block_opt_prop in H1. inv H1. inv H4.
    inv H4. apply map_falsy_list; auto.
  Qed.

  Lemma exec_if_conv2 :
    forall A B x0 ge sp pc' b' tb i i' x x1 cf,
      step_list2 (@Gible.step_instr A B ge) sp (Iexec i) x0 (Iexec i') ->
      cf <> RBgoto pc' \/ ~ wf_trans x b' ->
      if_conv_replace pc' b' (x0 ++ RBexit x cf :: x1) tb ->
      exists b rb,
        tb = b ++ RBexit x cf :: rb
        /\ step_list2 (Gible.step_instr ge) sp (Iexec i) b (Iexec i').
  Proof using.
    induction x0; simplify.
    - inv H1. inv H. exists nil. exists b'0.
      split; [|constructor]. rewrite app_nil_l.
      replace (RBexit x cf :: b'0) with ((RBexit x cf :: nil) ++ b'0) by auto.
      f_equal. simplify. destruct cf; auto.
      rewrite wf_trans_comp_false; auto.
    - inv H1. inv H.
      destruct i1; [|exfalso; eapply step_list2_false; eauto].
      exploit IHx0; eauto; simplify.
      exists (if_convert_block pc' b' a ++ x2). exists x3.
      split. rewrite app_assoc. auto.
      eapply step_list2_app; eauto.
      apply exec_if_conv3; auto.
  Qed.

  Lemma predicate_use_eval_predf :
    forall p1 pr p0 b0 b1,
      ~ In p0 (predicate_use p1) ->
      eval_predf pr p1 = b1 ->
      eval_predf pr # p0 <- b0 p1 = b1.
  Proof using.
    induction p1; crush.
    - destruct_match. inv Heqp1. simplify.
      unfold not in *.
      destruct (peq p1 p0); subst; try solve [exfalso; auto].
      unfold eval_predf. simplify. rewrite ! Pos2Nat.id.
      rewrite ! Regmap.gso; auto.
    - rewrite eval_predf_Pand in *.
      assert ((~ In p0 (predicate_use p1_1)) /\ (~ In p0 (predicate_use p1_2))).
      { unfold not in *; split; intros; apply H; apply in_or_app; tauto. }
      simplify.
      erewrite IHp1_1; eauto.
      erewrite IHp1_2; eauto.
    - rewrite eval_predf_Por in *.
      assert ((~ In p0 (predicate_use p1_1)) /\ (~ In p0 (predicate_use p1_2))).
      { unfold not in *; split; intros; apply H; apply in_or_app; tauto. }
      simplify.
      erewrite IHp1_1; eauto.
      erewrite IHp1_2; eauto.
  Qed.

  Lemma wf_trans_stays_truthy :
    forall A B (ge: Genv.t A B) sp i a i' p b,
      Gible.step_instr ge sp (Iexec i) a (Iexec i') ->
      wf_trans p b ->
      In a b ->
      truthy (is_ps i) p ->
      truthy (is_ps i') p.
  Proof using.
    inversion 1; subst; auto; intros;
    cbn [ is_ps ] in *.
    inv H0; constructor; [].
    apply H4 in H1. inv H2.
    apply predicate_use_eval_predf; auto.
  Qed.

  Lemma wf_trans_cons :
    forall x a b',
      wf_trans x (a :: b') ->
      wf_trans x b'.
  Proof using. inversion 1; subst; cbn in *; constructor; eauto. Qed.

  Lemma map_truthy_step:
    forall A B (ge: Genv.t A B) b' sp i x i' c,
      truthy (is_ps i) x ->
      wf_trans x b' ->
      SeqBB.step tge sp (Iexec i) b' (Iterm i' c) ->
      SeqBB.step tge sp (Iexec i) (map (map_if_convert x) b') (Iterm i' c).
  Proof using.
    induction b'; crush.
    inv H1.
    - econstructor.
      apply map_truthy_instr; eauto.
      eapply IHb'; auto.
      eapply wf_trans_stays_truthy; eauto. constructor; auto.
      apply wf_trans_cons with (a:=a); auto.
    - constructor; apply map_truthy_instr; auto.
  Qed.

  Lemma exec_if_conv :
    forall A B ge sp x0 pc' b' tb i i' x x1,
      step_list2 (@Gible.step_instr A B ge) sp (Iexec i) x0 (Iexec i') ->
      wf_trans x b' ->
      if_conv_replace pc' b' (x0 ++ RBexit x (RBgoto pc') :: x1) tb ->
      exists b rb,
        tb = b ++ (map (map_if_convert x) b') ++ rb
        /\ step_list2 (Gible.step_instr ge) sp (Iexec i) b (Iexec i').
  Proof using.
    induction x0; simplify.
    - inv H1. inv H. exists nil. exists b'0.
      split; [|constructor]. rewrite app_nil_l.
      f_equal. simplify. apply wf_transition_block_opt_prop in H0. rewrite H0.
      rewrite Pos.eqb_refl. auto.
    - inv H1. inv H.
      destruct i1; [|exfalso; eapply step_list2_false; eauto].
      exploit IHx0; eauto; simplify.
      exists (if_convert_block pc' b' a ++ x2). exists x3.
      split. rewrite app_assoc. auto.
      eapply step_list2_app; eauto.
      apply exec_if_conv3; auto.
  Qed.

  Lemma match_none_correct :
    forall t s1' stk f sp pc rs m pr rs' m' bb pr' cf stk' l i,
      (fn_code f) ! pc = Some bb ->
      SeqBB.step ge sp (Iexec (mki rs pr m)) bb (Iterm (mki rs' pr' m') cf) ->
      step_cf_instr ge (State stk f sp pc rs' pr' m') cf t s1' ->
      Forall2 match_stackframe stk stk' ->
      exists b' s2',
        (plus step tge (State stk' (transf_function l i f) sp pc rs pr m) t s2' \/
           star step tge (State stk' (transf_function l i f) sp pc rs pr m) t s2'
           /\ ltof (option SeqBB.t) measure b' None) /\
          match_states b' s1' s2'.
  Proof.
    intros * H H0 H1 STK.
    pose proof (transf_spec_correct f pc l i) as X; inv X.
    - apply sim_plus. rewrite H in H2. symmetry in H2.
      exploit step_cf_eq; eauto; simplify.
      do 3 econstructor. apply plus_one. econstructor; eauto.
      apply seqbb_eq; eauto. eauto.
    - simplify.
      exploit exec_rbexit_truthy; eauto; simplify.
      destruct (cf_wf_dec x b' cf pc'); subst; simplify.
      + inv H1.
        exploit exec_if_conv; eauto; simplify.
        apply sim_star. exists (Some b'). exists (State stk' (transf_function l i f) sp pc rs pr m).
        simplify; try (unfold ltof; auto). apply star_refl.
        econstructor; auto.
        simplify. econstructor; eauto.
        unfold sem_extrap; simplify.
        destruct out_s. exfalso; eapply step_list_false; eauto.
        apply append. exists (mki rs' pr' m'). split.
        eapply step_list_2_eq; eauto.
        apply append2. eapply map_truthy_step; eauto.
        econstructor; eauto. constructor; auto.
      + exploit exec_if_conv2; eauto; simplify.
        exploit step_cf_eq; eauto; simplify.
        apply sim_plus. exists None. exists x4.
        split. apply plus_one. econstructor; eauto.
        apply append. exists (mki rs' pr' m'). split; auto.
        apply step_list_2_eq; auto.
        constructor. constructor; auto. auto.
  Qed.

  Lemma match_some_correct:
    forall t s1' s f sp pc rs m pr rs' m' bb pr' cf stk' b0 pc1 rs1 p0 m1 l i,
      step ge (State s f sp pc rs pr m) t s1' ->
      (fn_code f) ! pc = Some bb ->
      SeqBB.step ge sp (Iexec (mki rs pr m)) bb (Iterm (mki rs' pr' m') cf) ->
      step_cf_instr ge (State s f sp pc rs' pr' m') cf t s1' ->
      Forall2 match_stackframe s stk' ->
      (fn_code f) ! pc = Some b0 ->
      sem_extrap (transf_function l i f) pc1 sp (Iexec (mki rs pr m)) (Iexec (mki rs1 p0 m1)) b0 ->
      (forall b',
          f.(fn_code)!pc1 = Some b' ->
          exists tb, (transf_function l i f).(fn_code)!pc1 = Some tb /\ if_conv_replace pc b0 b' tb) ->
      step ge (State s f sp pc1 rs1 p0 m1) E0 (State s f sp pc rs pr m) ->
      exists b' s2',
        (plus step tge (State stk' (transf_function l i f) sp pc1 rs1 p0 m1) t s2' \/
           star step tge (State stk' (transf_function l i f) sp pc1 rs1 p0 m1) t s2' /\
             ltof (option SeqBB.t) measure b' (Some b0)) /\ match_states b' s1' s2'.
  Proof.
    intros * H H0 H1 H2 STK IS_B EXTRAP IS_TB SIM.
    rewrite IS_B in H0; simplify.
    exploit step_cf_eq; eauto; simplify.
    apply sim_plus.
    exists None. exists x.
    split; auto.
    unfold sem_extrap in *.
    inv SIM.
    pose proof (IS_TB _ H13); simplify.
    apply plus_one.
    econstructor; eauto. eapply EXTRAP; auto. eapply seqbb_eq; eauto.
  Qed.

  Lemma transf_correct:
    forall s1 t s1',
      step ge s1 t s1' ->
      forall b s2, match_states b s1 s2 ->
        exists b' s2',
          (plus step tge s2 t s2' \/
             (star step tge s2 t s2' /\ ltof _ measure b' b))
          /\ match_states b' s1' s2'.
  Proof using TRANSL.
    inversion 1; subst; simplify;
      match goal with H: context[match_states] |- _ => inv H end.
    - eauto using match_some_correct.
    - eauto using match_none_correct.
    - apply sim_plus. remember (transf_function l i f) as tf. symmetry in Heqtf. func_info.
      exists None. eexists. split.
      apply plus_one. constructor; eauto. rewrite <- H1. eassumption.
      rewrite <- H4. rewrite <- H2. econstructor; auto.
    - apply sim_plus. exists None. eexists. split.
      apply plus_one. constructor; eauto.
      constructor; auto.
(*    - apply sim_plus. remember (transf_function l i f) as tf. symmetry in Heqtf. func_info.
      exists None. inv STK. inv H7. eexists. split. apply plus_one. constructor.
      constructor; auto.
  Qed.*) Admitted.

  Theorem transf_program_correct:
    forward_simulation (semantics prog) (semantics tprog).
  Proof using TRANSL.
    eapply (Forward_simulation
              (L1:=semantics prog)
              (L2:=semantics tprog)
              (ltof _ measure) match_states).
    constructor.
    - apply well_founded_ltof.
    - eauto using transf_initial_states.
    - intros; eapply transf_final_states; eauto.
    - eapply transf_correct.
    - apply senv_preserved.
  Qed.

End CORRECTNESS.