aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/RTLParFU.v
blob: fcc5679669c8c26c69da123df99252e3ef9fcbc5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2020-2021 ___ ___ <___@______.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Require Import compcert.backend.Registers.
Require Import compcert.common.AST.
Require Import compcert.common.Events.
Require Import compcert.common.Globalenvs.
Require Import compcert.common.Memory.
Require Import compcert.common.Smallstep.
Require Import compcert.common.Values.
Require Import compcert.lib.Coqlib.
Require Import compcert.lib.Integers.
Require Import compcert.lib.Maps.
Require Import compcert.verilog.Op.

Require Import vericert.hls.FunctionalUnits.
Require Import vericert.hls.Predicate.
Require Import vericert.common.Vericertlib.

Definition node := positive.
Definition predicate := positive.
Definition pred_op := @pred_op predicate.

Inductive instr : Type :=
| FUnop : instr
| FUop : option pred_op -> operation -> list reg -> reg -> instr
| FUread : positive -> positive -> reg -> instr
| FUwrite : positive -> positive -> reg -> instr
| FUsetpred : option pred_op -> condition -> list reg -> predicate -> instr.

Inductive cf_instr : Type :=
| FUcall : signature -> reg + ident -> list reg -> reg -> node -> cf_instr
| FUtailcall : signature -> reg + ident -> list reg -> cf_instr
| FUbuiltin : external_function -> list (builtin_arg reg) ->
              builtin_res reg -> node -> cf_instr
| FUcond : condition -> list reg -> node -> node -> cf_instr
| FUjumptable : reg -> list node -> cf_instr
| FUreturn : option reg -> cf_instr
| FUgoto : node -> cf_instr
| FUpred_cf : pred_op -> cf_instr -> cf_instr -> cf_instr.

Fixpoint successors_instr (i : cf_instr) : list node :=
  match i with
  | FUcall sig ros args res s => s :: nil
  | FUtailcall sig ros args => nil
  | FUbuiltin ef args res s => s :: nil
  | FUcond cond args ifso ifnot => ifso :: ifnot :: nil
  | FUjumptable arg tbl => tbl
  | FUreturn optarg => nil
  | FUgoto n => n :: nil
  | FUpred_cf p c1 c2 => concat (successors_instr c1 :: successors_instr c2 :: nil)
  end.

Definition max_reg_instr (m: positive) (i: instr) :=
  match i with
  | FUnop => m
  | FUop p op args res =>
      fold_left Pos.max args (Pos.max res m)
  | FUread p1 p2 r => Pos.max m r
  | FUwrite p1 p2 r => Pos.max m r
  | FUsetpred p' c args p =>
      fold_left Pos.max args m
  end.

Fixpoint max_reg_cfi (m : positive) (i : cf_instr) :=
  match i with
  | FUcall sig (inl r) args res s =>
      fold_left Pos.max args (Pos.max r (Pos.max res m))
  | FUcall sig (inr id) args res s =>
      fold_left Pos.max args (Pos.max res m)
  | FUtailcall sig (inl r) args =>
      fold_left Pos.max args (Pos.max r m)
  | FUtailcall sig (inr id) args =>
      fold_left Pos.max args m
  | FUbuiltin ef args res s =>
      fold_left Pos.max (params_of_builtin_args args)
                (fold_left Pos.max (params_of_builtin_res res) m)
  | FUcond cond args ifso ifnot => fold_left Pos.max args m
  | FUjumptable arg tbl => Pos.max arg m
  | FUreturn None => m
  | FUreturn (Some arg) => Pos.max arg m
  | FUgoto n => m
  | FUpred_cf p c1 c2 => Pos.max (max_reg_cfi m c1) (max_reg_cfi m c2)
  end.

Definition regset := Regmap.t val.
Definition predset := PMap.t bool.

Definition eval_predf (pr: predset) (p: pred_op) :=
  sat_predicate p (fun x => pr !! x).

#[global]
 Instance eval_predf_Proper : Proper (eq ==> equiv ==> eq) eval_predf.
Proof.
  unfold Proper. simplify. unfold "==>".
  intros.
  unfold sat_equiv in *. intros. unfold eval_predf. subst. apply H0.
Qed.

#[local] Open Scope pred_op.

Lemma eval_predf_Pand :
  forall ps p p',
    eval_predf ps (p ∧ p') = eval_predf ps p && eval_predf ps p'.
Proof. unfold eval_predf; split; simplify; auto with bool. Qed.

Lemma eval_predf_Por :
  forall ps p p',
    eval_predf ps (p ∨ p') = eval_predf ps p || eval_predf ps p'.
Proof. unfold eval_predf; split; simplify; auto with bool. Qed.

Lemma eval_predf_pr_equiv :
  forall p ps ps',
    (forall x, ps !! x = ps' !! x) ->
    eval_predf ps p = eval_predf ps' p.
Proof.
  induction p; simplify; auto;
    try (unfold eval_predf; simplify; repeat (destruct_match; []); inv Heqp0; rewrite <- H; auto);
    [repeat rewrite eval_predf_Pand|repeat rewrite eval_predf_Por];
    erewrite IHp1; try eassumption; erewrite IHp2; eauto.
Qed.

Fixpoint init_regs (vl: list val) (rl: list reg) {struct rl} : regset :=
  match rl, vl with
  | r1 :: rs, v1 :: vs => Regmap.set r1 v1 (init_regs vs rs)
  | _, _ => Regmap.init Vundef
  end.

Definition bblock_body := list (list (list instr)).

Record bblock : Type :=
  mk_bblock {
      bb_body: bblock_body;
      bb_exit: cf_instr
    }.

Definition code: Type := PTree.t bblock.

Record function: Type :=
  mkfunction {
      fn_sig: signature;
      fn_params: list reg;
      fn_stacksize: Z;
      fn_code: code;
      fn_funct_units: resources;
      fn_entrypoint: node;
    }.

Definition fundef := AST.fundef function.
Definition program := AST.program fundef unit.

Definition funsig (fd: fundef) :=
  match fd with
  | Internal f => fn_sig f
  | External ef => ef_sig ef
  end.

Inductive stackframe : Type :=
| Stackframe:
  forall (res: reg)            (**r where to store the result *)
         (f: function)         (**r calling function *)
         (sp: val)             (**r stack pointer in calling function *)
         (pc: node)            (**r program point in calling function *)
         (rs: regset)          (**r register state in calling function *)
         (pr: predset),        (**r predicate state of the calling function *)
    stackframe.

Inductive state : Type :=
| State:
  forall (stack: list stackframe) (**r call stack *)
         (f: function)            (**r current function *)
         (sp: val)                (**r stack pointer *)
         (pc: node)               (**r current program point in [c] *)
         (rs: regset)             (**r register state *)
         (pr: predset)            (**r predicate register state *)
         (m: mem),                (**r memory state *)
    state
| Callstate:
  forall (stack: list stackframe) (**r call stack *)
         (f: fundef)              (**r function to call *)
         (args: list val)         (**r arguments to the call *)
         (m: mem),                (**r memory state *)
    state
| Returnstate:
  forall (stack: list stackframe) (**r call stack *)
         (v: val)                 (**r return value for the call *)
         (m: mem),                (**r memory state *)
    state.

Record instr_state := mk_instr_state {
                         is_rs: regset;
                         is_ps: predset;
                         is_mem: mem;
                       }.

Definition genv := Genv.t fundef unit.

Section RELSEM.

  Context (ge: genv).

  Definition find_function
             (ros: reg + ident) (rs: regset) : option fundef :=
    match ros with
    | inl r => Genv.find_funct ge rs#r
    | inr symb =>
        match Genv.find_symbol ge symb with
        | None => None
        | Some b => Genv.find_funct_ptr ge b
        end
    end.

  Inductive eval_pred: option pred_op -> instr_state -> instr_state -> instr_state -> Prop :=
  | eval_pred_true:
    forall i i' p,
      eval_predf (is_ps i) p = true ->
      eval_pred (Some p) i i' i'
  | eval_pred_false:
    forall i i' p,
      eval_predf (is_ps i) p = false ->
      eval_pred (Some p) i i' i
  | eval_pred_none:
    forall i i', eval_pred None i i' i.

  Inductive step_instr: val -> instr_state -> instr -> instr_state -> Prop :=
  | exec_FUnop:
    forall sp ist,
      step_instr sp ist FUnop ist
  | exec_FUop:
    forall op v res args rs m sp p ist pr,
      eval_operation ge sp op rs##args m = Some v ->
      eval_pred p (mk_instr_state rs pr m) (mk_instr_state (rs#res <- v) pr m) ist ->
      step_instr sp (mk_instr_state rs pr m) (FUop p op args res) ist
  | exec_FUsetpred:
    forall sp rs pr m p c b args p' ist,
      Op.eval_condition c rs##args m = Some b ->
      eval_pred p' (mk_instr_state rs pr m) (mk_instr_state rs (pr#p <- b) m) ist ->
      step_instr sp (mk_instr_state rs pr m) (FUsetpred p' c args p) ist.

  Inductive step_instr_list: val -> instr_state -> list instr -> instr_state -> Prop :=
  | exec_RBcons:
    forall state i state' state'' instrs sp,
      step_instr sp state i state' ->
      step_instr_list sp state' instrs state'' ->
      step_instr_list sp state (i :: instrs) state''
  | exec_RBnil:
    forall state sp,
      step_instr_list sp state nil state.

  Inductive step_instr_seq (sp : val)
    : instr_state -> list (list instr) -> instr_state -> Prop :=
  | exec_instr_seq_cons:
    forall state i state' state'' instrs,
      step_instr_list sp state i state' ->
      step_instr_seq sp state' instrs state'' ->
      step_instr_seq sp state (i :: instrs) state''
  | exec_instr_seq_nil:
    forall state,
      step_instr_seq sp state nil state.

  Inductive step_instr_block (sp : val)
    : instr_state -> bblock_body -> instr_state -> Prop :=
  | exec_instr_block_cons:
    forall state i state' state'' instrs,
      step_instr_seq sp state i state' ->
      step_instr_block sp state' instrs state'' ->
      step_instr_block sp state (i :: instrs) state''
  | exec_instr_block_nil:
    forall state,
      step_instr_block sp state nil state.

  Inductive step_cf_instr: state -> cf_instr -> trace -> state -> Prop :=
  | exec_FUcall:
    forall s f sp rs m res fd ros sig args pc pc' pr,
      find_function ros rs = Some fd ->
      funsig fd = sig ->
      step_cf_instr (State s f sp pc rs pr m) (FUcall sig ros args res pc')
                    E0 (Callstate (Stackframe res f sp pc' rs pr :: s) fd rs##args m)
  | exec_FUtailcall:
    forall s f stk rs m sig ros args fd m' pc pr,
      find_function ros rs = Some fd ->
      funsig fd = sig ->
      Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
      step_cf_instr (State s f (Vptr stk Ptrofs.zero) pc rs pr m) (FUtailcall sig ros args)
                    E0 (Callstate s fd rs##args m')
  | exec_FUbuiltin:
    forall s f sp rs m ef args res pc' vargs t vres m' pc pr,
      eval_builtin_args ge (fun r => rs#r) sp m args vargs ->
      external_call ef ge vargs m t vres m' ->
      step_cf_instr (State s f sp pc rs pr m) (FUbuiltin ef args res pc')
                    t (State s f sp pc' (regmap_setres res vres rs) pr m')
  | exec_FUcond:
    forall s f sp rs m cond args ifso ifnot b pc pc' pr,
      eval_condition cond rs##args m = Some b ->
      pc' = (if b then ifso else ifnot) ->
      step_cf_instr (State s f sp pc rs pr m) (FUcond cond args ifso ifnot)
                    E0 (State s f sp pc' rs pr m)
  | exec_FUjumptable:
    forall s f sp rs m arg tbl n pc pc' pr,
      rs#arg = Vint n ->
      list_nth_z tbl (Int.unsigned n) = Some pc' ->
      step_cf_instr (State s f sp pc rs pr m) (FUjumptable arg tbl)
                    E0 (State s f sp pc' rs pr m)
  | exec_FUreturn:
    forall s f stk rs m or pc m' pr,
      Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
      step_cf_instr (State s f (Vptr stk Ptrofs.zero) pc rs pr m) (FUreturn or)
                    E0 (Returnstate s (regmap_optget or Vundef rs) m')
  | exec_FUgoto:
    forall s f sp pc rs pr m pc',
      step_cf_instr (State s f sp pc rs pr m) (FUgoto pc') E0 (State s f sp pc' rs pr m)
  | exec_FUpred_cf:
    forall s f sp pc rs pr m cf1 cf2 st' p t,
      step_cf_instr (State s f sp pc rs pr m) (if eval_predf pr p then cf1 else cf2) t st' ->
      step_cf_instr (State s f sp pc rs pr m) (FUpred_cf p cf1 cf2) t st'.

  Inductive step: state -> trace -> state -> Prop :=
  | exec_bblock:
    forall s f sp pc rs rs' m m' t s' bb pr pr',
      f.(fn_code)!pc = Some bb ->
      step_instr_block sp (mk_instr_state rs pr m) bb.(bb_body) (mk_instr_state rs' pr' m') ->
      step_cf_instr (State s f sp pc rs' pr' m') bb.(bb_exit) t s' ->
      step (State s f sp pc rs pr m) t s'
  | exec_function_internal:
    forall s f args m m' stk,
      Mem.alloc m 0 f.(fn_stacksize) = (m', stk) ->
      step (Callstate s (Internal f) args m)
           E0 (State s
                     f
                     (Vptr stk Ptrofs.zero)
                     f.(fn_entrypoint)
                         (init_regs args f.(fn_params))
                         (PMap.init false) m')
  | exec_function_external:
    forall s ef args res t m m',
      external_call ef ge args m t res m' ->
      step (Callstate s (External ef) args m)
           t (Returnstate s res m')
  | exec_return:
    forall res f sp pc rs s vres m pr,
      step (Returnstate (Stackframe res f sp pc rs pr :: s) vres m)
           E0 (State s f sp pc (rs#res <- vres) pr m).

End RELSEM.

Inductive initial_state (p: program): state -> Prop :=
| initial_state_intro: forall b f m0,
    let ge := Genv.globalenv p in
    Genv.init_mem p = Some m0 ->
    Genv.find_symbol ge p.(prog_main) = Some b ->
    Genv.find_funct_ptr ge b = Some f ->
    funsig f = signature_main ->
    initial_state p (Callstate nil f nil m0).

Inductive final_state: state -> int -> Prop :=
| final_state_intro: forall r m,
    final_state (Returnstate nil (Vint r) m) r.

Definition semantics (p: program) :=
  Semantics step (initial_state p) final_state (Genv.globalenv p).

Definition max_reg_bblock (m : positive) (pc : node) (bb : bblock) :=
  let max_body := fold_left (fun x l => fold_left (fun x' l' => fold_left max_reg_instr l' x') l x) bb.(bb_body) m in
  max_reg_cfi max_body bb.(bb_exit).

(* Definition max_reg_function (f: function) := *)
(*   Pos.max *)
(*     (PTree.fold max_reg_bblock f.(fn_code) 1%positive) *)
(*     (Pos.max (fold_left Pos.max f.(fn_params) 1%positive) *)
(*              (max_reg_resources f.(fn_funct_units))). *)

(* Definition max_pc_function (f: function) : positive := *)
(*   PTree.fold (fun m pc i => (Pos.max m *)
(*                                      (pc + match Zlength i.(bb_body) *)
(*                                            with Z.pos p => p | _ => 1 end))%positive) *)
(*              f.(fn_code) 1%positive. *)