aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/Sat.v
blob: 1cc2d2cbd21923ec7f91d9e7bf7316c45fba7250 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
Require Import Arith Bool List.
Require Import Coq.funind.Recdef.
Require Coq.MSets.MSetPositive.
Require Coq.MSets.MSetProperties.
Require Import Coq.Structures.OrderedTypeEx.
Require Import Coq.Structures.OrdersAlt.
Require Import Coq.Program.Wf.
Require Import Vericertlib.

Module PSet := MSetPositive.PositiveSet.
Module PSetProp := MSetProperties.OrdProperties(PSet).

#[local] Open Scope positive.

(** * Verified SAT Solver

This development was heavily inspired by the example of a Sat solver given in:
http://www.cs.berkeley.edu/~adamc/itp/.

First, some basic definitions, such as variables, literals, clauses and
formulas.  In this development [positive] is used instead of [nat] because it
integrates better into CompCert itself. *)

Definition var := positive.
Definition lit := (bool * var)%type.
Definition clause := list lit.
Definition formula := list clause.

(** The most general version of an assignment is a function mapping variables to
booleans.  This provides a possible value for all variables that could exist. *)

Definition asgn := var -> bool.

Definition sat_lit (l : lit) (a : asgn) :=
  a (snd l) = fst l.

Fixpoint sat_clause (cl : clause) (a : asgn) {struct cl} : Prop :=
  match cl with
  | nil => False
  | l :: cl' => sat_lit l a \/ sat_clause cl' a
  end.

(** An assignment satisfies a formula if it satisfies all of its clauses. *)
Fixpoint sat_formula (fm: formula) (a: asgn) {struct fm} : Prop :=
  match fm with
  | nil => True
  | cl :: fm' => sat_clause cl a /\ sat_formula fm' a
  end.

(** * Subroutines *)

(** You'll probably want to compare booleans for equality at some point. *)
Definition bool_eq_dec : forall (x y : bool), {x = y} + {x <> y}.
  decide equality.
Defined.

Definition boolpositive_eq_dec : forall (x y : (bool * positive)), {x = y} + {x <> y}.
  pose proof bool_eq_dec.
  pose proof peq.
  decide equality.
Defined.

(** A literal and its negation can't be true simultaneously. *)
Lemma contradictory_assignment : forall s l cl a,
    s <> fst l
    -> sat_lit l a
    -> sat_lit (s, snd l) a
    -> sat_clause cl a.
Proof.
  intros.
  red in H0, H1.
  simpl in H1.
  subst.
  tauto.
Qed.

#[local] Hint Resolve contradictory_assignment : core.

(** Augment an assignment with a new mapping. *)
Definition upd (a : asgn) (l : lit) : asgn :=
  fun v : var =>
    if peq v (snd l)
    then fst l
    else a v.

(** Some lemmas about [upd] *)

Lemma sat_lit_upd_eq : forall l a,
    sat_lit l (upd a l).
  unfold sat_lit, upd; simpl; intros.
  destruct (peq (snd l) (snd l)); tauto.
Qed.

#[local] Hint Resolve sat_lit_upd_eq : core.

Lemma sat_lit_upd_neq : forall v l s a,
    v <> snd l
    -> sat_lit (s, v) (upd a l)
    -> sat_lit (s, v) a.
  unfold sat_lit, upd; simpl; intros.
  destruct (peq v (snd l)); tauto.
Qed.

#[local] Hint Resolve sat_lit_upd_neq : core.

Lemma sat_lit_upd_neq2 : forall v l s a,
    v <> snd l
    -> sat_lit (s, v) a
    -> sat_lit (s, v) (upd a l).
  unfold sat_lit, upd; simpl; intros.
  destruct (peq v (snd l)); tauto.
Qed.

#[local] Hint Resolve sat_lit_upd_neq2 : core.

Lemma sat_lit_contra : forall s l a cl,
    s <> fst l
    -> sat_lit (s, snd l) (upd a l)
    -> sat_clause cl a.
  unfold sat_lit, upd; simpl; intros.
  destruct (peq (snd l) (snd l)); intuition auto with *.
Qed.

#[local] Hint Resolve sat_lit_contra : core.

Ltac magic_solver := simpl; intros; subst; intuition eauto; firstorder;
                     match goal with
                     | [ H1 : sat_lit ?l ?a, H2 : sat_clause ?cl ?a |- _ ] =>
                       assert (sat_clause cl (upd a l)); firstorder
                     end.

(** Strongly-specified function to update a clause to reflect the effect of
  making a particular literal true.  *)
Definition set_clause : forall (cl : clause) (l : lit),
    {cl' : clause |
      forall a, sat_clause cl (upd a l) <-> sat_clause cl' a}
    + {forall a, sat_lit l a -> sat_clause cl a}.
  refine (fix set_clause (cl: clause) (l: lit) {struct cl} :=
            match cl with
            | nil => inleft (exist _ nil _)
            | x :: xs =>
              match set_clause xs l with
              | inright p => inright _
              | inleft (exist _ cl' H) =>
                match peq (snd x) (snd l), bool_eq_dec (fst x) (fst l) with
                | left p_eq, left bool_eq => inright _
                | left eq, right ne => inleft (exist _ cl' _)
                | right neq, _ => inleft (exist _ (x :: cl') _)
                end
              end
            end); clear set_clause; try magic_solver.
  - intros; simpl; left; apply injective_projections in bool_eq; subst; auto.
  - split; intros. simpl in H0. inversion H0. eapply sat_lit_contra; eauto.
    destruct x; simpl in *; subst. auto.
    apply H. eauto.
    simpl. right. apply H; eauto.
  - split; intros; simpl in *. inversion H0. destruct x; simpl in *; subst.
    left. eauto.
    right. apply H. eauto.
    inversion H0. left. apply sat_lit_upd_neq2. auto. auto.
    right. apply H. auto.
Defined.

(** For testing purposes, we define a weakly-specified function as a thin
  wrapper around [set_clause].
 *)
Definition set_clause_simple (cl : clause) (l : lit) :=
  match set_clause cl l with
  | inleft (exist _ cl' _) => Some cl'
  | inright _ => None
  end.

(*Eval compute in set_clause_simple ((false, 1%nat) :: nil) (true, 1%nat).*)
(*Eval compute in set_clause_simple nil (true, 0).
Eval compute in set_clause_simple ((true, 0) :: nil) (true, 0).
Eval compute in set_clause_simple ((true, 0) :: nil) (false, 0).
Eval compute in set_clause_simple ((true, 0) :: nil) (true, 1).
Eval compute in set_clause_simple ((true, 0) :: nil) (false, 1).
Eval compute in set_clause_simple ((true, 0) :: (true, 1) :: nil) (true, 1).
Eval compute in set_clause_simple ((true, 0) :: (true, 1) :: nil) (false, 1).
Eval compute in set_clause_simple ((true, 0) :: (false, 1) :: nil) (true, 1).
Eval compute in set_clause_simple ((true, 0) :: (false, 1) :: nil) (false, 1).*)

(** It's useful to have this strongly-specified nilness check. *)
Definition isNil : forall (A : Set) (ls : list A), {ls = nil} + {ls <> nil}.
  destruct ls; [left|right]; [auto|]; unfold not; intros; inversion H.
Defined.
Arguments isNil [A].

(** Some more lemmas that I found helpful.... *)

Lemma sat_lit_idem_lit : forall l a l',
    sat_lit l a
    -> sat_lit l' a
    -> sat_lit l' (upd a l).
  unfold sat_lit, upd; simpl; intros.
  destruct (peq (snd l') (snd l)); congruence.
Qed.

#[local] Hint Resolve sat_lit_idem_lit : core.

Lemma sat_lit_idem_clause : forall l a cl,
    sat_lit l a
    -> sat_clause cl a
    -> sat_clause cl (upd a l).
  induction cl; simpl; intuition.
Qed.

#[local] Hint Resolve sat_lit_idem_clause : core.

Lemma sat_lit_idem_formula : forall l a fm,
    sat_lit l a
    -> sat_formula fm a
    -> sat_formula fm (upd a l).
  induction fm; simpl; intuition.
Qed.

#[local] Hint Resolve sat_lit_idem_formula : core.

(** Function that updates an entire formula to reflect setting a literal to true.  *)
Definition set_formula : forall (fm : formula) (l : lit),
    {fm' : formula |
      forall a, sat_formula fm (upd a l) <-> sat_formula fm' a}
    + {forall a, sat_lit l a -> ~sat_formula fm a}.
  refine (fix set_formula (fm: formula) (l: lit) {struct fm} :=
            match fm with
            | nil => inleft (exist _ nil _)
            | cl' :: fm' =>
              match set_formula fm' l with
              | inright p => inright _
              | inleft (exist _ fm'' H) =>
                match set_clause cl' l with
                | inright H' => inleft (exist _ fm'' _)
                | inleft (exist _ cl'' _) =>
                  if isNil cl''
                  then inright _
                  else inleft (exist _ (cl'' :: fm'') _)
                end
              end
            end); clear set_formula; magic_solver.
Defined.

Definition set_formula_simple (fm : formula) (l : lit) :=
  match set_formula fm l with
  | inleft (exist _ fm' _) => Some fm'
  | inright _ => None
  end.

(* Eval compute in set_formula_simple (((true, 1%nat) :: nil) :: ((false, 1%nat) :: nil) :: nil) (true, 1%nat). *)
(* Eval compute in set_formula_simple nil (true, 0). *)
(* Eval compute in set_formula_simple (((true, 0) :: nil) :: nil) (true, 0). *)
(* Eval compute in set_formula_simple (((false, 0) :: nil) :: nil) (true, 0). *)
(* Eval compute in set_formula_simple (((false, 1) :: nil) :: nil) (true, 0). *)
(* Eval compute in set_formula_simple (((false, 1) :: (true, 0) :: nil) :: nil) (true, 0). *)
(* Eval compute in set_formula_simple (((false, 1) :: (false, 0) :: nil) :: nil) (true, 0). *)

#[local] Hint Extern 1 False => discriminate : core.

Local Hint Extern 1 False =>
match goal with
| [ H : In _ (_ :: _) |- _ ] => inversion H; clear H; subst
end : core.

(** Code that either finds a unit clause in a formula or declares that there are none.  *)
Definition find_unit_clause : forall (fm: formula),
    {l : lit | In (l :: nil) fm}
    + {forall l, ~In (l :: nil) fm}.
  refine (fix find_unit_clause (fm: formula) {struct fm} :=
            match fm with
            | nil => inright _
            | (l :: nil) :: fm' => inleft (exist _ l _)
            | _ :: fm' =>
              match find_unit_clause fm' with
              | inleft (exist _ l _) => inleft (exist _ l _)
              | inright H => inright _
              end
            end
         ); clear find_unit_clause; magic_solver.
Defined.

(** The literal in a unit clause must always be true in a satisfying assignment.  *)
Lemma unit_clause_true : forall l a fm,
    In (l :: nil) fm
    -> sat_formula fm a
    -> sat_lit l a.
  induction fm; intuition auto with *.
  inversion H.
  inversion H; subst; simpl in H0; intuition.
  apply IHfm; eauto. inv H0. eauto.
Qed.

#[local] Hint Resolve unit_clause_true : core.

(** Unit propagation.  The return type of [unit_propagate] signifies that three
results are possible:

  - [None]: There are no unit clauses.
  - [Some (inleft _)]: There is a unit clause, and here is a formula reflecting
    setting its literal to true.
  - [Some (inright _)]: There is a unit clause, and propagating it reveals that
    the formula is unsatisfiable.
 *)
Definition unit_propagate :
  forall (fm : formula), option (sigT (fun fm' : formula =>
                                         {l : lit |
                                           (forall a, sat_formula fm a -> sat_lit l a)
                                           /\ forall a, sat_formula fm (upd a l) <-> sat_formula fm' a})
                                 + {forall a, ~sat_formula fm a}).
  refine (fix unit_propagate (fm: formula) {struct fm} :=
            match find_unit_clause fm with
            | inright H => None
            | inleft (exist _ l _) =>
              match set_formula fm l with
              | inright _ => Some (inright _)
              | inleft (exist _ fm' _) =>
                Some (inleft (existT _ fm' (exist _ l _)))
              end
            end
         ); clear unit_propagate; magic_solver.
Defined.


Definition unit_propagate_simple (fm : formula) :=
  match unit_propagate fm with
  | None => None
  | Some (inleft (existT _ fm' (exist _ l _))) => Some (Some (fm', l))
  | Some (inright _) => Some None
  end.

(*Eval compute in unit_propagate_simple (((true, 1%nat) :: nil) :: ((false, 1%nat) :: nil) :: nil).
Eval compute in unit_propagate_simple nil.
Eval compute in unit_propagate_simple (((true, 0) :: nil) :: nil).
Eval compute in unit_propagate_simple (((true, 0) :: nil) :: ((false, 0) :: nil) :: nil).
Eval compute in unit_propagate_simple (((true, 0) :: nil) :: ((false, 1) :: nil) :: nil).
Eval compute in unit_propagate_simple (((true, 0) :: nil) :: ((false, 0) :: (false, 1) :: nil) :: nil).
Eval compute in unit_propagate_simple (((false, 0) :: (false, 1) :: nil) :: ((true, 0) :: nil) :: nil).*)


(** * The SAT Solver *)

(** This section defines a DPLL SAT solver in terms of the subroutines.  *)

(** An arbitrary heuristic to choose the next variable to split on *)
Definition choose_split (fm : formula) :=
  match fm with
  | ((l :: _) :: _) => l
  | _ => (true, 1)
  end.

Definition negate (l : lit) := (negb (fst l), snd l).

#[local] Hint Unfold sat_formula : core.

Lemma sat_lit_dec : forall l a,
    {sat_lit l a} + {sat_lit (negate l) a}.
  destruct l.
  unfold sat_lit; simpl; intro.
  destruct b; destruct (a v); simpl; auto.
Qed.

(** We'll represent assignments as lists of literals instead of functions. *)
Definition alist := list lit.

Fixpoint interp_alist (al : alist) : asgn :=
  match al with
  | nil => fun _ => true
  | l :: al' => upd (interp_alist al') l
  end.

(*Eval compute in boundedSat_simple 100 nil.
Eval compute in boundedSat_simple 100 (((true, 1%nat) :: nil) :: ((false, 1%nat) :: nil) :: nil).
Eval compute in boundedSat_simple 100 (((true, 0) :: nil) :: nil).
Eval compute in boundedSat_simple 100 (((true, 0) :: nil) :: ((false, 0) :: nil) :: nil).
Eval compute in boundedSat_simple 100 (((true, 0) :: (false, 1) :: nil) :: ((true, 1) :: nil) :: nil).
Eval compute in boundedSat_simple 100 (((true, 0) :: (false, 1) :: nil) :: ((true, 1) :: (false, 0) :: nil) :: nil).
Eval compute in boundedSat_simple 100 (((true, 0) :: (false, 1) :: nil) :: ((false, 0) :: (false, 0) :: nil) :: ((true, 1) :: nil) :: nil).
Eval compute in boundedSat_simple 100 (((false, 0) :: (true, 1) :: nil) :: ((false, 1) :: (true, 0) :: nil) :: nil).*)

Definition lit_set_cl (cl: clause) :=
  fold_right PSet.add PSet.empty (map snd cl).

Lemma lit_set_cl_in_set :
  forall cl v,
    In v (map snd cl) ->
    PSet.In v (lit_set_cl cl).
Proof.
  induction cl; crush.
  destruct a; cbn [snd] in *; inv H.
  - cbn. apply PSetProp.P.FM.add_1; auto.
  - cbn. apply PSetProp.P.FM.add_2.
    now apply IHcl.
Qed.

Lemma lit_set_cl_not_in_set :
  forall cl v,
    ~ In v (map snd cl) ->
    ~ PSet.In v (lit_set_cl cl).
Proof.
  induction cl; crush.
  destruct a; cbn [snd] in *.
  assert (p <> v /\ ~ In v (map snd cl))
    by (split; unfold not; intros; apply H; tauto).
  inv H0. cbn. unfold not; intros. 
  eapply IHcl; eauto.
  unfold lit_set_cl.
  eapply PSetProp.P.Dec.F.add_3; eassumption.
Qed.

Lemma lit_set_cl_in_set2 :
  forall cl v,
    PSet.In v (lit_set_cl cl) ->
    In v (map snd cl).
Proof.
  intros. destruct (in_dec peq v (map snd cl)); auto.
  apply lit_set_cl_not_in_set in n. contradiction.
Qed.

Definition lit_set (fm: formula) :=
  fold_right PSet.union PSet.empty (map lit_set_cl fm).

(* Compute NSet.cardinal (lit_set (((true, 1)::(true, 1)::(true, 1)::nil)::nil)). *)

Definition sat_measure_cl (cl: clause) := PSet.cardinal (lit_set_cl cl).

Definition sat_measure (fm: formula) := PSet.cardinal (lit_set fm).

Lemma elim_clause :
  forall (cl: clause) l, In l cl -> exists H, set_clause cl l = inright H.
Proof.
  induction cl; intros; simpl in *; try contradiction.
  destruct (set_clause cl l) eqn:?; [|econstructor; eauto].
  destruct s. inversion H; subst. clear H.
  destruct (peq (snd l) (snd l)); [| contradiction].
  destruct (bool_eq_dec (fst l) (fst l)); [| contradiction].
  econstructor. eauto. apply IHcl in H0.
  inversion H0. rewrite H1 in Heqs. discriminate.
Qed.

Lemma sat_measure_set_clause' :
  forall cl cl' l A,
    set_clause cl l = inleft (exist _ cl' A) ->
    ~ In (snd l) (map snd cl').
Proof.
  induction cl; intros.
  { simpl in *. inv H. unfold not in *. intros. inv H. }
  simpl in H.
  repeat (destruct_match; crush; []). destruct_match.
  repeat (destruct_match; crush; []). inv H. eapply IHcl; eauto.
  inv H. unfold not. intros. inv H. contradiction. eapply IHcl; eauto.
Qed.

Lemma sat_measure_set_clause'' :
  forall cl cl' l A,
    set_clause cl l = inleft (exist _ cl' A) ->
    forall l',
      l' <> snd l ->
      In l' (map snd cl) ->
      In l' (map snd cl').
Proof.
  induction cl; intros.
  { inversion H1. }
  { inversion H1. subst. simpl in H.
    repeat (destruct_match; crush; []). inv H. simpl.
    inv H1. eauto. right. eapply IHcl; eauto.
    simpl in H. repeat (destruct_match; crush; []). destruct_match.
    repeat (destruct_match; crush; []). inv H. eapply IHcl; eauto.
    inv H1; crush. inv H. simplify. auto.
    inv H. simpl. right. eapply IHcl; eauto.
  }
Qed.

Definition InFm l (fm: formula) := exists cl b, In cl fm /\ In (b, l) cl.

Lemma sat_formulaHasEmpty :
  forall fm,
    In nil fm ->
    forall a, ~ sat_formula fm a.
Proof.
  induction fm; crush.
  unfold not; intros. inv H0. inv H; auto.
  eapply IHfm; eauto.
Qed.

Lemma InFm_choose_split :
  forall l b c,
    InFm (snd (choose_split ((l :: b) :: c))) ((l :: b) :: c).
Proof.
  simpl; intros. destruct l; cbn.
  exists ((b0, v) :: b). exists b0.
  split; constructor; auto.
Qed.

Lemma InFm_negated_choose_split :
  forall l b c,
    InFm (snd (negate (choose_split ((l :: b) :: c)))) ((l :: b) :: c).
Proof.
  simpl; intros. destruct l; cbn.
  exists ((b0, v) :: b). exists b0.
  split; constructor; auto.
Qed.

Definition hasNoNil : forall fm: formula, {In nil fm} + {~ In nil fm}.
  refine (fix hasNoNil (fm: formula) {struct fm} :=
    match fm with
    | cl :: fm' =>
      match isNil cl with
      | left clIsNil => left _
      | right clIsNotNil =>
        match hasNoNil fm' with
        | left hasNilfm' => left _
        | right hasNoNilfm' => right _
        end
      end
    | nil => right _
    end
  ); auto.
  - subst. apply in_eq.
  - apply in_cons; assumption.
Defined.

Lemma sat_measure_set_clause :
  forall cl cl' l b A,
    (forall b', ~ In (b', l) cl) ->
    set_clause cl (b, l) = inleft (exist _ cl' A) ->
    lit_set_cl cl = lit_set_cl cl'.
Proof.
  induction cl; intros.
  - inv H0. auto.
  - cbn in H0. repeat (destruct_match; try discriminate; []).
    destruct_match.
    + repeat (destruct_match; try discriminate; []).
      inv H0. cbn [snd fst] in *.
      exfalso.
      eapply H. econstructor. auto.
    + repeat (destruct_match; try discriminate; []).
      inv H0. cbn [snd fst] in *.
      assert (forall b', ~ In (b', l) cl).
      { unfold not; intros. eapply H. apply in_cons. eassumption. }
      eapply IHcl in Heqs; [|assumption].
      unfold sat_measure_cl. cbn -[PSet.cardinal].
      unfold sat_measure_cl in Heqs.
      replace (fold_right PSet.add PSet.empty (map snd cl))
        with (lit_set_cl cl); auto.
      rewrite Heqs. auto.
Qed.

Lemma in_map_snd_forall :
  forall A B (cl: list (A * B)) l,
    ~ In l (map snd cl) ->
    (forall b', ~ In (b', l) cl).
Proof.
  unfold not; intros; apply H.
  replace l with (snd (b', l)) by auto.
  now apply in_map.
Qed.

Lemma sat_measure_set_clause_In_neq :
  forall cl cl' l v b A,
    In v (map snd cl) ->
    set_clause cl (b, l) = inleft (exist _ cl' A) ->
    v <> l ->
    In v (map snd cl').
Proof.
    induction cl; intros.
  - inv H0. auto.
  - cbn in H0. repeat (destruct_match; try discriminate; []).
    destruct_match.
    + repeat (destruct_match; try discriminate; []).
      inv H0. cbn [snd fst] in *. eapply IHcl; eauto.
      inv H; auto. contradiction.
    + repeat (destruct_match; try discriminate; []).
      inv H0. cbn [snd fst] in *.
      destruct (peq v v0); subst.
      { now constructor. }
      cbn. right. eapply IHcl; eauto. inv H; auto.
      contradiction.
Qed.

Lemma sat_measure_set_clause_In_rev :
  forall cl cl' l v b A,
    In v (map snd cl') ->
    set_clause cl (b, l) = inleft (exist _ cl' A) ->
    In v (map snd cl).
Proof.
    induction cl; intros.
  - inv H0. auto.
  - cbn in H0. repeat (destruct_match; try discriminate; []).
    destruct_match.
    + repeat (destruct_match; try discriminate; []).
      inv H0. cbn [snd fst] in *.
      cbn; exploit IHcl; eauto.
    + repeat (destruct_match; try discriminate; []).
      inv H0. cbn [snd fst] in *.
      destruct (peq v v0); subst.
      { now constructor. }
      cbn. right. eapply IHcl in Heqs; eauto. cbn in H.
      inv H; auto. contradiction.
Qed.

Lemma sat_measure_set_clause_In_neq2 :
  forall cl cl' l b A,
    set_clause cl (b, l) = inleft (exist _ cl' A) ->
    ~ In l (map snd cl').
Proof.
    induction cl; intros.
  - inv H. auto.
  - cbn in H. repeat (destruct_match; try discriminate; []).
    destruct_match.
    + repeat (destruct_match; try discriminate; []).
      inv H. cbn [snd fst] in *. eapply IHcl; eauto.
    + repeat (destruct_match; try discriminate; []).
      inv H. cbn [snd fst] in *.
      cbn. unfold not; intros. inv H. contradiction.
      eapply IHcl; eauto.
Qed.

Lemma sat_measure_set_clause_In :
  forall cl cl' l b A,
    In l (map snd cl) ->
    set_clause cl (b, l) = inleft (exist _ cl' A) ->
    (sat_measure_cl cl' < sat_measure_cl cl)%nat.
Proof.
  induction cl; intros.
  - crush.
  - cbn in H0. repeat (destruct_match; try discriminate; []).
    destruct_match.
    + repeat (destruct_match; try discriminate; []).
      inv H0. cbn [snd fst] in *. clear Heqs2. clear Heqs1.
      inv H; cbn [snd fst] in *.
      * destruct (in_dec peq v (map snd cl)).
        -- exploit IHcl; eauto; intros. unfold sat_measure_cl in *.
           cbn -[PSet.cardinal]. apply lit_set_cl_in_set in i0.
           rewrite PSetProp.P.add_cardinal_1; auto.
        -- apply sat_measure_set_clause in Heqs; [|now apply in_map_snd_forall].
           unfold sat_measure_cl in *. cbn -[PSet.cardinal].
           setoid_rewrite Heqs.
           apply lit_set_cl_not_in_set in n0.
           rewrite PSetProp.P.add_cardinal_2; auto.
           now rewrite <- Heqs.
      * exploit IHcl; eauto; intros. unfold sat_measure_cl in *.
        cbn. rewrite PSetProp.P.add_cardinal_1; auto.
        now apply lit_set_cl_in_set.
    + repeat (destruct_match; try discriminate; []). inv H0.
      cbn [snd fst] in *. cbn in H. inv H; [contradiction|].
      exploit IHcl; eauto; intros.
      unfold sat_measure_cl in *. cbn.
      destruct (in_dec peq v (map snd cl)); destruct (in_dec peq v (map snd x)).
      * apply lit_set_cl_in_set in i0. apply lit_set_cl_in_set in i1.
        repeat rewrite PSetProp.P.add_cardinal_1 by auto. auto.
      * exploit sat_measure_set_clause_In_neq. eapply i0. eauto. auto. intros.
        contradiction.
      * apply lit_set_cl_in_set in i0. apply lit_set_cl_not_in_set in n0.
        rewrite PSetProp.P.add_cardinal_1 by auto.
        rewrite PSetProp.P.add_cardinal_2 by auto. unfold lit_set_cl in *; lia.
      * apply lit_set_cl_not_in_set in n0. apply lit_set_cl_not_in_set in n1.
        repeat rewrite PSetProp.P.add_cardinal_2 by auto.
        unfold lit_set_cl in *; lia.
Qed.

Lemma InFm_dec:
  forall l fm, { InFm l fm } + { ~ InFm l fm }.
Proof.
  intros. induction fm.
  right. unfold InFm. unfold not. intros. inv H. inv H0. inv H. inv H0.
  destruct (in_dec peq l (map snd a)).
  - assert (exists b, In a (a :: fm) /\ In (b, l) a).
    { apply list_in_map_inv in i. inv i. inv H. destruct x. econstructor. split. constructor; auto.
      eauto.
    }
    left. unfold InFm. exists a. eauto.
  - inv IHfm.
    + left. unfold InFm in H. destruct H as (cl & b & H1 & H2).
      unfold InFm. exists cl. exists b. constructor; auto. apply in_cons. auto.
    + right. unfold not; intros.
      destruct H0 as (cl & b & H1 & H2). inv H1.
      * apply n. replace l with (snd (b, l)) by auto.
        now apply in_map.
      * apply H. unfold InFm; firstorder.
Qed.

Lemma InFm_cons :
  forall l cl fm,
    InFm l (cl :: fm) ->
    (exists b, In (b, l) cl) \/ (InFm l fm).
Proof.
  intros. destruct H as (cl' & b' & H1 & H2).
  inv H1; firstorder.
Qed.

Lemma InFm_cons2 :
  forall l cl b fm,
    In (b, l) cl \/ (InFm l fm) ->
    InFm l (cl :: fm).
Proof. intros. inv H; firstorder. Qed.

Lemma lit_set_in_set :
  forall fm v,
    InFm v fm ->
    PSet.In v (lit_set fm).
Proof.
  induction fm; intros.
  - destruct H as (cl & b & H1 & H2); inv H1.
  - apply InFm_cons in H. inv H.
    + inv H0. cbn. apply PSetProp.P.FM.union_2. apply lit_set_cl_in_set.
      replace v with (snd (x, v)) by auto. now apply in_map.
    + cbn. apply PSetProp.P.FM.union_3. eauto.
Qed.

Lemma lit_set_in_set2 :
  forall fm v,
    PSet.In v (lit_set fm) ->
    InFm v fm.
Proof.
  induction fm; intros.
  - cbn in H. apply PSetProp.P.FM.empty_iff in H; contradiction.
  - cbn in H. apply PSetProp.P.Dec.F.union_1 in H. inv H.
    + apply lit_set_cl_in_set2 in H0. apply list_in_map_inv in H0.
      destruct H0 as [[b v'] [EQ H0]]. inv EQ. cbn.
      exists a. exists b. split; auto. now constructor.
    + apply InFm_cons2 with (b := true); right. eauto.
Qed.

Lemma lit_set_cl_eq :
  forall cl v b cl' A,
    In v (map snd cl) ->
    set_clause cl (b, v) = inleft (exist _ cl' A) ->
    PSet.Equal (lit_set_cl cl) (PSet.add v (lit_set_cl cl')).
Proof.
  constructor; intros.
  - destruct (peq a v); subst.
    + apply PSetProp.P.FM.add_1; auto.
    + apply PSetProp.P.FM.add_2.
      apply lit_set_cl_in_set2 in H1. apply lit_set_cl_in_set.
      eapply sat_measure_set_clause_In_neq; eauto.
  - apply PSet.add_spec in H1. inv H1.
    + apply lit_set_cl_in_set; auto.
    + apply lit_set_cl_in_set. apply lit_set_cl_in_set2 in H2.
      eapply sat_measure_set_clause_In_rev; eauto.
Qed.

Lemma lit_set_cl_neq :
  forall cl v b cl' A,
    ~ In v (map snd cl) ->
    set_clause cl (b, v) = inleft (exist _ cl' A) ->
    PSet.Equal (lit_set_cl cl) (lit_set_cl cl').
Proof.
  constructor; intros.
  - erewrite <- sat_measure_set_clause; eauto.
    intros. unfold not; intros. apply H.
    replace v with (snd (b', v)) by auto; apply in_map; auto.
  - erewrite sat_measure_set_clause; eauto.
    intros. unfold not; intros. apply H.
    replace v with (snd (b', v)) by auto; apply in_map; auto.
Qed.

Lemma sat_measure_set_formula1 :
  forall fm fm' l b A,
    set_formula fm (b, l) = inleft (exist _ fm' A) ->
    ~ InFm l fm'.
Proof.
  induction fm.
  - intros. inv H. unfold not. intros. destruct H as (cl & b0 & H1 & H2). inv H1.
  - intros. unfold sat_measure, lit_set.
    cbn in H. repeat (destruct_match; try discriminate; []).
    destruct_match; repeat (destruct_match; try discriminate; []); inv H.
    + eapply IHfm in Heqs.
      assert (~ In l (map snd x0))
        by (eapply sat_measure_set_clause_In_neq2; eauto).
      unfold not; intros.
      apply InFm_cons in H0. inv H0; auto. inv H1.
      apply H. replace l with (snd (x1, l)) by auto. apply in_map; auto.
    + eapply IHfm in Heqs. auto.
Qed.

Lemma sat_measure_set_formula2 :
  forall fm fm' l v b A,
    InFm v fm' ->
    set_formula fm (b, l) = inleft (exist _ fm' A) ->
    InFm v fm.
Proof.
  induction fm.
  - intros. simplify. inv H0. destruct H as (cl & b0 & Y1 & Y2). inv Y1.
  - intros. unfold sat_measure, lit_set.
    cbn in H0. repeat (destruct_match; try discriminate; []).
    destruct_match; repeat (destruct_match; try discriminate; []); inv H0.
    + apply InFm_cons in H. inv H.
      * destruct H0 as (b0 & H0).
        apply in_map with (f := snd) in H0. cbn in H0.
        exploit sat_measure_set_clause_In_rev; eauto; intros.
        apply list_in_map_inv in H. destruct H as (c & H1 & H2). destruct c. inv H1.
        cbn. exists a. exists b1. intuition auto with *.
      * exploit IHfm; eauto; intros. eapply InFm_cons2; tauto.
    + exploit IHfm; eauto; intros. eapply InFm_cons2; tauto.
  Unshelve.
  all: exact true.
Qed.

Lemma sat_measure_set_formula3 :
  forall fm fm' l b A,
    set_formula fm (b, l) = inleft (exist _ fm' A) ->
    PSet.Subset (lit_set fm') (lit_set fm).
Proof.
  unfold PSet.Subset; intros.
  apply lit_set_in_set.
  apply lit_set_in_set2 in H0.
  eapply sat_measure_set_formula2; eauto.
Qed.

Lemma sat_measure_set_formula :
  forall fm fm' l b A,
    InFm l fm ->
    set_formula fm (b, l) = inleft (exist _ fm' A) ->
    (sat_measure fm' < sat_measure fm)%nat.
Proof.
  intros. unfold sat_measure.
  apply PSetProp.P.subset_cardinal_lt with (x:=l).
  eapply sat_measure_set_formula3; eauto.
  now apply lit_set_in_set.
  unfold not; intros.
  eapply sat_measure_set_formula1. eauto.
  now apply lit_set_in_set2 in H1.
Qed.

Lemma sat_measure_propagate_unit :
  forall fm' fm H,
    unit_propagate fm = Some (inleft (existT _ fm' H)) ->
    (sat_measure fm' < sat_measure fm)%nat.
Proof.
  unfold unit_propagate; intros. cbn in *.
  destruct fm; intros. crush.
  repeat (destruct_match; try discriminate; []). inv H0.
  destruct x.
  eapply sat_measure_set_formula; eauto.
  cbn in i. clear Heqs. clear H3. inv i.
  eexists. exists b. split. constructor. auto. now constructor.
  exists ((b, v) :: nil). exists b. split.
  apply in_cons. auto. now constructor.
Qed.

Program Fixpoint sat_solve (fm: formula) { measure (sat_measure fm) }:
  {al : alist | sat_formula fm (interp_alist al)} + {forall a, ~sat_formula fm a} :=
  match isNil fm with
  | left fmIsNil => inleft _ (exist _ nil _)
  | right fmIsNotNil =>
    match hasNoNil fm with
    | left hasNilfm => inright _ _
    | right hasNoNilfm =>
      match unit_propagate fm with
      | Some (inleft (existT _ fm' (exist _ l _))) =>
        match sat_solve fm' with
        | inleft (exist _ al _) => inleft _ (exist _ (l :: al) _)
        | inright _ => inright _ _
        end
      | Some (inright _) => inright _ _
      | None =>
        let l := choose_split fm in
        match set_formula fm l with
        | inleft (exist _ fm' _) =>
          match sat_solve fm' with
          | inleft (exist _ al _) => inleft _ (exist _ (l :: al) _)
          | inright _ =>
            match set_formula fm (negate l) with
            | inleft (exist _ fm' _) =>
              match sat_solve fm' with
              | inleft (exist _ al _) => inleft _ (exist _ (negate l :: al) _)
              | inright _ => inright _ _
              end
            | inright _ => inright _ _
            end
          end
        | inright _ =>
          match set_formula fm (negate l) with
          | inleft (exist _ fm' _) =>
            match sat_solve fm' with
            | inleft (exist _ al _) => inleft _ (exist _ (negate l :: al) _)
            | inright _ => inright _ _
            end
          | inright _ => inright _ _
          end
        end
      end
    end
  end.
Next Obligation.
  apply sat_formulaHasEmpty; assumption. Defined.
Next Obligation.
  eapply sat_measure_propagate_unit; eauto. Defined.
Next Obligation.
  apply i; auto. Defined.
Next Obligation.
  unfold not; intros; eapply wildcard'; apply i; eauto. Defined.
Next Obligation.
  intros. symmetry in Heq_anonymous.
  destruct (choose_split fm) eqn:?.
  apply sat_measure_set_formula in Heq_anonymous; auto. unfold isNil in *.
  destruct fm; try discriminate.
  assert (c <> nil).
  { unfold not; intros. apply hasNoNilfm. constructor; auto. }
  destruct c; try discriminate.
  replace p with (snd (b, p)) by auto. rewrite <- Heqp.
  apply InFm_choose_split. Defined.
Next Obligation.
  apply wildcard'0; auto. Defined.
Next Obligation.
  eapply sat_measure_set_formula; eauto.
  destruct fm; try discriminate. destruct c; try discriminate.
  apply InFm_choose_split. Defined.
Next Obligation.
  apply wildcard'2; auto. Defined.
Next Obligation.
  unfold not in *; intros.
  destruct (sat_lit_dec (choose_split fm) a);
  [assert (sat_formula fm (upd a (choose_split fm)))
  | assert (sat_formula fm (upd a (negate (choose_split fm))))]; auto.
  { eapply wildcard'1. apply wildcard'0; eauto. }
  { eapply wildcard'. apply wildcard'2; eauto. }
Defined.
Next Obligation.
  unfold not in *; intros.
  destruct (sat_lit_dec (choose_split fm) a);
  [assert (sat_formula fm (upd a (choose_split fm)))
  | assert (sat_formula fm (upd a (negate (choose_split fm))))]; auto.
  { eapply wildcard'1. eapply wildcard'0. eauto. }
  { eapply wildcard'; eauto. }
Defined.
Next Obligation.
  eapply sat_measure_set_formula; eauto.
  destruct fm; try discriminate. destruct c; try discriminate.
  apply InFm_choose_split. Defined.
Next Obligation.
  apply wildcard'1; auto. Defined.
Next Obligation.
  unfold not in *; intros.
  destruct (sat_lit_dec (choose_split fm) a);
  [assert (sat_formula fm (upd a (choose_split fm)))
  | assert (sat_formula fm (upd a (negate (choose_split fm))))]; auto.
  { eapply wildcard'0; eauto. }
  { eapply wildcard'; apply wildcard'1; eauto. }
Defined.
Next Obligation.
  unfold not in *; intros.
  destruct (sat_lit_dec (choose_split fm) a).
  { eapply wildcard'0; eauto. }
  { eapply wildcard'; eauto. }
Defined.

Definition sat_solve_simple (fm : formula) :=
  match sat_solve fm with
  | inleft (exist _ a _) => Some a
  | inright _ => None
  end.