aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/Sat.v
blob: 3924ce715017baa9ad081efbf70f02cd5b7fca11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
(**
#<a href="http://www.cs.berkeley.edu/~adamc/itp/">#Interactive Computer Theorem
Proving#</a><br>#
CS294-9, Fall 2006#<br>#
UC Berkeley *)

Require Import Arith Bool List.
Require Import Coq.funind.Recdef.
Require Coq.MSets.MSetPositive.
Require Coq.MSets.MSetProperties.
Require Import Coq.Structures.OrderedTypeEx.
Require Import Coq.Structures.OrdersAlt.
Require Import Coq.Program.Wf.
Require Import Vericertlib.

Module PSet := MSetPositive.PositiveSet.
Module PSetProp := MSetProperties.OrdProperties(PSet).

#[local] Open Scope positive.

(** * Problem Definition *)

Definition var := positive.
(** We identify propositional variables with natural numbers. *)

Definition lit := (bool * var)%type.
(** A literal is a combination of a truth value and a variable. *)

Definition clause := list lit.
(** A clause is a list (disjunction) of literals. *)

Definition formula := list clause.
(** A formula is a list (conjunction) of clauses. *)

Definition asgn := var -> bool.
(** An assignment is a function from variables to their truth values. *)

Definition satLit (l : lit) (a : asgn) :=
  a (snd l) = fst l.
(** An assignment satisfies a literal if it maps it to true. *)

Fixpoint satClause (cl : clause) (a : asgn) {struct cl} : Prop :=
  match cl with
  | nil => False
  | l :: cl' => satLit l a \/ satClause cl' a
  end.
(** An assignment satisfies a clause if it satisfies at least one of its
  literals.
 *)

Fixpoint satFormula (fm: formula) (a: asgn) {struct fm} : Prop :=
  match fm with
  | nil => True
  | cl :: fm' => satClause cl a /\ satFormula fm' a
  end.
(** An assignment satisfies a formula if it satisfies all of its clauses. *)

(** * Subroutines *)

(** You'll probably want to compare booleans for equality at some point. *)
Definition bool_eq_dec : forall (x y : bool), {x = y} + {x <> y}.
  decide equality.
Defined.

(** You'll probably want to compare booleans for equality at some point. *)
Definition boolpositive_eq_dec : forall (x y : (bool * positive)), {x = y} + {x <> y}.
  pose proof bool_eq_dec.
  pose proof peq.
  decide equality.
Defined.

(** A literal and its negation can't be true simultaneously. *)
Lemma contradictory_assignment : forall s l cl a,
    s <> fst l
    -> satLit l a
    -> satLit (s, snd l) a
    -> satClause cl a.
  intros.
  red in H0, H1.
  simpl in H1.
  subst.
  tauto.
Qed.

#[local] Hint Resolve contradictory_assignment : core.

(** Augment an assignment with a new mapping. *)
Definition upd (a : asgn) (l : lit) : asgn :=
  fun v : var =>
    if peq v (snd l)
    then fst l
    else a v.

(** Some lemmas about [upd] *)

Lemma satLit_upd_eq : forall l a,
    satLit l (upd a l).
  unfold satLit, upd; simpl; intros.
  destruct (peq (snd l) (snd l)); tauto.
Qed.

#[local] Hint Resolve satLit_upd_eq : core.

Lemma satLit_upd_neq : forall v l s a,
    v <> snd l
    -> satLit (s, v) (upd a l)
    -> satLit (s, v) a.
  unfold satLit, upd; simpl; intros.
  destruct (peq v (snd l)); tauto.
Qed.

#[local] Hint Resolve satLit_upd_neq : core.

Lemma satLit_upd_neq2 : forall v l s a,
    v <> snd l
    -> satLit (s, v) a
    -> satLit (s, v) (upd a l).
  unfold satLit, upd; simpl; intros.
  destruct (peq v (snd l)); tauto.
Qed.

#[local] Hint Resolve satLit_upd_neq2 : core.

Lemma satLit_contra : forall s l a cl,
    s <> fst l
    -> satLit (s, snd l) (upd a l)
    -> satClause cl a.
  unfold satLit, upd; simpl; intros.
  destruct (peq (snd l) (snd l)); intuition.
Qed.

#[local] Hint Resolve satLit_contra : core.

Ltac magic_solver := simpl; intros; subst; intuition eauto; firstorder;
                     match goal with
                     | [ H1 : satLit ?l ?a, H2 : satClause ?cl ?a |- _ ] =>
                       assert (satClause cl (upd a l)); firstorder
                     end.

(** Strongly-specified function to update a clause to reflect the effect of making a particular
  literal true.  *)
Definition setClause : forall (cl : clause) (l : lit),
    {cl' : clause |
      forall a, satClause cl (upd a l) <-> satClause cl' a}
    + {forall a, satLit l a -> satClause cl a}.
  refine (fix setClause (cl: clause) (l: lit) {struct cl} :=
            match cl with
            | nil => inleft (exist _ nil _)
            | x :: xs =>
              match setClause xs l with
              | inright p => inright _
              | inleft (exist _ cl' H) =>
                match peq (snd x) (snd l), bool_eq_dec (fst x) (fst l) with
                | left p_eq, left bool_eq => inright _
                | left eq, right ne => inleft (exist _ cl' _)
                | right neq, _ => inleft (exist _ (x :: cl') _)
                end
              end
            end); clear setClause; try magic_solver.
  - intros; simpl; left; apply injective_projections in bool_eq; subst; auto.
  - split; intros. simpl in H0. inversion H0. eapply satLit_contra; eauto.
    destruct x; simpl in *; subst. auto.
    apply H. eauto.
    simpl. right. apply H; eauto.
  - split; intros; simpl in *. inversion H0. destruct x; simpl in *; subst.
    left. eauto.
    right. apply H. eauto.
    inversion H0. left. apply satLit_upd_neq2. auto. auto.
    right. apply H. auto.
Defined.

(** For testing purposes, we define a weakly-specified function as a thin
  wrapper around [setClause].
 *)
Definition setClauseSimple (cl : clause) (l : lit) :=
  match setClause cl l with
  | inleft (exist _ cl' _) => Some cl'
  | inright _ => None
  end.

(*Eval compute in setClauseSimple ((false, 1%nat) :: nil) (true, 1%nat).*)
(*Eval compute in setClauseSimple nil (true, 0).
Eval compute in setClauseSimple ((true, 0) :: nil) (true, 0).
Eval compute in setClauseSimple ((true, 0) :: nil) (false, 0).
Eval compute in setClauseSimple ((true, 0) :: nil) (true, 1).
Eval compute in setClauseSimple ((true, 0) :: nil) (false, 1).
Eval compute in setClauseSimple ((true, 0) :: (true, 1) :: nil) (true, 1).
Eval compute in setClauseSimple ((true, 0) :: (true, 1) :: nil) (false, 1).
Eval compute in setClauseSimple ((true, 0) :: (false, 1) :: nil) (true, 1).
Eval compute in setClauseSimple ((true, 0) :: (false, 1) :: nil) (false, 1).*)

(** It's useful to have this strongly-specified nilness check. *)
Definition isNil : forall (A : Set) (ls : list A), {ls = nil} + {ls <> nil}.
  destruct ls; [left|right]; [auto|]; unfold not; intros; inversion H.
Defined.
Arguments isNil [A].

(** Some more lemmas that I found helpful.... *)

Lemma satLit_idem_lit : forall l a l',
    satLit l a
    -> satLit l' a
    -> satLit l' (upd a l).
  unfold satLit, upd; simpl; intros.
  destruct (peq (snd l') (snd l)); congruence.
Qed.

#[local] Hint Resolve satLit_idem_lit : core.

Lemma satLit_idem_clause : forall l a cl,
    satLit l a
    -> satClause cl a
    -> satClause cl (upd a l).
  induction cl; simpl; intuition.
Qed.

#[local] Hint Resolve satLit_idem_clause : core.

Lemma satLit_idem_formula : forall l a fm,
    satLit l a
    -> satFormula fm a
    -> satFormula fm (upd a l).
  induction fm; simpl; intuition.
Qed.

#[local] Hint Resolve satLit_idem_formula : core.

(** Function that updates an entire formula to reflect setting a literal to true.  *)
Definition setFormula : forall (fm : formula) (l : lit),
    {fm' : formula |
      forall a, satFormula fm (upd a l) <-> satFormula fm' a}
    + {forall a, satLit l a -> ~satFormula fm a}.
  refine (fix setFormula (fm: formula) (l: lit) {struct fm} :=
            match fm with
            | nil => inleft (exist _ nil _)
            | cl' :: fm' =>
              match setFormula fm' l with
              | inright p => inright _
              | inleft (exist _ fm'' H) =>
                match setClause cl' l with
                | inright H' => inleft (exist _ fm'' _)
                | inleft (exist _ cl'' _) =>
                  if isNil cl''
                  then inright _
                  else inleft (exist _ (cl'' :: fm'') _)
                end
              end
            end); clear setFormula; magic_solver.
Defined.

Definition setFormulaSimple (fm : formula) (l : lit) :=
  match setFormula fm l with
  | inleft (exist _ fm' _) => Some fm'
  | inright _ => None
  end.

(* Eval compute in setFormulaSimple (((true, 1%nat) :: nil) :: ((false, 1%nat) :: nil) :: nil) (true, 1%nat). *)
(* Eval compute in setFormulaSimple nil (true, 0). *)
(* Eval compute in setFormulaSimple (((true, 0) :: nil) :: nil) (true, 0). *)
(* Eval compute in setFormulaSimple (((false, 0) :: nil) :: nil) (true, 0). *)
(* Eval compute in setFormulaSimple (((false, 1) :: nil) :: nil) (true, 0). *)
(* Eval compute in setFormulaSimple (((false, 1) :: (true, 0) :: nil) :: nil) (true, 0). *)
(* Eval compute in setFormulaSimple (((false, 1) :: (false, 0) :: nil) :: nil) (true, 0). *)

#[local] Hint Extern 1 False => discriminate : core.

Local Hint Extern 1 False =>
match goal with
| [ H : In _ (_ :: _) |- _ ] => inversion H; clear H; subst
end : core.

(** Code that either finds a unit clause in a formula or declares that there are none.  *)
Definition findUnitClause : forall (fm: formula),
    {l : lit | In (l :: nil) fm}
    + {forall l, ~In (l :: nil) fm}.
  refine (fix findUnitClause (fm: formula) {struct fm} :=
            match fm with
            | nil => inright _
            | (l :: nil) :: fm' => inleft (exist _ l _)
            | _ :: fm' =>
              match findUnitClause fm' with
              | inleft (exist _ l _) => inleft (exist _ l _)
              | inright H => inright _
              end
            end
         ); clear findUnitClause; magic_solver.
Defined.

(** The literal in a unit clause must always be true in a satisfying assignment.  *)
Lemma unitClauseTrue : forall l a fm,
    In (l :: nil) fm
    -> satFormula fm a
    -> satLit l a.
  induction fm; intuition.
  inversion H.
  inversion H; subst; simpl in H0; intuition.
  apply IHfm; eauto. inv H0. eauto.
Qed.

#[local] Hint Resolve unitClauseTrue : core.

(** Unit propagation.  The return type of [unitPropagate] signifies that three results are possible:
  - [None]: There are no unit clauses.
  - [Some (inleft _)]: There is a unit clause, and here is a formula reflecting
    setting its literal to true.
  - [Some (inright _)]: There is a unit clause, and propagating it reveals that
    the formula is unsatisfiable.
 *)
Definition unitPropagate : forall (fm : formula), option (sigT (fun fm' : formula =>
                                                                  {l : lit |
                                                                    (forall a, satFormula fm a -> satLit l a)
                                                                    /\ forall a, satFormula fm (upd a l) <-> satFormula fm' a})
                                                          + {forall a, ~satFormula fm a}).
  refine (fix unitPropagate (fm: formula) {struct fm} :=
            match findUnitClause fm with
            | inright H => None
            | inleft (exist _ l _) =>
              match setFormula fm l with
              | inright _ => Some (inright _)
              | inleft (exist _ fm' _) =>
                Some (inleft (existT _ fm' (exist _ l _)))
              end
            end
         ); clear unitPropagate; magic_solver.
Defined.


Definition unitPropagateSimple (fm : formula) :=
  match unitPropagate fm with
  | None => None
  | Some (inleft (existT _ fm' (exist _ l _))) => Some (Some (fm', l))
  | Some (inright _) => Some None
  end.

(*Eval compute in unitPropagateSimple (((true, 1%nat) :: nil) :: ((false, 1%nat) :: nil) :: nil).
Eval compute in unitPropagateSimple nil.
Eval compute in unitPropagateSimple (((true, 0) :: nil) :: nil).
Eval compute in unitPropagateSimple (((true, 0) :: nil) :: ((false, 0) :: nil) :: nil).
Eval compute in unitPropagateSimple (((true, 0) :: nil) :: ((false, 1) :: nil) :: nil).
Eval compute in unitPropagateSimple (((true, 0) :: nil) :: ((false, 0) :: (false, 1) :: nil) :: nil).
Eval compute in unitPropagateSimple (((false, 0) :: (false, 1) :: nil) :: ((true, 0) :: nil) :: nil).*)


(** * The SAT Solver *)

(** This section defines a DPLL SAT solver in terms of the subroutines.  *)

(** An arbitrary heuristic to choose the next variable to split on *)
Definition chooseSplit (fm : formula) :=
  match fm with
  | ((l :: _) :: _) => l
  | _ => (true, 1)
  end.

Definition negate (l : lit) := (negb (fst l), snd l).

#[local] Hint Unfold satFormula : core.

Lemma satLit_dec : forall l a,
    {satLit l a} + {satLit (negate l) a}.
  destruct l.
  unfold satLit; simpl; intro.
  destruct b; destruct (a v); simpl; auto.
Qed.

(** We'll represent assignments as lists of literals instead of functions. *)
Definition alist := list lit.

Fixpoint interp_alist (al : alist) : asgn :=
  match al with
  | nil => fun _ => true
  | l :: al' => upd (interp_alist al') l
  end.

(** Here's the final definition!

  This implementation isn't #<i>#quite#</i># what you would expect, since it
  takes an extra parameter expressing a search tree depth.  Writing the function
  without that parameter would be trickier when it came to proving termination.
  In practice, you can just seed the bound with one plus the number of variables
  in the input, but the function's return type still indicates a possibility for
  a "time-out" by returning [None].
 *)
Definition boundedSat: forall (bound : nat) (fm : formula),
    option ({al : alist | satFormula fm (interp_alist al)}
            + {forall a, ~satFormula fm a}).
  refine (fix boundedSat (bound : nat) (fm : formula) {struct bound}
          : option ({al : alist | satFormula fm (interp_alist al)}
                    + {forall a, ~satFormula fm a}) :=
            match bound with
            | O => None
            | S bound' =>
              if isNil fm
              then Some (inleft _ (exist _ nil _))
              else match unitPropagate fm with
                   | Some (inleft (existT _ fm' (exist _ l _))) =>
                     match boundedSat bound' fm' with
                     | None => None
                     | Some (inleft (exist _ al _)) => Some (inleft _ (exist _ (l :: al) _))
                     | Some (inright _) => Some (inright _ _)
                     end
                   | Some (inright _) => Some (inright _ _)
                   | None =>
                     let l := chooseSplit fm in
                     match setFormula fm l with
                     | inleft (exist _ fm' _) =>
                       match boundedSat bound' fm' with
                       | None => None
                       | Some (inleft (exist _ al _)) => Some (inleft _ (exist _ (l :: al) _))
                       | Some (inright _) =>
                         match setFormula fm (negate l) with
                         | inleft (exist _ fm' _) =>
                           match boundedSat bound' fm' with
                           | None => None
                           | Some (inleft (exist _ al _)) => Some (inleft _ (exist _ (negate l :: al) _))
                           | Some (inright _) => Some (inright _ _)
                           end
                         | inright _ => Some (inright _ _)
                         end
                       end
                     | inright _ =>
                       match setFormula fm (negate l) with
                       | inleft (exist _ fm' _) =>
                         match boundedSat bound' fm' with
                         | None => None
                         | Some (inleft (exist _ al _)) => Some (inleft _ (exist _ (negate l :: al) _))
                         | Some (inright _) => Some (inright _ _)
                         end
                       | inright _ => Some (inright _ _)
                       end
                     end
                   end
            end); simpl; intros; subst; intuition; try generalize dependent (interp_alist al).
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  assert (satFormula fm (upd a0 l)); firstorder.
  assert (satFormula fm (upd a0 l)); firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  firstorder.
  destruct (satLit_dec l a);
    [assert (satFormula fm (upd a l)) | assert (satFormula fm (upd a (negate l)))]; firstorder.
  destruct (satLit_dec l a);
    [assert (satFormula fm (upd a l)) | assert (satFormula fm (upd a (negate l)))]; firstorder.
  destruct (satLit_dec l a);
    [assert (satFormula fm (upd a l)) | assert (satFormula fm (upd a (negate l)))]; firstorder.
  destruct (satLit_dec l a);
    [assert (satFormula fm (upd a l)) | assert (satFormula fm (upd a (negate l)))]; firstorder.
  destruct (satLit_dec l a); intuition eauto;
    assert (satFormula fm (upd a l)); firstorder.
  destruct (satLit_dec l a); intuition eauto;
    assert (satFormula fm (upd a l)); firstorder.
  firstorder.
  firstorder.
  destruct (satLit_dec l a); intuition eauto;
    assert (satFormula fm (upd a (negate l))); firstorder.
  destruct (satLit_dec l a); intuition eauto;
    assert (satFormula fm (upd a (negate l))); firstorder.
  destruct (satLit_dec l a);
    [assert (satFormula fm (upd a l)) | assert (satFormula fm (upd a (negate l)))]; firstorder.
Defined.

Definition boundedSatSimple (bound : nat) (fm : formula) :=
  match boundedSat bound fm with
  | None => None
  | Some (inleft (exist _ a _)) => Some (Some a)
  | Some (inright _) => Some None
  end.

(*Eval compute in boundedSatSimple 100 nil.
Eval compute in boundedSatSimple 100 (((true, 1%nat) :: nil) :: ((false, 1%nat) :: nil) :: nil).
Eval compute in boundedSatSimple 100 (((true, 0) :: nil) :: nil).
Eval compute in boundedSatSimple 100 (((true, 0) :: nil) :: ((false, 0) :: nil) :: nil).
Eval compute in boundedSatSimple 100 (((true, 0) :: (false, 1) :: nil) :: ((true, 1) :: nil) :: nil).
Eval compute in boundedSatSimple 100 (((true, 0) :: (false, 1) :: nil) :: ((true, 1) :: (false, 0) :: nil) :: nil).
Eval compute in boundedSatSimple 100 (((true, 0) :: (false, 1) :: nil) :: ((false, 0) :: (false, 0) :: nil) :: ((true, 1) :: nil) :: nil).
Eval compute in boundedSatSimple 100 (((false, 0) :: (true, 1) :: nil) :: ((false, 1) :: (true, 0) :: nil) :: nil).*)

Definition lit_set_cl (cl: clause) :=
  fold_right PSet.add PSet.empty (map snd cl).

Lemma lit_set_cl_in_set :
  forall cl v,
    In v (map snd cl) ->
    PSet.In v (lit_set_cl cl).
Proof.
  induction cl; crush.
  destruct a; cbn [snd] in *; inv H.
  - cbn. apply PSetProp.P.FM.add_1; auto.
  - cbn. apply PSetProp.P.FM.add_2.
    now apply IHcl.
Qed.

Lemma lit_set_cl_not_in_set :
  forall cl v,
    ~ In v (map snd cl) ->
    ~ PSet.In v (lit_set_cl cl).
Proof.
  induction cl; crush.
  destruct a; cbn [snd] in *.
  assert (p <> v /\ ~ In v (map snd cl))
    by (split; unfold not; intros; apply H; tauto).
  inv H0. cbn. unfold not; intros. 
  eapply IHcl; eauto.
  unfold lit_set_cl.
  eapply PSetProp.P.Dec.F.add_3; eassumption.
Qed.

Definition lit_set (fm: formula) :=
  fold_right PSet.union PSet.empty (map lit_set_cl fm).

(* Compute NSet.cardinal (lit_set (((true, 1)::(true, 1)::(true, 1)::nil)::nil)). *)

Definition sat_measure_cl (cl: clause) := PSet.cardinal (lit_set_cl cl).

Definition sat_measure (fm: formula) := PSet.cardinal (lit_set fm).

Lemma elim_clause :
  forall (cl: clause) l, In l cl -> exists H, setClause cl l = inright H.
Proof.
  induction cl; intros; simpl in *; try contradiction.
  destruct (setClause cl l) eqn:?; [|econstructor; eauto].
  destruct s. inversion H; subst. clear H.
  destruct (peq (snd l) (snd l)); [| contradiction].
  destruct (bool_eq_dec (fst l) (fst l)); [| contradiction].
  econstructor. eauto. apply IHcl in H0.
  inversion H0. rewrite H1 in Heqs. discriminate.
Qed.

Lemma sat_measure_setClause' :
  forall cl cl' l A,
    setClause cl l = inleft (exist _ cl' A) ->
    ~ In (snd l) (map snd cl').
Proof.
  induction cl; intros.
  { simpl in *. inv H. unfold not in *. intros. inv H. }
  simpl in H.
  repeat (destruct_match; crush; []). destruct_match.
  repeat (destruct_match; crush; []). inv H. eapply IHcl; eauto.
  inv H. unfold not. intros. inv H. contradiction. eapply IHcl; eauto.
Qed.

Lemma sat_measure_setClause'' :
  forall cl cl' l A,
    setClause cl l = inleft (exist _ cl' A) ->
    forall l',
      l' <> snd l ->
      In l' (map snd cl) ->
      In l' (map snd cl').
Proof.
  induction cl; intros.
  { inversion H1. }
  { inversion H1. subst. simpl in H.
    repeat (destruct_match; crush; []). inv H. simpl.
    inv H1. eauto. right. eapply IHcl; eauto.
    simpl in H. repeat (destruct_match; crush; []). destruct_match.
    repeat (destruct_match; crush; []). inv H. eapply IHcl; eauto.
    inv H1; crush. inv H. simplify. auto.
    inv H. simpl. right. eapply IHcl; eauto.
  }
Qed.

Lemma sat_measure_setClause2'' :
  forall cl cl' l A,
    setClause cl l = inleft (exist _ cl' A) ->
    forall l',
      l' <> snd l ->
      In l' (map snd cl') ->
      In l' (map snd cl).
Proof.
  induction cl; intros.
  { cbn in *. inv H. cbn in *. auto. }
  exploit IHcl; eauto.
  Abort.

Lemma sat_measure_setClause :
  forall cl cl' l A,
    In (snd l) (map snd cl) ->
    setClause cl l = inleft (exist _ cl' A) ->
    (PSet.cardinal (lit_set_cl cl') < PSet.cardinal (lit_set_cl cl))%nat.
Proof.
  intros. pose proof H0. apply sat_measure_setClause' in H0.
  pose proof (sat_measure_setClause'' _ _ _ _ H1).
Abort.

Definition InFm l (fm: formula) := exists cl b, In cl fm /\ In (b, l) cl.

Lemma satFormulaHasEmpty :
  forall fm,
    In nil fm ->
    forall a, ~ satFormula fm a.
Proof.
  induction fm; crush.
  unfold not; intros. inv H0. inv H; auto.
  eapply IHfm; eauto.
Qed.

Lemma InFm_chooseSplit :
  forall l b c,
    InFm (snd (chooseSplit ((l :: b) :: c))) ((l :: b) :: c).
Proof.
  simpl; intros. destruct l; cbn.
  exists ((b0, v) :: b). exists b0.
  split; constructor; auto.
Qed.

Lemma InFm_negated_chooseSplit :
  forall l b c,
    InFm (snd (negate (chooseSplit ((l :: b) :: c)))) ((l :: b) :: c).
Proof.
  simpl; intros. destruct l; cbn.
  exists ((b0, v) :: b). exists b0.
  split; constructor; auto.
Qed.

Definition hasNoNil : forall fm: formula, {In nil fm} + {~ In nil fm}.
  refine (fix hasNoNil (fm: formula) {struct fm} :=
    match fm with
    | cl :: fm' =>
      match isNil cl with
      | left clIsNil => left _
      | right clIsNotNil =>
        match hasNoNil fm' with
        | left hasNilfm' => left _
        | right hasNoNilfm' => right _
        end
      end
    | nil => right _
    end
  ); auto.
  - subst. apply in_eq.
  - apply in_cons; assumption.
Defined.

Lemma sat_measure_setClause :
  forall cl cl' l b A,
    (forall b', ~ In (b', l) cl) ->
    setClause cl (b, l) = inleft (exist _ cl' A) ->
    lit_set_cl cl = lit_set_cl cl'.
Proof.
  induction cl; intros.
  - inv H0. auto.
  - cbn in H0. repeat (destruct_match; try discriminate; []).
    destruct_match.
    + repeat (destruct_match; try discriminate; []).
      inv H0. cbn [snd fst] in *.
      exfalso.
      eapply H. econstructor. auto.
    + repeat (destruct_match; try discriminate; []).
      inv H0. cbn [snd fst] in *.
      assert (forall b', ~ In (b', l) cl).
      { unfold not; intros. eapply H. apply in_cons. eassumption. }
      eapply IHcl in Heqs; [|assumption].
      unfold sat_measure_cl. cbn -[PSet.cardinal].
      unfold sat_measure_cl in Heqs.
      replace (fold_right PSet.add PSet.empty (map snd cl))
        with (lit_set_cl cl); auto.
      rewrite Heqs. auto.
Qed.

Lemma in_map_snd_forall :
  forall A B (cl: list (A * B)) l,
    ~ In l (map snd cl) ->
    (forall b', ~ In (b', l) cl).
Proof.
  unfold not; intros; apply H.
  replace l with (snd (b', l)) by auto.
  now apply in_map.
Qed.

Lemma sat_measure_setClause_In_neq :
  forall cl cl' l v b A,
    In v (map snd cl) ->
    setClause cl (b, l) = inleft (exist _ cl' A) ->
    v <> l ->
    In v (map snd cl').
Proof.
    induction cl; intros.
  - inv H0. auto.
  - cbn in H0. repeat (destruct_match; try discriminate; []).
    destruct_match.
    + repeat (destruct_match; try discriminate; []).
      inv H0. cbn [snd fst] in *. eapply IHcl; eauto.
      inv H; auto. contradiction.
    + repeat (destruct_match; try discriminate; []).
      inv H0. cbn [snd fst] in *.
      destruct (peq v v0); subst.
      { now constructor. }
      cbn. right. eapply IHcl; eauto. inv H; auto.
      contradiction.
Qed.

Lemma sat_measure_setClause_In :
  forall cl cl' l b A,
    In l (map snd cl) ->
    setClause cl (b, l) = inleft (exist _ cl' A) ->
    (sat_measure_cl cl' < sat_measure_cl cl)%nat.
Proof.
  induction cl; intros.
  - crush.
  - cbn in H0. repeat (destruct_match; try discriminate; []).
    destruct_match.
    + repeat (destruct_match; try discriminate; []).
      inv H0. cbn [snd fst] in *. clear Heqs2. clear Heqs1.
      inv H; cbn [snd fst] in *.
      * destruct (in_dec peq v (map snd cl)).
        -- exploit IHcl; eauto; intros. unfold sat_measure_cl in *.
           cbn -[PSet.cardinal]. apply lit_set_cl_in_set in i0.
           rewrite PSetProp.P.add_cardinal_1; auto.
        -- apply sat_measure_setClause in Heqs; [|now apply in_map_snd_forall].
           unfold sat_measure_cl in *. cbn -[PSet.cardinal].
           setoid_rewrite Heqs.
           apply lit_set_cl_not_in_set in n0.
           rewrite PSetProp.P.add_cardinal_2; auto.
           now rewrite <- Heqs.
      * exploit IHcl; eauto; intros. unfold sat_measure_cl in *.
        cbn. rewrite PSetProp.P.add_cardinal_1; auto.
        now apply lit_set_cl_in_set.
    + repeat (destruct_match; try discriminate; []). inv H0.
      cbn [snd fst] in *. cbn in H. inv H; [contradiction|].
      exploit IHcl; eauto; intros.
      unfold sat_measure_cl in *. cbn.
      destruct (in_dec peq v (map snd cl)); destruct (in_dec peq v (map snd x)).
      * apply lit_set_cl_in_set in i0. apply lit_set_cl_in_set in i1.
        repeat rewrite PSetProp.P.add_cardinal_1 by auto. auto.
      * exploit sat_measure_setClause_In_neq. eapply i0. eauto. auto. intros.
        contradiction.
      * apply lit_set_cl_in_set in i0. apply lit_set_cl_not_in_set in n0.
        rewrite PSetProp.P.add_cardinal_1 by auto.
        rewrite PSetProp.P.add_cardinal_2 by auto. unfold lit_set_cl in *; lia.
      * apply lit_set_cl_not_in_set in n0. apply lit_set_cl_not_in_set in n1.
        repeat rewrite PSetProp.P.add_cardinal_2 by auto.
        unfold lit_set_cl in *; lia.
Qed.

(* Lemma sat_measure_setFormula :
  forall cl cl' l b b' A,
    In (b', l) cl ->
    setClause cl (b, l) = inleft (exist _ cl' A) ->
    (sat_measure_cl cl' < sat_measure_cl cl)%nat.
Proof.
  induction cl; intros.
  - crush.
  - cbn in H0. repeat (destruct_match; try discriminate; []).
    destruct_match.
    + repeat (destruct_match; try discriminate; []).
      inv H0. cbn [snd fst] in *.*)

Lemma sat_measure_setFormula :
  forall fm fm' l b A,
    InFm l fm ->
    setFormula fm (b, l) = inleft (exist _ fm' A) ->
    (sat_measure fm' < sat_measure fm)%nat.
Proof.
  induction fm.
  - intros. inv H. inv H1. inv H. inv H1.
  - intros. unfold sat_measure, lit_set. cbn -[PSet.cardinal].
    Admitted.

Lemma sat_measure_propagate_unit :
  forall fm' fm H,
    unitPropagate fm = Some (inleft (existT _ fm' H)) ->
    (sat_measure fm' < sat_measure fm)%nat.
Proof.
  induction fm; crush.
  repeat (destruct_match; crush; []).
  destruct_match.
  repeat (destruct_match; crush; []).
  inv Heqs1.
  unfold sat_measure.
  Admitted.

Program Fixpoint satSolve (fm: formula) { measure (sat_measure fm) }:
  {al : alist | satFormula fm (interp_alist al)} + {forall a, ~satFormula fm a} :=
  match isNil fm with
  | left fmIsNil => inleft _ (exist _ nil _)
  | right fmIsNotNil =>
    match hasNoNil fm with
    | left hasNilfm => inright _ _
    | right hasNoNilfm =>
      match unitPropagate fm with
      | Some (inleft (existT _ fm' (exist _ l _))) =>
        match satSolve fm' with
        | inleft (exist _ al _) => inleft _ (exist _ (l :: al) _)
        | inright _ => inright _ _
        end
      | Some (inright _) => inright _ _
      | None =>
        let l := chooseSplit fm in
        match setFormula fm l with
        | inleft (exist _ fm' _) =>
          match satSolve fm' with
          | inleft (exist _ al _) => inleft _ (exist _ (l :: al) _)
          | inright _ =>
            match setFormula fm (negate l) with
            | inleft (exist _ fm' _) =>
              match satSolve fm' with
              | inleft (exist _ al _) => inleft _ (exist _ (negate l :: al) _)
              | inright _ => inright _ _
              end
            | inright _ => inright _ _
            end
          end
        | inright _ =>
          match setFormula fm (negate l) with
          | inleft (exist _ fm' _) =>
            match satSolve fm' with
            | inleft (exist _ al _) => inleft _ (exist _ (negate l :: al) _)
            | inright _ => inright _ _
            end
          | inright _ => inright _ _
          end
        end
      end
    end
  end.
Next Obligation.
  apply satFormulaHasEmpty; assumption. Defined.
Next Obligation.
  eapply sat_measure_propagate_unit; eauto. Defined.
Next Obligation.
  apply i; auto. Defined.
Next Obligation.
  unfold not; intros; eapply wildcard'; apply i; eauto. Defined.
Next Obligation.
  intros. symmetry in Heq_anonymous.
  destruct (chooseSplit fm) eqn:?.
  apply sat_measure_setFormula in Heq_anonymous; auto. unfold isNil in *.
  destruct fm; try discriminate.
  assert (c <> nil).
  { unfold not; intros. apply hasNoNilfm. constructor; auto. }
  destruct c; try discriminate.
  replace p with (snd (b, p)) by auto. rewrite <- Heqp.
  apply InFm_chooseSplit. Defined.
Next Obligation.
  apply wildcard'0; auto. Defined.
Next Obligation.
  eapply sat_measure_setFormula; eauto.
  destruct fm; try discriminate. destruct c; try discriminate.
  apply InFm_chooseSplit. Defined.
Next Obligation.
  apply wildcard'2; auto. Defined.
Next Obligation.
  unfold not in *; intros.
  destruct (satLit_dec (chooseSplit fm) a);
  [assert (satFormula fm (upd a (chooseSplit fm)))
  | assert (satFormula fm (upd a (negate (chooseSplit fm))))]; firstorder.
  { eapply wildcard'1. apply wildcard'0; eauto. }
  { eapply wildcard'. apply wildcard'2; eauto. }
Defined.
Next Obligation.
  unfold not in *; intros.
  destruct (satLit_dec (chooseSplit fm) a);
  [assert (satFormula fm (upd a (chooseSplit fm)))
  | assert (satFormula fm (upd a (negate (chooseSplit fm))))]; firstorder.
  { eapply wildcard'1. eapply wildcard'0. eauto. }
  { eapply wildcard'; eauto. }
Defined.
Next Obligation.
  eapply sat_measure_setFormula; eauto.
  destruct fm; try discriminate. destruct c; try discriminate.
  apply InFm_chooseSplit. Defined.
Next Obligation.
  apply wildcard'1; auto. Defined.
Next Obligation.
  unfold not in *; intros.
  destruct (satLit_dec (chooseSplit fm) a);
  [assert (satFormula fm (upd a (chooseSplit fm)))
  | assert (satFormula fm (upd a (negate (chooseSplit fm))))]; firstorder.
  { eapply wildcard'0; eauto. }
  { eapply wildcard'; apply wildcard'1; eauto. }
Defined.
Next Obligation.
  unfold not in *; intros.
  destruct (satLit_dec (chooseSplit fm) a).
  { eapply wildcard'0; eauto. }
  { eapply wildcard'; eauto. }
Defined.

Definition satSolveSimple (fm : formula) :=
  match satSolve fm with
  | inleft (exist _ a _) => Some a
  | inright _ => None
  end.

(* Eval compute in satSolveSimple nil. *)