aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/ValueInt.v
blob: 06b5630e29db77b72fd01e610c93b3a5c94525b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

(* begin hide *)
From Coq Require Import ZArith.ZArith FSets.FMapPositive Lia.
From compcert Require Import lib.Integers common.Values.
From vericert Require Import Vericertlib.
(* end hide *)

(*|
=====
Value
=====

A ``value`` is a bitvector with a specific size. We are using the implementation
of the bitvector by mit-plv/bbv, because it has many theorems that we can reuse.
However, we need to wrap it with an ``Inductive`` so that we can specify and
match on the size of the ``value``. This is necessary so that we can easily
store ``value`` of different sizes in a list or in a map.

Using the default ``word``, this would not be possible, as the size is part of
the type.
|*)

Definition value : Type := int.

(*|
Value conversions
=================

Various conversions to different number types such as ``N``, ``Z``, ``positive``
and ``int``, where the last one is a theory of integers of powers of 2 in
CompCert.
|*)

Definition valueToNat (v : value) : nat :=
  Z.to_nat (Int.unsigned v).

Definition natToValue (n : nat) : value :=
  Int.repr (Z.of_nat n).

Definition valueToN (v : value) : N :=
  Z.to_N (Int.unsigned v).

Definition NToValue (n : N) : value :=
  Int.repr (Z.of_N n).

Definition ZToValue (z : Z) : value :=
  Int.repr z.

Definition valueToZ (v : value) : Z :=
  Int.signed v.

Definition uvalueToZ (v : value) : Z :=
  Int.unsigned v.

Definition posToValue (p : positive) : value :=
  Int.repr (Z.pos p).

Definition valueToPos (v : value) : positive :=
  Z.to_pos (Int.unsigned v).

Definition intToValue (i : Integers.int) : value := i.

Definition valueToInt (i : value) : Integers.int := i.

Definition ptrToValue (i : ptrofs) : value := Ptrofs.to_int i.

Definition valueToPtr (i : value) : Integers.ptrofs :=
  Ptrofs.of_int i.

Definition valToValue (v : Values.val) : option value :=
  match v with
  | Values.Vint i => Some (intToValue i)
  | Values.Vptr b off => Some (ptrToValue off)
  | Values.Vundef => Some (ZToValue 0%Z)
  | _ => None
  end.

(*|
Convert a ``value`` to a ``bool``, so that choices can be made based on the
result. This is also because comparison operators will give back ``value``
instead of ``bool``, so if they are in a condition, they will have to be
converted before they can be used.
|*)

Definition valueToBool (v : value) : bool :=
  if Z.eqb (uvalueToZ v) 0 then false else true.

Definition boolToValue (b : bool) : value :=
  natToValue (if b then 1 else 0).

(*|
Arithmetic operations
---------------------
|*)

Inductive val_value_lessdef: val -> value -> Prop :=
| val_value_lessdef_int:
    forall i v',
    i = valueToInt v' ->
    val_value_lessdef (Vint i) v'
| val_value_lessdef_ptr:
    forall b off v',
    off = valueToPtr v' ->
    val_value_lessdef (Vptr b off) v'
| lessdef_undef: forall v, val_value_lessdef Vundef v.

Inductive opt_val_value_lessdef: option val -> value -> Prop :=
| opt_lessdef_some:
    forall v v', val_value_lessdef v v' -> opt_val_value_lessdef (Some v) v'
| opt_lessdef_none: forall v, opt_val_value_lessdef None v.

Lemma valueToZ_ZToValue :
  forall z,
  (Int.min_signed <= z <= Int.max_signed)%Z ->
  valueToZ (ZToValue z) = z.
Proof. auto using Int.signed_repr. Qed.

Lemma uvalueToZ_ZToValue :
  forall z,
  (0 <= z <= Int.max_unsigned)%Z ->
  uvalueToZ (ZToValue z) = z.
Proof. auto using Int.unsigned_repr. Qed.

Lemma valueToPos_posToValue :
  forall v,
  0 <= Z.pos v <= Int.max_unsigned ->
  valueToPos (posToValue v) = v.
Proof.
  unfold valueToPos, posToValue.
  intros. rewrite Int.unsigned_repr.
  apply Pos2Z.id. assumption.
Qed.

Lemma valueToInt_intToValue :
  forall v,
  valueToInt (intToValue v) = v.
Proof. auto. Qed.

Lemma valToValue_lessdef :
  forall v v',
    valToValue v = Some v' ->
    val_value_lessdef v v'.
Proof.
  intros.
  destruct v; try discriminate; constructor.
  unfold valToValue in H. inversion H.
  unfold valueToInt. unfold intToValue in H1. auto.
  inv H. symmetry. unfold valueToPtr, ptrToValue. apply Ptrofs.of_int_to_int. trivial.
Qed.

Ltac simplify_val := repeat (simplify; unfold uvalueToZ, valueToPtr, Ptrofs.of_int, valueToInt, intToValue,
                                       ptrToValue in *).

Ltac crush_val := simplify_val; try discriminate; try congruence; try lia; liapp; try assumption.