aboutsummaryrefslogtreecommitdiffstats
path: root/src/Verismith/EMI.hs
blob: aca7e48c03d3e932fdea27e2678761f999cafd46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
{-# LANGUAGE QuasiQuotes #-}

-- |
-- Module      : Verismith.EMI
-- Description : Definition of the circuit graph.
-- Copyright   : (c) 2021, Yann Herklotz
-- License     : GPL-3
-- Maintainer  : yann [at] yannherklotz [dot] com
-- Stability   : experimental
-- Portability : POSIX
--
-- Equivalence modulo inputs (EMI) testing.  This file should get an existing design, and spit out a
-- modified design that is equivalent under some specific values of the extra inputs.
module Verismith.EMI
where

import Control.Lens hiding (Context)
import Control.Monad (replicateM)
import Control.Monad.Reader
import Control.Monad.State.Strict
import Data.Text (Text)
import Data.List (intercalate)
import qualified Data.Text as T
import Hedgehog (Gen, GenT, MonadGen)
import qualified Hedgehog as Hog
import qualified Hedgehog.Gen as Hog
import qualified Hedgehog.Range as HogR
import Data.Maybe (fromMaybe)
import Verismith.Config
import Verismith.Internal
import Verismith.Verilog.AST
import Verismith.Verilog.BitVec
import Verismith.Verilog.Eval
import Verismith.Verilog.Internal
import Verismith.Verilog.Mutate
import Verismith.Generate

import Verismith.Verilog.CodeGen
import Verismith.Verilog.Quote
import qualified Data.Text.IO as T

data EMIInputs a = EMIInputs [Identifier]
                 | EMIOrig a
                 deriving (Eq)

instance Show a => Show (EMIInputs a) where
  show (EMIInputs i) = "EMI: " <> intercalate ", " (T.unpack . getIdentifier <$> i)
  show (EMIOrig a) = show a

newPort' :: Identifier -> StateGen a Port
newPort' ident = do
  hex <- Identifier . T.toLower . T.pack <$> Hog.list (HogR.constant 10 10) Hog.hexit
  let p = Port Wire False (Range 0 0) (ident <> hex)
  emiContext . _Just . emiNewInputs %= (p :)
  return p

nstatementEMI :: StateGen a (Maybe (Statement a))
nstatementEMI = do
  config <- ask
  Hog.frequency
    [ (config ^. configEMI . confEMIGenerateProb, do
          s' <- statement
          n <- newPort' "emi_"
          return (Just (CondStmnt (Id (n^.portName)) (Just s') Nothing))),
      (config ^. configEMI . confEMINoGenerateProb, return Nothing)
    ]

statementEMI :: Statement a -> StateGen a (Statement a)
statementEMI (SeqBlock s) = do
  s'' <- nstatementEMI
  return $ SeqBlock ((s'' ^.. _Just) ++ s)
statementEMI s = return s

moditemEMI :: ModItem a -> StateGen a (ModItem a)
moditemEMI (Always s) = Always <$> transformM statementEMI s
moditemEMI m = return m

moddeclEMI :: ModDecl a -> StateGen a (ModDecl (EMIInputs a))
moddeclEMI m = do
  emiContext._Just.emiNewInputs .= []
  m' <- traverseOf (modItems.traverse) moditemEMI m
  c <- use (emiContext._Just.emiNewInputs)
  let m'' = m' & modInPorts %~ (c ++ ) & (initNewRegs c)
  return (ModDeclAnn (EMIInputs (c^..traverse.portName)) (fmap (\x -> EMIOrig x) m''))

sourceEMI :: (SourceInfo a) -> StateGen a (SourceInfo (EMIInputs a))
sourceEMI s =
  traverseOf (infoSrc._Wrapped.traverse) moddeclEMI s

initNewRegs :: [Port] -> ModDecl a -> ModDecl a
initNewRegs ps m = m & modItems %~ (++ (Decl (Just PortIn) <$> ps <*> pure Nothing))

-- | Procedural generation method for random Verilog. Uses internal 'Reader' and
-- 'State' to keep track of the current Verilog code structure.
proceduralEMI :: SourceInfo a -> Config -> Gen (SourceInfo (EMIInputs a))
proceduralEMI src config = do
  (mainMod, st) <-
    Hog.resize num $
      runStateT
        (Hog.distributeT (runReaderT (sourceEMI src) config))
        context
  return mainMod
  where
    context =
      Context [] [] [] [] [] [] 0 (confProp propStmntDepth) (confProp propModDepth) True
        (Just (EMIContext []))
    num = fromIntegral $ confProp propSize
    confProp i = config ^. configProperty . i

proceduralEMIIO :: SourceInfo a -> Config -> IO (SourceInfo (EMIInputs a))
proceduralEMIIO t = Hog.sample . proceduralEMI t

-- | Make top level module for equivalence verification. Also takes in how many
-- modules to instantiate.
makeTopEMI :: Int -> ModDecl (EMIInputs ann) -> (ModDecl (EMIInputs ann), [Identifier])
makeTopEMI i m' = (ModDecl (m ^. modId) ys nports modIt [], anns)
  where
    ys = yPort . flip makeIdFrom "y" <$> [1 .. i]
    modIt = instantiateModSpec_ "_" . modN <$> [1 .. i]
    modN n =
      m & modId %~ makeIdFrom n & modOutPorts .~ [yPort (makeIdFrom n "y")]
    anns = concatMap (\x -> case x of
                         EMIInputs x -> x
                         _ -> []
                     ) (collectAnn m')
    m = removeAnn m'
    nports = filter (\x -> (x^.portName) `notElem` anns) (m^.modInPorts)

createProperty :: Identifier -> ModItem a
createProperty i =
  Property (i <> "_emi_prop") (EPosEdge "clk") Nothing (BinOp (Id i) BinEq 0)

createAssignment :: Identifier -> Statement a
createAssignment i = BlockAssign (Assign (RegId i) Nothing 0)

addAssumesEMI :: (ModDecl a, [Identifier])
              -> (ModDecl a, [Identifier])
addAssumesEMI (m, i) = (m & modItems %~ (++ mods), i)
  where
    mods = fmap createProperty i

addAssignmentsEMI :: (ModDecl a, [Identifier])
                  -> (ModDecl a, [Identifier])
addAssignmentsEMI (m, i) = (m & modItems %~ (mods :), i)
  where
    mods = Initial (SeqBlock (createAssignment <$> i))

-- | Make a top module with an assert that requires @y_1@ to always be equal to
-- @y_2@, which can then be proven using a formal verification tool.
makeTopAssertEMI :: Bool -> ModDecl (EMIInputs ann) -> (ModDecl (EMIInputs ann), [Identifier])
makeTopAssertEMI b =
  bimap (modItems %~ (assert :)) id
  . (if b then addAssumesEMI else addAssignmentsEMI)
  . makeTopEMI 2
  where
    assert =
      Always . EventCtrl e . Just $
        SeqBlock
          [TaskEnable $ Task "assert" [BinOp (Id "y_1") BinEq (Id "y_2")]]
    e = EPosEdge "clk"

initModEMI :: (ModDecl ann, [Identifier]) -> (ModDecl ann)
initModEMI (m, i) = m & modItems %~ ((out ++ inp ++ other) ++)
  where
    out = Decl (Just PortOut) <$> (m ^. modOutPorts) <*> pure Nothing
    inp = Decl (Just PortIn) <$> (m^.modInPorts) <*> pure Nothing
    other = Decl Nothing <$> map (\i' -> Port Reg False (Range 0 0) i') i <*> pure Nothing

-- Test code

m :: SourceInfo ()
m = SourceInfo "m" [verilog|
module m;
  always @(posedge clk) begin
    if (z == 2) begin
      ry = 2;
    end
    x <= y;
    y <= z;
  end
endmodule

module m2;
  always @(posedge clk) begin
    if (z == 2) begin
      ry = 2;
    end
    x <= y;
    y <= z;
  end
endmodule
|]
p :: Show a => ModDecl a -> IO ()
p = T.putStrLn . genSource

customConfig = defaultConfig &
    (configEMI . confEMIGenerateProb .~ 1)
  . (configEMI . confEMINoGenerateProb .~ 0)

top = ((initModEMI . makeTopAssertEMI False . (\s -> s^.mainModule)) <$> proceduralEMIIO m customConfig) >>= p