aboutsummaryrefslogtreecommitdiffstats
path: root/flocq
diff options
context:
space:
mode:
authorGuillaume Melquiond <guillaume.melquiond@inria.fr>2019-02-13 18:53:17 +0100
committerXavier Leroy <xavierleroy@users.noreply.github.com>2019-03-27 11:38:25 +0100
commit0f919eb26c68d3882e612a1b3a9df45bee6d3624 (patch)
treeb8bcf57e06d761be09b8d2cf2f80741acb1e4949 /flocq
parentd5c0b4054c8490bda3b3d191724c58d5d4002e58 (diff)
downloadcompcert-kvx-0f919eb26c68d3882e612a1b3a9df45bee6d3624.tar.gz
compcert-kvx-0f919eb26c68d3882e612a1b3a9df45bee6d3624.zip
Upgrade embedded version of Flocq to 3.1.
Main changes to CompCert outside of Flocq are as follows: - Minimal supported version of Coq is now 8.7, due to Flocq requirements. - Most modifications are due to Z2R being dropped in favor of IZR and to the way Flocq now handles NaNs. - CompCert now correctly handles NaNs for the Risc-V architecture (hopefully).
Diffstat (limited to 'flocq')
-rw-r--r--flocq/Appli/Fappli_IEEE.v1920
-rw-r--r--flocq/Calc/Bracket.v (renamed from flocq/Calc/Fcalc_bracket.v)148
-rw-r--r--flocq/Calc/Div.v159
-rw-r--r--flocq/Calc/Fcalc_digits.v63
-rw-r--r--flocq/Calc/Fcalc_div.v165
-rw-r--r--flocq/Calc/Fcalc_sqrt.v244
-rw-r--r--flocq/Calc/Operations.v (renamed from flocq/Calc/Fcalc_ops.v)23
-rw-r--r--flocq/Calc/Round.v (renamed from flocq/Calc/Fcalc_round.v)565
-rw-r--r--flocq/Calc/Sqrt.v201
-rw-r--r--flocq/Core/Core.v (renamed from flocq/Core/Fcore.v)16
-rw-r--r--flocq/Core/Defs.v (renamed from flocq/Core/Fcore_defs.v)36
-rw-r--r--flocq/Core/Digits.v (renamed from flocq/Core/Fcore_digits.v)211
-rw-r--r--flocq/Core/FIX.v (renamed from flocq/Core/Fcore_FIX.v)30
-rw-r--r--flocq/Core/FLT.v (renamed from flocq/Core/Fcore_FLT.v)182
-rw-r--r--flocq/Core/FLX.v362
-rw-r--r--flocq/Core/FTZ.v (renamed from flocq/Core/Fcore_FTZ.v)109
-rw-r--r--flocq/Core/Fcore_FLX.v271
-rw-r--r--flocq/Core/Float_prop.v (renamed from flocq/Core/Fcore_float_prop.v)228
-rw-r--r--flocq/Core/Generic_fmt.v (renamed from flocq/Core/Fcore_generic_fmt.v)793
-rw-r--r--flocq/Core/Raux.v (renamed from flocq/Core/Fcore_Raux.v)964
-rw-r--r--flocq/Core/Round_NE.v (renamed from flocq/Core/Fcore_rnd_ne.v)185
-rw-r--r--flocq/Core/Round_pred.v (renamed from flocq/Core/Fcore_rnd.v)176
-rw-r--r--flocq/Core/Ulp.v (renamed from flocq/Core/Fcore_ulp.v)925
-rw-r--r--flocq/Core/Zaux.v (renamed from flocq/Core/Fcore_Zaux.v)238
-rw-r--r--flocq/IEEE754/Binary.v2814
-rw-r--r--flocq/IEEE754/Bits.v (renamed from flocq/Appli/Fappli_IEEE_bits.v)327
-rw-r--r--flocq/Prop/Div_sqrt_error.v872
-rw-r--r--flocq/Prop/Double_rounding.v (renamed from flocq/Appli/Fappli_double_round.v)2598
-rw-r--r--flocq/Prop/Fprop_div_sqrt_error.v300
-rw-r--r--flocq/Prop/Mult_error.v (renamed from flocq/Prop/Fprop_mult_error.v)175
-rw-r--r--flocq/Prop/Plus_error.v (renamed from flocq/Prop/Fprop_plus_error.v)394
-rw-r--r--flocq/Prop/Relative.v (renamed from flocq/Prop/Fprop_relative.v)505
-rw-r--r--flocq/Prop/Round_odd.v (renamed from flocq/Appli/Fappli_rnd_odd.v)618
-rw-r--r--flocq/Prop/Sterbenz.v (renamed from flocq/Prop/Fprop_Sterbenz.v)64
-rw-r--r--flocq/Version.v (renamed from flocq/Flocq_version.v)6
35 files changed, 9493 insertions, 7394 deletions
diff --git a/flocq/Appli/Fappli_IEEE.v b/flocq/Appli/Fappli_IEEE.v
deleted file mode 100644
index 7503dc1d..00000000
--- a/flocq/Appli/Fappli_IEEE.v
+++ /dev/null
@@ -1,1920 +0,0 @@
-(**
-This file is part of the Flocq formalization of floating-point
-arithmetic in Coq: http://flocq.gforge.inria.fr/
-
-Copyright (C) 2010-2013 Sylvie Boldo
-#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
-
-This library is free software; you can redistribute it and/or
-modify it under the terms of the GNU Lesser General Public
-License as published by the Free Software Foundation; either
-version 3 of the License, or (at your option) any later version.
-
-This library is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-COPYING file for more details.
-*)
-
-(** * IEEE-754 arithmetic *)
-Require Import Fcore.
-Require Import Fcore_digits.
-Require Import Fcalc_digits.
-Require Import Fcalc_round.
-Require Import Fcalc_bracket.
-Require Import Fcalc_ops.
-Require Import Fcalc_div.
-Require Import Fcalc_sqrt.
-Require Import Fprop_relative.
-
-Section AnyRadix.
-
-Inductive full_float :=
- | F754_zero : bool -> full_float
- | F754_infinity : bool -> full_float
- | F754_nan : bool -> positive -> full_float
- | F754_finite : bool -> positive -> Z -> full_float.
-
-Definition FF2R beta x :=
- match x with
- | F754_finite s m e => F2R (Float beta (cond_Zopp s (Zpos m)) e)
- | _ => 0%R
- end.
-
-End AnyRadix.
-
-Section Binary.
-
-Arguments exist {A P} x _.
-
-(** [prec] is the number of bits of the mantissa including the implicit one;
- [emax] is the exponent of the infinities.
- For instance, binary32 is defined by [prec = 24] and [emax = 128]. *)
-Variable prec emax : Z.
-Context (prec_gt_0_ : Prec_gt_0 prec).
-Hypothesis Hmax : (prec < emax)%Z.
-
-Let emin := (3 - emax - prec)%Z.
-Let fexp := FLT_exp emin prec.
-Instance fexp_correct : Valid_exp fexp := FLT_exp_valid emin prec.
-Instance fexp_monotone : Monotone_exp fexp := FLT_exp_monotone emin prec.
-
-Definition canonic_mantissa m e :=
- Zeq_bool (fexp (Zpos (digits2_pos m) + e)) e.
-
-Definition bounded m e :=
- andb (canonic_mantissa m e) (Zle_bool e (emax - prec)).
-
-Definition valid_binary x :=
- match x with
- | F754_finite _ m e => bounded m e
- | F754_nan _ pl => (Zpos (digits2_pos pl) <? prec)%Z
- | _ => true
- end.
-
-(** Basic type used for representing binary FP numbers.
- Note that there is exactly one such object per FP datum. *)
-
-Definition nan_pl := {pl | (Zpos (digits2_pos pl) <? prec)%Z = true}.
-
-Inductive binary_float :=
- | B754_zero : bool -> binary_float
- | B754_infinity : bool -> binary_float
- | B754_nan : bool -> nan_pl -> binary_float
- | B754_finite : bool ->
- forall (m : positive) (e : Z), bounded m e = true -> binary_float.
-
-Definition FF2B x :=
- match x as x return valid_binary x = true -> binary_float with
- | F754_finite s m e => B754_finite s m e
- | F754_infinity s => fun _ => B754_infinity s
- | F754_zero s => fun _ => B754_zero s
- | F754_nan b pl => fun H => B754_nan b (exist pl H)
- end.
-
-Definition B2FF x :=
- match x with
- | B754_finite s m e _ => F754_finite s m e
- | B754_infinity s => F754_infinity s
- | B754_zero s => F754_zero s
- | B754_nan b (exist pl _) => F754_nan b pl
- end.
-
-Definition B2R f :=
- match f with
- | B754_finite s m e _ => F2R (Float radix2 (cond_Zopp s (Zpos m)) e)
- | _ => 0%R
- end.
-
-Theorem FF2R_B2FF :
- forall x,
- FF2R radix2 (B2FF x) = B2R x.
-Proof.
-now intros [sx|sx|sx [plx Hplx]|sx mx ex Hx].
-Qed.
-
-Theorem B2FF_FF2B :
- forall x Hx,
- B2FF (FF2B x Hx) = x.
-Proof.
-now intros [sx|sx|sx plx|sx mx ex] Hx.
-Qed.
-
-Theorem valid_binary_B2FF :
- forall x,
- valid_binary (B2FF x) = true.
-Proof.
-now intros [sx|sx|sx [plx Hplx]|sx mx ex Hx].
-Qed.
-
-Theorem FF2B_B2FF :
- forall x H,
- FF2B (B2FF x) H = x.
-Proof.
-intros [sx|sx|sx [plx Hplx]|sx mx ex Hx] H ; try easy.
-simpl. apply f_equal, f_equal, eqbool_irrelevance.
-apply f_equal, eqbool_irrelevance.
-Qed.
-
-Theorem FF2B_B2FF_valid :
- forall x,
- FF2B (B2FF x) (valid_binary_B2FF x) = x.
-Proof.
-intros x.
-apply FF2B_B2FF.
-Qed.
-
-Theorem B2R_FF2B :
- forall x Hx,
- B2R (FF2B x Hx) = FF2R radix2 x.
-Proof.
-now intros [sx|sx|sx plx|sx mx ex] Hx.
-Qed.
-
-Theorem match_FF2B :
- forall {T} fz fi fn ff x Hx,
- match FF2B x Hx return T with
- | B754_zero sx => fz sx
- | B754_infinity sx => fi sx
- | B754_nan b (exist p _) => fn b p
- | B754_finite sx mx ex _ => ff sx mx ex
- end =
- match x with
- | F754_zero sx => fz sx
- | F754_infinity sx => fi sx
- | F754_nan b p => fn b p
- | F754_finite sx mx ex => ff sx mx ex
- end.
-Proof.
-now intros T fz fi fn ff [sx|sx|sx plx|sx mx ex] Hx.
-Qed.
-
-Theorem canonic_canonic_mantissa :
- forall (sx : bool) mx ex,
- canonic_mantissa mx ex = true ->
- canonic radix2 fexp (Float radix2 (cond_Zopp sx (Zpos mx)) ex).
-Proof.
-intros sx mx ex H.
-assert (Hx := Zeq_bool_eq _ _ H). clear H.
-apply sym_eq.
-simpl.
-pattern ex at 2 ; rewrite <- Hx.
-apply (f_equal fexp).
-rewrite ln_beta_F2R_Zdigits.
-rewrite <- Zdigits_abs.
-rewrite Zpos_digits2_pos.
-now case sx.
-now case sx.
-Qed.
-
-Theorem generic_format_B2R :
- forall x,
- generic_format radix2 fexp (B2R x).
-Proof.
-intros [sx|sx|sx plx|sx mx ex Hx] ; try apply generic_format_0.
-simpl.
-apply generic_format_canonic.
-apply canonic_canonic_mantissa.
-now destruct (andb_prop _ _ Hx) as (H, _).
-Qed.
-
-Theorem FLT_format_B2R :
- forall x,
- FLT_format radix2 emin prec (B2R x).
-Proof with auto with typeclass_instances.
-intros x.
-apply FLT_format_generic...
-apply generic_format_B2R.
-Qed.
-
-Theorem B2FF_inj :
- forall x y : binary_float,
- B2FF x = B2FF y ->
- x = y.
-Proof.
-intros [sx|sx|sx [plx Hplx]|sx mx ex Hx] [sy|sy|sy [ply Hply]|sy my ey Hy] ; try easy.
-(* *)
-intros H.
-now inversion H.
-(* *)
-intros H.
-now inversion H.
-(* *)
-intros H.
-inversion H.
-clear H.
-revert Hplx.
-rewrite H2.
-intros Hx.
-apply f_equal, f_equal, eqbool_irrelevance.
-(* *)
-intros H.
-inversion H.
-clear H.
-revert Hx.
-rewrite H2, H3.
-intros Hx.
-apply f_equal, eqbool_irrelevance.
-Qed.
-
-Definition is_finite_strict f :=
- match f with
- | B754_finite _ _ _ _ => true
- | _ => false
- end.
-
-Theorem B2R_inj:
- forall x y : binary_float,
- is_finite_strict x = true ->
- is_finite_strict y = true ->
- B2R x = B2R y ->
- x = y.
-Proof.
-intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
-simpl.
-intros _ _ Heq.
-assert (Hs: sx = sy).
-(* *)
-revert Heq. clear.
-case sx ; case sy ; try easy ;
- intros Heq ; apply False_ind ; revert Heq.
-apply Rlt_not_eq.
-apply Rlt_trans with R0.
-now apply F2R_lt_0_compat.
-now apply F2R_gt_0_compat.
-apply Rgt_not_eq.
-apply Rgt_trans with R0.
-now apply F2R_gt_0_compat.
-now apply F2R_lt_0_compat.
-assert (mx = my /\ ex = ey).
-(* *)
-refine (_ (canonic_unicity _ fexp _ _ _ _ Heq)).
-rewrite Hs.
-now case sy ; intro H ; injection H ; split.
-apply canonic_canonic_mantissa.
-exact (proj1 (andb_prop _ _ Hx)).
-apply canonic_canonic_mantissa.
-exact (proj1 (andb_prop _ _ Hy)).
-(* *)
-revert Hx.
-rewrite Hs, (proj1 H), (proj2 H).
-intros Hx.
-apply f_equal.
-apply eqbool_irrelevance.
-Qed.
-
-Definition Bsign x :=
- match x with
- | B754_nan s _ => s
- | B754_zero s => s
- | B754_infinity s => s
- | B754_finite s _ _ _ => s
- end.
-
-Definition sign_FF x :=
- match x with
- | F754_nan s _ => s
- | F754_zero s => s
- | F754_infinity s => s
- | F754_finite s _ _ => s
- end.
-
-Theorem Bsign_FF2B :
- forall x H,
- Bsign (FF2B x H) = sign_FF x.
-Proof.
-now intros [sx|sx|sx plx|sx mx ex] H.
-Qed.
-
-Definition is_finite f :=
- match f with
- | B754_finite _ _ _ _ => true
- | B754_zero _ => true
- | _ => false
- end.
-
-Definition is_finite_FF f :=
- match f with
- | F754_finite _ _ _ => true
- | F754_zero _ => true
- | _ => false
- end.
-
-Theorem is_finite_FF2B :
- forall x Hx,
- is_finite (FF2B x Hx) = is_finite_FF x.
-Proof.
-now intros [| | |].
-Qed.
-
-Theorem is_finite_FF_B2FF :
- forall x,
- is_finite_FF (B2FF x) = is_finite x.
-Proof.
-now intros [| |? []|].
-Qed.
-
-Theorem B2R_Bsign_inj:
- forall x y : binary_float,
- is_finite x = true ->
- is_finite y = true ->
- B2R x = B2R y ->
- Bsign x = Bsign y ->
- x = y.
-Proof.
-intros. destruct x, y; try (apply B2R_inj; now eauto).
-- simpl in H2. congruence.
-- symmetry in H1. apply Rmult_integral in H1.
- destruct H1. apply (eq_Z2R _ 0) in H1. destruct b0; discriminate H1.
- simpl in H1. pose proof (bpow_gt_0 radix2 e).
- rewrite H1 in H3. apply Rlt_irrefl in H3. destruct H3.
-- apply Rmult_integral in H1.
- destruct H1. apply (eq_Z2R _ 0) in H1. destruct b; discriminate H1.
- simpl in H1. pose proof (bpow_gt_0 radix2 e).
- rewrite H1 in H3. apply Rlt_irrefl in H3. destruct H3.
-Qed.
-
-Definition is_nan f :=
- match f with
- | B754_nan _ _ => true
- | _ => false
- end.
-
-Definition is_nan_FF f :=
- match f with
- | F754_nan _ _ => true
- | _ => false
- end.
-
-Theorem is_nan_FF2B :
- forall x Hx,
- is_nan (FF2B x Hx) = is_nan_FF x.
-Proof.
-now intros [| | |].
-Qed.
-
-Theorem is_nan_FF_B2FF :
- forall x,
- is_nan_FF (B2FF x) = is_nan x.
-Proof.
-now intros [| |? []|].
-Qed.
-
-(** Opposite *)
-
-Definition Bopp opp_nan x :=
- match x with
- | B754_nan sx plx =>
- let '(sres, plres) := opp_nan sx plx in B754_nan sres plres
- | B754_infinity sx => B754_infinity (negb sx)
- | B754_finite sx mx ex Hx => B754_finite (negb sx) mx ex Hx
- | B754_zero sx => B754_zero (negb sx)
- end.
-
-Theorem Bopp_involutive :
- forall opp_nan x,
- is_nan x = false ->
- Bopp opp_nan (Bopp opp_nan x) = x.
-Proof.
-now intros opp_nan [sx|sx|sx plx|sx mx ex Hx] ; simpl ; try rewrite Bool.negb_involutive.
-Qed.
-
-Theorem B2R_Bopp :
- forall opp_nan x,
- B2R (Bopp opp_nan x) = (- B2R x)%R.
-Proof.
-intros opp_nan [sx|sx|sx plx|sx mx ex Hx]; apply sym_eq ; try apply Ropp_0.
-simpl. destruct opp_nan. apply Ropp_0.
-simpl.
-rewrite <- F2R_opp.
-now case sx.
-Qed.
-
-Theorem is_finite_Bopp :
- forall opp_nan x,
- is_finite (Bopp opp_nan x) = is_finite x.
-Proof.
-intros opp_nan [| |s pl|] ; try easy.
-simpl.
-now case opp_nan.
-Qed.
-
-(** Absolute value *)
-
-Definition Babs abs_nan (x : binary_float) : binary_float :=
- match x with
- | B754_nan sx plx =>
- let '(sres, plres) := abs_nan sx plx in B754_nan sres plres
- | B754_infinity sx => B754_infinity false
- | B754_finite sx mx ex Hx => B754_finite false mx ex Hx
- | B754_zero sx => B754_zero false
- end.
-
-Theorem B2R_Babs :
- forall abs_nan x,
- B2R (Babs abs_nan x) = Rabs (B2R x).
-Proof.
- intros abs_nan [sx|sx|sx plx|sx mx ex Hx]; apply sym_eq ; try apply Rabs_R0.
- simpl. destruct abs_nan. simpl. apply Rabs_R0.
- simpl. rewrite <- F2R_abs. now destruct sx.
-Qed.
-
-Theorem is_finite_Babs :
- forall abs_nan x,
- is_finite (Babs abs_nan x) = is_finite x.
-Proof.
- intros abs_nan [| |s pl|] ; try easy.
- simpl.
- now case abs_nan.
-Qed.
-
-Theorem Bsign_Babs :
- forall abs_nan x,
- is_nan x = false ->
- Bsign (Babs abs_nan x) = false.
-Proof.
- now intros abs_nan [| | |].
-Qed.
-
-Theorem Babs_idempotent :
- forall abs_nan (x: binary_float),
- is_nan x = false ->
- Babs abs_nan (Babs abs_nan x) = Babs abs_nan x.
-Proof.
- now intros abs_nan [sx|sx|sx plx|sx mx ex Hx].
-Qed.
-
-Theorem Babs_Bopp :
- forall abs_nan opp_nan x,
- is_nan x = false ->
- Babs abs_nan (Bopp opp_nan x) = Babs abs_nan x.
-Proof.
- now intros abs_nan opp_nan [| | |].
-Qed.
-
-(** Comparison
-
-[Some c] means ordered as per [c]; [None] means unordered. *)
-
-Definition Bcompare (f1 f2 : binary_float) : option comparison :=
- match f1, f2 with
- | B754_nan _ _,_ | _,B754_nan _ _ => None
- | B754_infinity true, B754_infinity true
- | B754_infinity false, B754_infinity false => Some Eq
- | B754_infinity true, _ => Some Lt
- | B754_infinity false, _ => Some Gt
- | _, B754_infinity true => Some Gt
- | _, B754_infinity false => Some Lt
- | B754_finite true _ _ _, B754_zero _ => Some Lt
- | B754_finite false _ _ _, B754_zero _ => Some Gt
- | B754_zero _, B754_finite true _ _ _ => Some Gt
- | B754_zero _, B754_finite false _ _ _ => Some Lt
- | B754_zero _, B754_zero _ => Some Eq
- | B754_finite s1 m1 e1 _, B754_finite s2 m2 e2 _ =>
- match s1, s2 with
- | true, false => Some Lt
- | false, true => Some Gt
- | false, false =>
- match Zcompare e1 e2 with
- | Lt => Some Lt
- | Gt => Some Gt
- | Eq => Some (Pcompare m1 m2 Eq)
- end
- | true, true =>
- match Zcompare e1 e2 with
- | Lt => Some Gt
- | Gt => Some Lt
- | Eq => Some (CompOpp (Pcompare m1 m2 Eq))
- end
- end
- end.
-
-Theorem Bcompare_correct :
- forall f1 f2,
- is_finite f1 = true -> is_finite f2 = true ->
- Bcompare f1 f2 = Some (Rcompare (B2R f1) (B2R f2)).
-Proof.
- Ltac apply_Rcompare :=
- match goal with
- | [ |- Some Lt = Some (Rcompare _ _) ] => f_equal; symmetry; apply Rcompare_Lt
- | [ |- Some Eq = Some (Rcompare _ _) ] => f_equal; symmetry; apply Rcompare_Eq
- | [ |- Some Gt = Some (Rcompare _ _) ] => f_equal; symmetry; apply Rcompare_Gt
- end.
- unfold Bcompare; intros.
- destruct f1, f2 ; try easy.
- now rewrite Rcompare_Eq.
- destruct b0 ; apply_Rcompare.
- now apply F2R_lt_0_compat.
- now apply F2R_gt_0_compat.
- destruct b ; apply_Rcompare.
- now apply F2R_lt_0_compat.
- now apply F2R_gt_0_compat.
- simpl.
- clear H H0.
- apply andb_prop in e0; destruct e0; apply (canonic_canonic_mantissa false) in H.
- apply andb_prop in e2; destruct e2; apply (canonic_canonic_mantissa false) in H1.
- pose proof (Zcompare_spec e e1); unfold canonic, Fexp in H1, H.
- assert (forall m1 m2 e1 e2,
- let x := (Z2R (Zpos m1) * bpow radix2 e1)%R in
- let y := (Z2R (Zpos m2) * bpow radix2 e2)%R in
- (canonic_exp radix2 fexp x < canonic_exp radix2 fexp y)%Z -> (x < y)%R).
- {
- intros; apply Rnot_le_lt; intro; apply (ln_beta_le radix2) in H5.
- apply Zlt_not_le with (1 := H4).
- now apply fexp_monotone.
- now apply (F2R_gt_0_compat _ (Float radix2 (Zpos m2) e2)).
- }
- assert (forall m1 m2 e1 e2, (Z2R (- Zpos m1) * bpow radix2 e1 < Z2R (Zpos m2) * bpow radix2 e2)%R).
- {
- intros; apply (Rlt_trans _ 0%R).
- now apply (F2R_lt_0_compat _ (Float radix2 (Zneg m1) e0)).
- now apply (F2R_gt_0_compat _ (Float radix2 (Zpos m2) e2)).
- }
- unfold F2R, Fnum, Fexp.
- destruct b, b0; try (now apply_Rcompare; apply H5); inversion H3;
- try (apply_Rcompare; apply H4; rewrite H, H1 in H7; assumption);
- try (apply_Rcompare; do 2 rewrite Z2R_opp, Ropp_mult_distr_l_reverse;
- apply Ropp_lt_contravar; apply H4; rewrite H, H1 in H7; assumption);
- rewrite H7, Rcompare_mult_r, Rcompare_Z2R by (apply bpow_gt_0); reflexivity.
-Qed.
-
-Theorem Bcompare_swap :
- forall x y,
- Bcompare y x = match Bcompare x y with Some c => Some (CompOpp c) | None => None end.
-Proof.
- intros.
- destruct x as [ ? | [] | ? ? | [] mx ex Bx ];
- destruct y as [ ? | [] | ? ? | [] my ey By ]; simpl; try easy.
-- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy.
- now rewrite (Pcompare_antisym mx my).
-- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy.
- now rewrite Pcompare_antisym.
-Qed.
-
-Theorem bounded_lt_emax :
- forall mx ex,
- bounded mx ex = true ->
- (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R.
-Proof.
-intros mx ex Hx.
-destruct (andb_prop _ _ Hx) as (H1,H2).
-generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1.
-generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2.
-generalize (ln_beta_F2R_Zdigits radix2 (Zpos mx) ex).
-destruct (ln_beta radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex).
-unfold ln_beta_val.
-intros H.
-apply Rlt_le_trans with (bpow radix2 e').
-change (Zpos mx) with (Zabs (Zpos mx)).
-rewrite F2R_Zabs.
-apply Ex.
-apply Rgt_not_eq.
-now apply F2R_gt_0_compat.
-apply bpow_le.
-rewrite H. 2: discriminate.
-revert H1. clear -H2.
-rewrite Zpos_digits2_pos.
-unfold fexp, FLT_exp.
-generalize (Zdigits radix2 (Zpos mx)).
-clearbody emin.
-intros ; zify ; omega.
-Qed.
-
-Theorem abs_B2R_lt_emax :
- forall x,
- (Rabs (B2R x) < bpow radix2 emax)%R.
-Proof.
-intros [sx|sx|sx plx|sx mx ex Hx] ; simpl ; try ( rewrite Rabs_R0 ; apply bpow_gt_0 ).
-rewrite <- F2R_Zabs, abs_cond_Zopp.
-now apply bounded_lt_emax.
-Qed.
-
-Theorem bounded_canonic_lt_emax :
- forall mx ex,
- canonic radix2 fexp (Float radix2 (Zpos mx) ex) ->
- (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R ->
- bounded mx ex = true.
-Proof.
-intros mx ex Cx Bx.
-apply andb_true_intro.
-split.
-unfold canonic_mantissa.
-unfold canonic, Fexp in Cx.
-rewrite Cx at 2.
-rewrite Zpos_digits2_pos.
-unfold canonic_exp.
-rewrite ln_beta_F2R_Zdigits. 2: discriminate.
-now apply -> Zeq_is_eq_bool.
-apply Zle_bool_true.
-unfold canonic, Fexp in Cx.
-rewrite Cx.
-unfold canonic_exp, fexp, FLT_exp.
-destruct (ln_beta radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex). simpl.
-apply Zmax_lub.
-cut (e' - 1 < emax)%Z. clear ; omega.
-apply lt_bpow with radix2.
-apply Rle_lt_trans with (2 := Bx).
-change (Zpos mx) with (Zabs (Zpos mx)).
-rewrite F2R_Zabs.
-apply Ex.
-apply Rgt_not_eq.
-now apply F2R_gt_0_compat.
-unfold emin.
-generalize (prec_gt_0 prec).
-clear -Hmax ; omega.
-Qed.
-
-(** Truncation *)
-
-Record shr_record := { shr_m : Z ; shr_r : bool ; shr_s : bool }.
-
-Definition shr_1 mrs :=
- let '(Build_shr_record m r s) := mrs in
- let s := orb r s in
- match m with
- | Z0 => Build_shr_record Z0 false s
- | Zpos xH => Build_shr_record Z0 true s
- | Zpos (xO p) => Build_shr_record (Zpos p) false s
- | Zpos (xI p) => Build_shr_record (Zpos p) true s
- | Zneg xH => Build_shr_record Z0 true s
- | Zneg (xO p) => Build_shr_record (Zneg p) false s
- | Zneg (xI p) => Build_shr_record (Zneg p) true s
- end.
-
-Definition loc_of_shr_record mrs :=
- match mrs with
- | Build_shr_record _ false false => loc_Exact
- | Build_shr_record _ false true => loc_Inexact Lt
- | Build_shr_record _ true false => loc_Inexact Eq
- | Build_shr_record _ true true => loc_Inexact Gt
- end.
-
-Definition shr_record_of_loc m l :=
- match l with
- | loc_Exact => Build_shr_record m false false
- | loc_Inexact Lt => Build_shr_record m false true
- | loc_Inexact Eq => Build_shr_record m true false
- | loc_Inexact Gt => Build_shr_record m true true
- end.
-
-Theorem shr_m_shr_record_of_loc :
- forall m l,
- shr_m (shr_record_of_loc m l) = m.
-Proof.
-now intros m [|[| |]].
-Qed.
-
-Theorem loc_of_shr_record_of_loc :
- forall m l,
- loc_of_shr_record (shr_record_of_loc m l) = l.
-Proof.
-now intros m [|[| |]].
-Qed.
-
-Definition shr mrs e n :=
- match n with
- | Zpos p => (iter_pos shr_1 p mrs, (e + n)%Z)
- | _ => (mrs, e)
- end.
-
-Lemma inbetween_shr_1 :
- forall x mrs e,
- (0 <= shr_m mrs)%Z ->
- inbetween_float radix2 (shr_m mrs) e x (loc_of_shr_record mrs) ->
- inbetween_float radix2 (shr_m (shr_1 mrs)) (e + 1) x (loc_of_shr_record (shr_1 mrs)).
-Proof.
-intros x mrs e Hm Hl.
-refine (_ (new_location_even_correct (F2R (Float radix2 (shr_m (shr_1 mrs)) (e + 1))) (bpow radix2 e) 2 _ _ _ x (if shr_r (shr_1 mrs) then 1 else 0) (loc_of_shr_record mrs) _ _)) ; try easy.
-2: apply bpow_gt_0.
-2: now case (shr_r (shr_1 mrs)) ; split.
-change (Z2R 2) with (bpow radix2 1).
-rewrite <- bpow_plus.
-rewrite (Zplus_comm 1), <- (F2R_bpow radix2 (e + 1)).
-unfold inbetween_float, F2R. simpl.
-rewrite Z2R_plus, Rmult_plus_distr_r.
-replace (new_location_even 2 (if shr_r (shr_1 mrs) then 1%Z else 0%Z) (loc_of_shr_record mrs)) with (loc_of_shr_record (shr_1 mrs)).
-easy.
-clear -Hm.
-destruct mrs as (m, r, s).
-now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
-rewrite (F2R_change_exp radix2 e).
-2: apply Zle_succ.
-unfold F2R. simpl.
-rewrite <- 2!Rmult_plus_distr_r, <- 2!Z2R_plus.
-rewrite Zplus_assoc.
-replace (shr_m (shr_1 mrs) * 2 ^ (e + 1 - e) + (if shr_r (shr_1 mrs) then 1%Z else 0%Z))%Z with (shr_m mrs).
-exact Hl.
-ring_simplify (e + 1 - e)%Z.
-change (2^1)%Z with 2%Z.
-rewrite Zmult_comm.
-clear -Hm.
-destruct mrs as (m, r, s).
-now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
-Qed.
-
-Theorem inbetween_shr :
- forall x m e l n,
- (0 <= m)%Z ->
- inbetween_float radix2 m e x l ->
- let '(mrs, e') := shr (shr_record_of_loc m l) e n in
- inbetween_float radix2 (shr_m mrs) e' x (loc_of_shr_record mrs).
-Proof.
-intros x m e l n Hm Hl.
-destruct n as [|n|n].
-now destruct l as [|[| |]].
-2: now destruct l as [|[| |]].
-unfold shr.
-rewrite iter_pos_nat.
-rewrite Zpos_eq_Z_of_nat_o_nat_of_P.
-induction (nat_of_P n).
-simpl.
-rewrite Zplus_0_r.
-now destruct l as [|[| |]].
-rewrite iter_nat_S.
-rewrite inj_S.
-unfold Zsucc.
-rewrite Zplus_assoc.
-revert IHn0.
-apply inbetween_shr_1.
-clear -Hm.
-induction n0.
-now destruct l as [|[| |]].
-rewrite iter_nat_S.
-revert IHn0.
-generalize (iter_nat shr_1 n0 (shr_record_of_loc m l)).
-clear.
-intros (m, r, s) Hm.
-now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
-Qed.
-
-Definition shr_fexp m e l :=
- shr (shr_record_of_loc m l) e (fexp (Zdigits2 m + e) - e).
-
-Theorem shr_truncate :
- forall m e l,
- (0 <= m)%Z ->
- shr_fexp m e l =
- let '(m', e', l') := truncate radix2 fexp (m, e, l) in (shr_record_of_loc m' l', e').
-Proof.
-intros m e l Hm.
-case_eq (truncate radix2 fexp (m, e, l)).
-intros (m', e') l'.
-unfold shr_fexp.
-rewrite Zdigits2_Zdigits.
-case_eq (fexp (Zdigits radix2 m + e) - e)%Z.
-(* *)
-intros He.
-unfold truncate.
-rewrite He.
-simpl.
-intros H.
-now inversion H.
-(* *)
-intros p Hp.
-assert (He: (e <= fexp (Zdigits radix2 m + e))%Z).
-clear -Hp ; zify ; omega.
-destruct (inbetween_float_ex radix2 m e l) as (x, Hx).
-generalize (inbetween_shr x m e l (fexp (Zdigits radix2 m + e) - e) Hm Hx).
-assert (Hx0 : (0 <= x)%R).
-apply Rle_trans with (F2R (Float radix2 m e)).
-now apply F2R_ge_0_compat.
-exact (proj1 (inbetween_float_bounds _ _ _ _ _ Hx)).
-case_eq (shr (shr_record_of_loc m l) e (fexp (Zdigits radix2 m + e) - e)).
-intros mrs e'' H3 H4 H1.
-generalize (truncate_correct radix2 _ x m e l Hx0 Hx (or_introl _ He)).
-rewrite H1.
-intros (H2,_).
-rewrite <- Hp, H3.
-assert (e'' = e').
-change (snd (mrs, e'') = snd (fst (m',e',l'))).
-rewrite <- H1, <- H3.
-unfold truncate.
-now rewrite Hp.
-rewrite H in H4 |- *.
-apply (f_equal (fun v => (v, _))).
-destruct (inbetween_float_unique _ _ _ _ _ _ _ H2 H4) as (H5, H6).
-rewrite H5, H6.
-case mrs.
-now intros m0 [|] [|].
-(* *)
-intros p Hp.
-unfold truncate.
-rewrite Hp.
-simpl.
-intros H.
-now inversion H.
-Qed.
-
-(** Rounding modes *)
-
-Inductive mode := mode_NE | mode_ZR | mode_DN | mode_UP | mode_NA.
-
-Definition round_mode m :=
- match m with
- | mode_NE => ZnearestE
- | mode_ZR => Ztrunc
- | mode_DN => Zfloor
- | mode_UP => Zceil
- | mode_NA => ZnearestA
- end.
-
-Definition choice_mode m sx mx lx :=
- match m with
- | mode_NE => cond_incr (round_N (negb (Zeven mx)) lx) mx
- | mode_ZR => mx
- | mode_DN => cond_incr (round_sign_DN sx lx) mx
- | mode_UP => cond_incr (round_sign_UP sx lx) mx
- | mode_NA => cond_incr (round_N true lx) mx
- end.
-
-Global Instance valid_rnd_round_mode : forall m, Valid_rnd (round_mode m).
-Proof.
-destruct m ; unfold round_mode ; auto with typeclass_instances.
-Qed.
-
-Definition overflow_to_inf m s :=
- match m with
- | mode_NE => true
- | mode_NA => true
- | mode_ZR => false
- | mode_UP => negb s
- | mode_DN => s
- end.
-
-Definition binary_overflow m s :=
- if overflow_to_inf m s then F754_infinity s
- else F754_finite s (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end) (emax - prec).
-
-Definition binary_round_aux mode sx mx ex lx :=
- let '(mrs', e') := shr_fexp (Zpos mx) ex lx in
- let '(mrs'', e'') := shr_fexp (choice_mode mode sx (shr_m mrs') (loc_of_shr_record mrs')) e' loc_Exact in
- match shr_m mrs'' with
- | Z0 => F754_zero sx
- | Zpos m => if Zle_bool e'' (emax - prec) then F754_finite sx m e'' else binary_overflow mode sx
- | _ => F754_nan false xH (* dummy *)
- end.
-
-Theorem binary_round_aux_correct :
- forall mode x mx ex lx,
- inbetween_float radix2 (Zpos mx) ex (Rabs x) lx ->
- (ex <= fexp (Zdigits radix2 (Zpos mx) + ex))%Z ->
- let z := binary_round_aux mode (Rlt_bool x 0) mx ex lx in
- valid_binary z = true /\
- if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 emax) then
- FF2R radix2 z = round radix2 fexp (round_mode mode) x /\
- is_finite_FF z = true /\ sign_FF z = Rlt_bool x 0
- else
- z = binary_overflow mode (Rlt_bool x 0).
-Proof with auto with typeclass_instances.
-intros m x mx ex lx Bx Ex z.
-unfold binary_round_aux in z.
-revert z.
-rewrite shr_truncate. 2: easy.
-refine (_ (round_trunc_sign_any_correct _ _ (round_mode m) (choice_mode m) _ x (Zpos mx) ex lx Bx (or_introl _ Ex))).
-refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Bx Ex)).
-destruct (truncate radix2 fexp (Zpos mx, ex, lx)) as ((m1, e1), l1).
-rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc.
-set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
-intros (H1a,H1b) H1c.
-rewrite H1c.
-assert (Hm: (m1 <= m1')%Z).
-(* . *)
-unfold m1', choice_mode, cond_incr.
-case m ;
- try apply Zle_refl ;
- match goal with |- (m1 <= if ?b then _ else _)%Z =>
- case b ; [ apply Zle_succ | apply Zle_refl ] end.
-assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
-(* . *)
-rewrite <- (Zabs_eq m1').
-replace (Zabs m1') with (Zabs (cond_Zopp (Rlt_bool x 0) m1')).
-rewrite F2R_Zabs.
-now apply f_equal.
-apply abs_cond_Zopp.
-apply Zle_trans with (2 := Hm).
-apply Zlt_succ_le.
-apply F2R_gt_0_reg with radix2 e1.
-apply Rle_lt_trans with (1 := Rabs_pos x).
-exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
-(* . *)
-assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
-now apply inbetween_Exact.
-destruct m1' as [|m1'|m1'].
-(* . m1' = 0 *)
-rewrite shr_truncate. 2: apply Zle_refl.
-generalize (truncate_0 radix2 fexp e1 loc_Exact).
-destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
-rewrite shr_m_shr_record_of_loc.
-intros Hm2.
-rewrite Hm2.
-repeat split.
-rewrite Rlt_bool_true.
-repeat split.
-apply sym_eq.
-case Rlt_bool ; apply F2R_0.
-rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0.
-apply bpow_gt_0.
-(* . 0 < m1' *)
-assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z).
-rewrite <- ln_beta_F2R_Zdigits, <- Hr, ln_beta_abs.
-2: discriminate.
-rewrite H1b.
-rewrite canonic_exp_abs.
-fold (canonic_exp radix2 fexp (round radix2 fexp (round_mode m) x)).
-apply canonic_exp_round_ge...
-rewrite H1c.
-case (Rlt_bool x 0).
-apply Rlt_not_eq.
-now apply F2R_lt_0_compat.
-apply Rgt_not_eq.
-now apply F2R_gt_0_compat.
-refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)).
-2: now rewrite Hr ; apply F2R_gt_0_compat.
-refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
-2: discriminate.
-rewrite shr_truncate. 2: easy.
-destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
-rewrite shr_m_shr_record_of_loc.
-intros (H3,H4) (H2,_).
-destruct m2 as [|m2|m2].
-elim Rgt_not_eq with (2 := H3).
-rewrite F2R_0.
-now apply F2R_gt_0_compat.
-rewrite F2R_cond_Zopp, H3, abs_cond_Ropp, <- F2R_abs.
-simpl Zabs.
-case_eq (Zle_bool e2 (emax - prec)) ; intros He2.
-assert (bounded m2 e2 = true).
-apply andb_true_intro.
-split.
-unfold canonic_mantissa.
-apply Zeq_bool_true.
-rewrite Zpos_digits2_pos.
-rewrite <- ln_beta_F2R_Zdigits.
-apply sym_eq.
-now rewrite H3 in H4.
-discriminate.
-exact He2.
-apply (conj H).
-rewrite Rlt_bool_true.
-repeat split.
-apply F2R_cond_Zopp.
-now apply bounded_lt_emax.
-rewrite (Rlt_bool_false _ (bpow radix2 emax)).
-refine (conj _ (refl_equal _)).
-unfold binary_overflow.
-case overflow_to_inf.
-apply refl_equal.
-unfold valid_binary, bounded.
-rewrite Zle_bool_refl.
-rewrite Bool.andb_true_r.
-apply Zeq_bool_true.
-rewrite Zpos_digits2_pos.
-replace (Zdigits radix2 (Zpos (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end))) with prec.
-unfold fexp, FLT_exp, emin.
-generalize (prec_gt_0 prec).
-clear -Hmax ; zify ; omega.
-change 2%Z with (radix_val radix2).
-case_eq (Zpower radix2 prec - 1)%Z.
-simpl Zdigits.
-generalize (Zpower_gt_1 radix2 prec (prec_gt_0 prec)).
-clear ; omega.
-intros p Hp.
-apply Zle_antisym.
-cut (prec - 1 < Zdigits radix2 (Zpos p))%Z. clear ; omega.
-apply Zdigits_gt_Zpower.
-simpl Zabs. rewrite <- Hp.
-cut (Zpower radix2 (prec - 1) < Zpower radix2 prec)%Z. clear ; omega.
-apply lt_Z2R.
-rewrite 2!Z2R_Zpower. 2: now apply Zlt_le_weak.
-apply bpow_lt.
-apply Zlt_pred.
-now apply Zlt_0_le_0_pred.
-apply Zdigits_le_Zpower.
-simpl Zabs. rewrite <- Hp.
-apply Zlt_pred.
-intros p Hp.
-generalize (Zpower_gt_1 radix2 _ (prec_gt_0 prec)).
-clear -Hp ; zify ; omega.
-apply Rnot_lt_le.
-intros Hx.
-generalize (refl_equal (bounded m2 e2)).
-unfold bounded at 2.
-rewrite He2.
-rewrite Bool.andb_false_r.
-rewrite bounded_canonic_lt_emax with (2 := Hx).
-discriminate.
-unfold canonic.
-now rewrite <- H3.
-elim Rgt_not_eq with (2 := H3).
-apply Rlt_trans with R0.
-now apply F2R_lt_0_compat.
-now apply F2R_gt_0_compat.
-rewrite <- Hr.
-apply generic_format_abs...
-apply generic_format_round...
-(* . not m1' < 0 *)
-elim Rgt_not_eq with (2 := Hr).
-apply Rlt_le_trans with R0.
-now apply F2R_lt_0_compat.
-apply Rabs_pos.
-(* *)
-apply Rlt_le_trans with (2 := proj1 (inbetween_float_bounds _ _ _ _ _ Bx)).
-now apply F2R_gt_0_compat.
-(* all the modes are valid *)
-clear. case m.
-exact inbetween_int_NE_sign.
-exact inbetween_int_ZR_sign.
-exact inbetween_int_DN_sign.
-exact inbetween_int_UP_sign.
-exact inbetween_int_NA_sign.
-Qed.
-
-(** Multiplication *)
-
-Lemma Bmult_correct_aux :
- forall m sx mx ex (Hx : bounded mx ex = true) sy my ey (Hy : bounded my ey = true),
- let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
- let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
- let z := binary_round_aux m (xorb sx sy) (mx * my) (ex + ey) loc_Exact in
- valid_binary z = true /\
- if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x * y))) (bpow radix2 emax) then
- FF2R radix2 z = round radix2 fexp (round_mode m) (x * y) /\
- is_finite_FF z = true /\ sign_FF z = xorb sx sy
- else
- z = binary_overflow m (xorb sx sy).
-Proof.
-intros m sx mx ex Hx sy my ey Hy x y.
-unfold x, y.
-rewrite <- F2R_mult.
-simpl.
-replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx) * cond_Zopp sy (Zpos my)) (ex + ey))) 0).
-apply binary_round_aux_correct.
-constructor.
-rewrite <- F2R_abs.
-apply F2R_eq_compat.
-rewrite Zabs_Zmult.
-now rewrite 2!abs_cond_Zopp.
-(* *)
-change (Zpos (mx * my)) with (Zpos mx * Zpos my)%Z.
-assert (forall m e, bounded m e = true -> fexp (Zdigits radix2 (Zpos m) + e) = e)%Z.
-clear. intros m e Hb.
-destruct (andb_prop _ _ Hb) as (H,_).
-apply Zeq_bool_eq.
-now rewrite <- Zpos_digits2_pos.
-generalize (H _ _ Hx) (H _ _ Hy).
-clear x y sx sy Hx Hy H.
-unfold fexp, FLT_exp.
-refine (_ (Zdigits_mult_ge radix2 (Zpos mx) (Zpos my) _ _)) ; try discriminate.
-refine (_ (Zdigits_gt_0 radix2 (Zpos mx) _) (Zdigits_gt_0 radix2 (Zpos my) _)) ; try discriminate.
-generalize (Zdigits radix2 (Zpos mx)) (Zdigits radix2 (Zpos my)) (Zdigits radix2 (Zpos mx * Zpos my)).
-clear -Hmax.
-unfold emin.
-intros dx dy dxy Hx Hy Hxy.
-zify ; intros ; subst.
-omega.
-(* *)
-case sx ; case sy.
-apply Rlt_bool_false.
-now apply F2R_ge_0_compat.
-apply Rlt_bool_true.
-now apply F2R_lt_0_compat.
-apply Rlt_bool_true.
-now apply F2R_lt_0_compat.
-apply Rlt_bool_false.
-now apply F2R_ge_0_compat.
-Qed.
-
-Definition Bmult mult_nan m x y :=
- let f pl := B754_nan (fst pl) (snd pl) in
- match x, y with
- | B754_nan _ _, _ | _, B754_nan _ _ => f (mult_nan x y)
- | B754_infinity sx, B754_infinity sy => B754_infinity (xorb sx sy)
- | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
- | B754_finite sx _ _ _, B754_infinity sy => B754_infinity (xorb sx sy)
- | B754_infinity _, B754_zero _ => f (mult_nan x y)
- | B754_zero _, B754_infinity _ => f (mult_nan x y)
- | B754_finite sx _ _ _, B754_zero sy => B754_zero (xorb sx sy)
- | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
- | B754_zero sx, B754_zero sy => B754_zero (xorb sx sy)
- | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
- FF2B _ (proj1 (Bmult_correct_aux m sx mx ex Hx sy my ey Hy))
- end.
-
-Theorem Bmult_correct :
- forall mult_nan m x y,
- if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x * B2R y))) (bpow radix2 emax) then
- B2R (Bmult mult_nan m x y) = round radix2 fexp (round_mode m) (B2R x * B2R y) /\
- is_finite (Bmult mult_nan m x y) = andb (is_finite x) (is_finite y) /\
- (is_nan (Bmult mult_nan m x y) = false ->
- Bsign (Bmult mult_nan m x y) = xorb (Bsign x) (Bsign y))
- else
- B2FF (Bmult mult_nan m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
-Proof.
-intros mult_nan m [sx|sx|sx plx|sx mx ex Hx] [sy|sy|sy ply|sy my ey Hy] ;
- try ( rewrite ?Rmult_0_r, ?Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ now repeat constructor | apply bpow_gt_0 | now auto with typeclass_instances ] ).
-simpl.
-case Bmult_correct_aux.
-intros H1.
-case Rlt_bool.
-intros (H2, (H3, H4)).
-split.
-now rewrite B2R_FF2B.
-split.
-now rewrite is_finite_FF2B.
-rewrite Bsign_FF2B. auto.
-intros H2.
-now rewrite B2FF_FF2B.
-Qed.
-
-Definition Bmult_FF mult_nan m x y :=
- let f pl := F754_nan (fst pl) (snd pl) in
- match x, y with
- | F754_nan _ _, _ | _, F754_nan _ _ => f (mult_nan x y)
- | F754_infinity sx, F754_infinity sy => F754_infinity (xorb sx sy)
- | F754_infinity sx, F754_finite sy _ _ => F754_infinity (xorb sx sy)
- | F754_finite sx _ _, F754_infinity sy => F754_infinity (xorb sx sy)
- | F754_infinity _, F754_zero _ => f (mult_nan x y)
- | F754_zero _, F754_infinity _ => f (mult_nan x y)
- | F754_finite sx _ _, F754_zero sy => F754_zero (xorb sx sy)
- | F754_zero sx, F754_finite sy _ _ => F754_zero (xorb sx sy)
- | F754_zero sx, F754_zero sy => F754_zero (xorb sx sy)
- | F754_finite sx mx ex, F754_finite sy my ey =>
- binary_round_aux m (xorb sx sy) (mx * my) (ex + ey) loc_Exact
- end.
-
-Theorem B2FF_Bmult :
- forall mult_nan mult_nan_ff,
- forall m x y,
- mult_nan_ff (B2FF x) (B2FF y) = (let '(sr, exist plr _) := mult_nan x y in (sr, plr)) ->
- B2FF (Bmult mult_nan m x y) = Bmult_FF mult_nan_ff m (B2FF x) (B2FF y).
-Proof.
-intros mult_nan mult_nan_ff m x y Hmult_nan.
-unfold Bmult_FF. rewrite Hmult_nan.
-destruct x as [sx|sx|sx [plx Hplx]|sx mx ex Hx], y as [sy|sy|sy [ply Hply]|sy my ey Hy] ;
- simpl; try match goal with |- context [mult_nan ?x ?y] =>
- destruct (mult_nan x y) as [? []] end;
- try easy.
-apply B2FF_FF2B.
-Qed.
-
-(** Normalization and rounding *)
-
-Definition shl_align mx ex ex' :=
- match (ex' - ex)%Z with
- | Zneg d => (shift_pos d mx, ex')
- | _ => (mx, ex)
- end.
-
-Theorem shl_align_correct :
- forall mx ex ex',
- let (mx', ex'') := shl_align mx ex ex' in
- F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex'') /\
- (ex'' <= ex')%Z.
-Proof.
-intros mx ex ex'.
-unfold shl_align.
-case_eq (ex' - ex)%Z.
-(* d = 0 *)
-intros H.
-repeat split.
-rewrite Zminus_eq with (1 := H).
-apply Zle_refl.
-(* d > 0 *)
-intros d Hd.
-repeat split.
-replace ex' with (ex' - ex + ex)%Z by ring.
-rewrite Hd.
-pattern ex at 1 ; rewrite <- Zplus_0_l.
-now apply Zplus_le_compat_r.
-(* d < 0 *)
-intros d Hd.
-rewrite shift_pos_correct, Zmult_comm.
-change (Zpower_pos 2 d) with (Zpower radix2 (Zpos d)).
-change (Zpos d) with (Zopp (Zneg d)).
-rewrite <- Hd.
-split.
-replace (- (ex' - ex))%Z with (ex - ex')%Z by ring.
-apply F2R_change_exp.
-apply Zle_0_minus_le.
-replace (ex - ex')%Z with (- (ex' - ex))%Z by ring.
-now rewrite Hd.
-apply Zle_refl.
-Qed.
-
-Theorem snd_shl_align :
- forall mx ex ex',
- (ex' <= ex)%Z ->
- snd (shl_align mx ex ex') = ex'.
-Proof.
-intros mx ex ex' He.
-unfold shl_align.
-case_eq (ex' - ex)%Z ; simpl.
-intros H.
-now rewrite Zminus_eq with (1 := H).
-intros p.
-clear -He ; zify ; omega.
-intros.
-apply refl_equal.
-Qed.
-
-Definition shl_align_fexp mx ex :=
- shl_align mx ex (fexp (Zpos (digits2_pos mx) + ex)).
-
-Theorem shl_align_fexp_correct :
- forall mx ex,
- let (mx', ex') := shl_align_fexp mx ex in
- F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex') /\
- (ex' <= fexp (Zdigits radix2 (Zpos mx') + ex'))%Z.
-Proof.
-intros mx ex.
-unfold shl_align_fexp.
-generalize (shl_align_correct mx ex (fexp (Zpos (digits2_pos mx) + ex))).
-rewrite Zpos_digits2_pos.
-case shl_align.
-intros mx' ex' (H1, H2).
-split.
-exact H1.
-rewrite <- ln_beta_F2R_Zdigits. 2: easy.
-rewrite <- H1.
-now rewrite ln_beta_F2R_Zdigits.
-Qed.
-
-Definition binary_round m sx mx ex :=
- let '(mz, ez) := shl_align_fexp mx ex in binary_round_aux m sx mz ez loc_Exact.
-
-Theorem binary_round_correct :
- forall m sx mx ex,
- let z := binary_round m sx mx ex in
- valid_binary z = true /\
- let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
- if Rlt_bool (Rabs (round radix2 fexp (round_mode m) x)) (bpow radix2 emax) then
- FF2R radix2 z = round radix2 fexp (round_mode m) x /\
- is_finite_FF z = true /\
- sign_FF z = sx
- else
- z = binary_overflow m sx.
-Proof.
-intros m sx mx ex.
-unfold binary_round.
-generalize (shl_align_fexp_correct mx ex).
-destruct (shl_align_fexp mx ex) as (mz, ez).
-intros (H1, H2).
-set (x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex)).
-replace sx with (Rlt_bool x 0).
-apply binary_round_aux_correct.
-constructor.
-unfold x.
-now rewrite <- F2R_Zabs, abs_cond_Zopp.
-exact H2.
-unfold x.
-case sx.
-apply Rlt_bool_true.
-now apply F2R_lt_0_compat.
-apply Rlt_bool_false.
-now apply F2R_ge_0_compat.
-Qed.
-
-Definition binary_normalize mode m e szero :=
- match m with
- | Z0 => B754_zero szero
- | Zpos m => FF2B _ (proj1 (binary_round_correct mode false m e))
- | Zneg m => FF2B _ (proj1 (binary_round_correct mode true m e))
- end.
-
-Theorem binary_normalize_correct :
- forall m mx ex szero,
- if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (F2R (Float radix2 mx ex)))) (bpow radix2 emax) then
- B2R (binary_normalize m mx ex szero) = round radix2 fexp (round_mode m) (F2R (Float radix2 mx ex)) /\
- is_finite (binary_normalize m mx ex szero) = true /\
- Bsign (binary_normalize m mx ex szero) =
- match Rcompare (F2R (Float radix2 mx ex)) 0 with
- | Eq => szero
- | Lt => true
- | Gt => false
- end
- else
- B2FF (binary_normalize m mx ex szero) = binary_overflow m (Rlt_bool (F2R (Float radix2 mx ex)) 0).
-Proof with auto with typeclass_instances.
-intros m mx ez szero.
-destruct mx as [|mz|mz] ; simpl.
-rewrite F2R_0, round_0, Rabs_R0, Rlt_bool_true...
-split... split...
-rewrite Rcompare_Eq...
-apply bpow_gt_0.
-(* . mz > 0 *)
-generalize (binary_round_correct m false mz ez).
-simpl.
-case Rlt_bool_spec.
-intros _ (Vz, (Rz, (Rz', Rz''))).
-split.
-now rewrite B2R_FF2B.
-split.
-now rewrite is_finite_FF2B.
-rewrite Bsign_FF2B, Rz''.
-rewrite Rcompare_Gt...
-apply F2R_gt_0_compat.
-simpl. zify; omega.
-intros Hz' (Vz, Rz).
-rewrite B2FF_FF2B, Rz.
-apply f_equal.
-apply sym_eq.
-apply Rlt_bool_false.
-now apply F2R_ge_0_compat.
-(* . mz < 0 *)
-generalize (binary_round_correct m true mz ez).
-simpl.
-case Rlt_bool_spec.
-intros _ (Vz, (Rz, (Rz', Rz''))).
-split.
-now rewrite B2R_FF2B.
-split.
-now rewrite is_finite_FF2B.
-rewrite Bsign_FF2B, Rz''.
-rewrite Rcompare_Lt...
-apply F2R_lt_0_compat.
-simpl. zify; omega.
-intros Hz' (Vz, Rz).
-rewrite B2FF_FF2B, Rz.
-apply f_equal.
-apply sym_eq.
-apply Rlt_bool_true.
-now apply F2R_lt_0_compat.
-Qed.
-
-(** Addition *)
-
-Definition Bplus plus_nan m x y :=
- let f pl := B754_nan (fst pl) (snd pl) in
- match x, y with
- | B754_nan _ _, _ | _, B754_nan _ _ => f (plus_nan x y)
- | B754_infinity sx, B754_infinity sy =>
- if Bool.eqb sx sy then x else f (plus_nan x y)
- | B754_infinity _, _ => x
- | _, B754_infinity _ => y
- | B754_zero sx, B754_zero sy =>
- if Bool.eqb sx sy then x else
- match m with mode_DN => B754_zero true | _ => B754_zero false end
- | B754_zero _, _ => y
- | _, B754_zero _ => x
- | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
- let ez := Zmin ex ey in
- binary_normalize m (Zplus (cond_Zopp sx (Zpos (fst (shl_align mx ex ez)))) (cond_Zopp sy (Zpos (fst (shl_align my ey ez)))))
- ez (match m with mode_DN => true | _ => false end)
- end.
-
-Theorem Bplus_correct :
- forall plus_nan m x y,
- is_finite x = true ->
- is_finite y = true ->
- if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 emax) then
- B2R (Bplus plus_nan m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y) /\
- is_finite (Bplus plus_nan m x y) = true /\
- Bsign (Bplus plus_nan m x y) =
- match Rcompare (B2R x + B2R y) 0 with
- | Eq => match m with mode_DN => orb (Bsign x) (Bsign y)
- | _ => andb (Bsign x) (Bsign y) end
- | Lt => true
- | Gt => false
- end
- else
- (B2FF (Bplus plus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = Bsign y).
-Proof with auto with typeclass_instances.
-intros plus_nan m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] Fx Fy ; try easy.
-(* *)
-rewrite Rplus_0_r, round_0, Rabs_R0, Rlt_bool_true...
-simpl.
-rewrite Rcompare_Eq by auto.
-destruct sx, sy; try easy; now case m.
-apply bpow_gt_0.
-(* *)
-rewrite Rplus_0_l, round_generic, Rlt_bool_true...
-split... split...
-simpl. unfold F2R.
-erewrite <- Rmult_0_l, Rcompare_mult_r.
-rewrite Rcompare_Z2R with (y:=0%Z).
-destruct sy...
-apply bpow_gt_0.
-apply abs_B2R_lt_emax.
-apply generic_format_B2R.
-(* *)
-rewrite Rplus_0_r, round_generic, Rlt_bool_true...
-split... split...
-simpl. unfold F2R.
-erewrite <- Rmult_0_l, Rcompare_mult_r.
-rewrite Rcompare_Z2R with (y:=0%Z).
-destruct sx...
-apply bpow_gt_0.
-apply abs_B2R_lt_emax.
-apply generic_format_B2R.
-(* *)
-clear Fx Fy.
-simpl.
-set (szero := match m with mode_DN => true | _ => false end).
-set (ez := Zmin ex ey).
-set (mz := (cond_Zopp sx (Zpos (fst (shl_align mx ex ez))) + cond_Zopp sy (Zpos (fst (shl_align my ey ez))))%Z).
-assert (Hp: (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) +
- F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey))%R = F2R (Float radix2 mz ez)).
-rewrite 2!F2R_cond_Zopp.
-generalize (shl_align_correct mx ex ez).
-generalize (shl_align_correct my ey ez).
-generalize (snd_shl_align mx ex ez (Zle_min_l ex ey)).
-generalize (snd_shl_align my ey ez (Zle_min_r ex ey)).
-destruct (shl_align mx ex ez) as (mx', ex').
-destruct (shl_align my ey ez) as (my', ey').
-simpl.
-intros H1 H2.
-rewrite H1, H2.
-clear H1 H2.
-intros (H1, _) (H2, _).
-rewrite H1, H2.
-clear H1 H2.
-rewrite <- 2!F2R_cond_Zopp.
-unfold F2R. simpl.
-now rewrite <- Rmult_plus_distr_r, <- Z2R_plus.
-rewrite Hp.
-assert (Sz: (bpow radix2 emax <= Rabs (round radix2 fexp (round_mode m) (F2R (Float radix2 mz ez))))%R -> sx = Rlt_bool (F2R (Float radix2 mz ez)) 0 /\ sx = sy).
-(* . *)
-rewrite <- Hp.
-intros Bz.
-destruct (Bool.bool_dec sx sy) as [Hs|Hs].
-(* .. *)
-refine (conj _ Hs).
-rewrite Hs.
-apply sym_eq.
-case sy.
-apply Rlt_bool_true.
-rewrite <- (Rplus_0_r 0).
-apply Rplus_lt_compat.
-now apply F2R_lt_0_compat.
-now apply F2R_lt_0_compat.
-apply Rlt_bool_false.
-rewrite <- (Rplus_0_r 0).
-apply Rplus_le_compat.
-now apply F2R_ge_0_compat.
-now apply F2R_ge_0_compat.
-(* .. *)
-elim Rle_not_lt with (1 := Bz).
-generalize (bounded_lt_emax _ _ Hx) (bounded_lt_emax _ _ Hy) (andb_prop _ _ Hx) (andb_prop _ _ Hy).
-intros Bx By (Hx',_) (Hy',_).
-generalize (canonic_canonic_mantissa sx _ _ Hx') (canonic_canonic_mantissa sy _ _ Hy').
-clear -Bx By Hs prec_gt_0_.
-intros Cx Cy.
-destruct sx.
-(* ... *)
-destruct sy.
-now elim Hs.
-clear Hs.
-apply Rabs_lt.
-split.
-apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)).
-rewrite F2R_Zopp.
-now apply Ropp_lt_contravar.
-apply round_ge_generic...
-now apply generic_format_canonic.
-pattern (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)) at 1 ; rewrite <- Rplus_0_r.
-apply Rplus_le_compat_l.
-now apply F2R_ge_0_compat.
-apply Rle_lt_trans with (2 := By).
-apply round_le_generic...
-now apply generic_format_canonic.
-rewrite <- (Rplus_0_l (F2R (Float radix2 (Zpos my) ey))).
-apply Rplus_le_compat_r.
-now apply F2R_le_0_compat.
-(* ... *)
-destruct sy.
-2: now elim Hs.
-clear Hs.
-apply Rabs_lt.
-split.
-apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)).
-rewrite F2R_Zopp.
-now apply Ropp_lt_contravar.
-apply round_ge_generic...
-now apply generic_format_canonic.
-pattern (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)) at 1 ; rewrite <- Rplus_0_l.
-apply Rplus_le_compat_r.
-now apply F2R_ge_0_compat.
-apply Rle_lt_trans with (2 := Bx).
-apply round_le_generic...
-now apply generic_format_canonic.
-rewrite <- (Rplus_0_r (F2R (Float radix2 (Zpos mx) ex))).
-apply Rplus_le_compat_l.
-now apply F2R_le_0_compat.
-(* . *)
-generalize (binary_normalize_correct m mz ez szero).
-case Rlt_bool_spec.
-split; try easy. split; try easy.
-destruct (Rcompare_spec (F2R (beta:=radix2) {| Fnum := mz; Fexp := ez |}) 0); try easy.
-rewrite H1 in Hp.
-apply Rplus_opp_r_uniq in Hp.
-rewrite <- F2R_Zopp in Hp.
-eapply canonic_unicity in Hp.
-inversion Hp. destruct sy, sx, m; try discriminate H3; easy.
-apply canonic_canonic_mantissa.
-apply Bool.andb_true_iff in Hy. easy.
-replace (-cond_Zopp sx (Z.pos mx))%Z with (cond_Zopp (negb sx) (Z.pos mx))
- by (destruct sx; auto).
-apply canonic_canonic_mantissa.
-apply Bool.andb_true_iff in Hx. easy.
-intros Hz' Vz.
-specialize (Sz Hz').
-split.
-rewrite Vz.
-now apply f_equal.
-apply Sz.
-Qed.
-
-(** Subtraction *)
-
-Definition Bminus minus_nan m x y := Bplus minus_nan m x (Bopp pair y).
-
-Theorem Bminus_correct :
- forall minus_nan m x y,
- is_finite x = true ->
- is_finite y = true ->
- if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x - B2R y))) (bpow radix2 emax) then
- B2R (Bminus minus_nan m x y) = round radix2 fexp (round_mode m) (B2R x - B2R y) /\
- is_finite (Bminus minus_nan m x y) = true /\
- Bsign (Bminus minus_nan m x y) =
- match Rcompare (B2R x - B2R y) 0 with
- | Eq => match m with mode_DN => orb (Bsign x) (negb (Bsign y))
- | _ => andb (Bsign x) (negb (Bsign y)) end
- | Lt => true
- | Gt => false
- end
- else
- (B2FF (Bminus minus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = negb (Bsign y)).
-Proof with auto with typeclass_instances.
-intros m minus_nan x y Fx Fy.
-replace (negb (Bsign y)) with (Bsign (Bopp pair y)).
-unfold Rminus.
-erewrite <- B2R_Bopp.
-apply Bplus_correct.
-exact Fx.
-rewrite is_finite_Bopp. auto. now destruct y as [ | | | ].
-Qed.
-
-(** Division *)
-
-Definition Fdiv_core_binary m1 e1 m2 e2 :=
- let d1 := Zdigits2 m1 in
- let d2 := Zdigits2 m2 in
- let e := (e1 - e2)%Z in
- let (m, e') :=
- match (d2 + prec - d1)%Z with
- | Zpos p => (Z.shiftl m1 (Zpos p), e + Zneg p)%Z
- | _ => (m1, e)
- end in
- let '(q, r) := Zfast_div_eucl m m2 in
- (q, e', new_location m2 r loc_Exact).
-
-Lemma Bdiv_correct_aux :
- forall m sx mx ex sy my ey,
- let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
- let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
- let z :=
- let '(mz, ez, lz) := Fdiv_core_binary (Zpos mx) ex (Zpos my) ey in
- match mz with
- | Zpos mz => binary_round_aux m (xorb sx sy) mz ez lz
- | _ => F754_nan false xH (* dummy *)
- end in
- valid_binary z = true /\
- if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x / y))) (bpow radix2 emax) then
- FF2R radix2 z = round radix2 fexp (round_mode m) (x / y) /\
- is_finite_FF z = true /\ sign_FF z = xorb sx sy
- else
- z = binary_overflow m (xorb sx sy).
-Proof.
-intros m sx mx ex sy my ey.
-replace (Fdiv_core_binary (Zpos mx) ex (Zpos my) ey) with (Fdiv_core radix2 prec (Zpos mx) ex (Zpos my) ey).
-refine (_ (Fdiv_core_correct radix2 prec (Zpos mx) ex (Zpos my) ey _ _ _)) ; try easy.
-destruct (Fdiv_core radix2 prec (Zpos mx) ex (Zpos my) ey) as ((mz, ez), lz).
-intros (Pz, Bz).
-simpl.
-replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) *
- / F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey)) 0).
-unfold Rdiv.
-destruct mz as [|mz|mz].
-(* . mz = 0 *)
-elim (Zlt_irrefl prec).
-now apply Zle_lt_trans with Z0.
-(* . mz > 0 *)
-apply binary_round_aux_correct.
-rewrite Rabs_mult, Rabs_Rinv.
-now rewrite <- 2!F2R_Zabs, 2!abs_cond_Zopp.
-case sy.
-apply Rlt_not_eq.
-now apply F2R_lt_0_compat.
-apply Rgt_not_eq.
-now apply F2R_gt_0_compat.
-revert Pz.
-generalize (Zdigits radix2 (Zpos mz)).
-unfold fexp, FLT_exp.
-clear.
-intros ; zify ; subst.
-omega.
-(* . mz < 0 *)
-elim Rlt_not_le with (1 := proj2 (inbetween_float_bounds _ _ _ _ _ Bz)).
-apply Rle_trans with R0.
-apply F2R_le_0_compat.
-now case mz.
-apply Rmult_le_pos.
-now apply F2R_ge_0_compat.
-apply Rlt_le.
-apply Rinv_0_lt_compat.
-now apply F2R_gt_0_compat.
-(* *)
-case sy ; simpl.
-change (Zneg my) with (Zopp (Zpos my)).
-rewrite F2R_Zopp.
-rewrite <- Ropp_inv_permute.
-rewrite Ropp_mult_distr_r_reverse.
-case sx ; simpl.
-apply Rlt_bool_false.
-rewrite <- Ropp_mult_distr_l_reverse.
-apply Rmult_le_pos.
-rewrite <- F2R_opp.
-now apply F2R_ge_0_compat.
-apply Rlt_le.
-apply Rinv_0_lt_compat.
-now apply F2R_gt_0_compat.
-apply Rlt_bool_true.
-rewrite <- Ropp_0.
-apply Ropp_lt_contravar.
-apply Rmult_lt_0_compat.
-now apply F2R_gt_0_compat.
-apply Rinv_0_lt_compat.
-now apply F2R_gt_0_compat.
-apply Rgt_not_eq.
-now apply F2R_gt_0_compat.
-case sx.
-apply Rlt_bool_true.
-rewrite F2R_Zopp.
-rewrite Ropp_mult_distr_l_reverse.
-rewrite <- Ropp_0.
-apply Ropp_lt_contravar.
-apply Rmult_lt_0_compat.
-now apply F2R_gt_0_compat.
-apply Rinv_0_lt_compat.
-now apply F2R_gt_0_compat.
-apply Rlt_bool_false.
-apply Rmult_le_pos.
-now apply F2R_ge_0_compat.
-apply Rlt_le.
-apply Rinv_0_lt_compat.
-now apply F2R_gt_0_compat.
-(* *)
-unfold Fdiv_core_binary, Fdiv_core.
-rewrite 2!Zdigits2_Zdigits.
-change 2%Z with (radix_val radix2).
-destruct (Zdigits radix2 (Z.pos my) + prec - Zdigits radix2 (Z.pos mx))%Z as [|p|p].
-now rewrite Zfast_div_eucl_correct.
-rewrite Z.shiftl_mul_pow2 by easy.
-now rewrite Zfast_div_eucl_correct.
-now rewrite Zfast_div_eucl_correct.
-Qed.
-
-Definition Bdiv div_nan m x y :=
- let f pl := B754_nan (fst pl) (snd pl) in
- match x, y with
- | B754_nan _ _, _ | _, B754_nan _ _ => f (div_nan x y)
- | B754_infinity sx, B754_infinity sy => f (div_nan x y)
- | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
- | B754_finite sx _ _ _, B754_infinity sy => B754_zero (xorb sx sy)
- | B754_infinity sx, B754_zero sy => B754_infinity (xorb sx sy)
- | B754_zero sx, B754_infinity sy => B754_zero (xorb sx sy)
- | B754_finite sx _ _ _, B754_zero sy => B754_infinity (xorb sx sy)
- | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
- | B754_zero sx, B754_zero sy => f (div_nan x y)
- | B754_finite sx mx ex _, B754_finite sy my ey _ =>
- FF2B _ (proj1 (Bdiv_correct_aux m sx mx ex sy my ey))
- end.
-
-Theorem Bdiv_correct :
- forall div_nan m x y,
- B2R y <> 0%R ->
- if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x / B2R y))) (bpow radix2 emax) then
- B2R (Bdiv div_nan m x y) = round radix2 fexp (round_mode m) (B2R x / B2R y) /\
- is_finite (Bdiv div_nan m x y) = is_finite x /\
- (is_nan (Bdiv div_nan m x y) = false ->
- Bsign (Bdiv div_nan m x y) = xorb (Bsign x) (Bsign y))
- else
- B2FF (Bdiv div_nan m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
-Proof.
-intros div_nan m x [sy|sy|sy ply|sy my ey Hy] Zy ; try now elim Zy.
-revert x.
-unfold Rdiv.
-intros [sx|sx|sx plx|sx mx ex Hx] ;
- try ( rewrite Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ now repeat constructor | apply bpow_gt_0 | auto with typeclass_instances ] ).
-simpl.
-case Bdiv_correct_aux.
-intros H1.
-unfold Rdiv.
-case Rlt_bool.
-intros (H2, (H3, H4)).
-split.
-now rewrite B2R_FF2B.
-split.
-now rewrite is_finite_FF2B.
-rewrite Bsign_FF2B. congruence.
-intros H2.
-now rewrite B2FF_FF2B.
-Qed.
-
-(** Square root *)
-
-Definition Fsqrt_core_binary m e :=
- let d := Zdigits2 m in
- let s := Zmax (2 * prec - d) 0 in
- let e' := (e - s)%Z in
- let (s', e'') := if Zeven e' then (s, e') else (s + 1, e' - 1)%Z in
- let m' :=
- match s' with
- | Zpos p => Z.shiftl m (Zpos p)
- | _ => m
- end in
- let (q, r) := Z.sqrtrem m' in
- let l :=
- if Zeq_bool r 0 then loc_Exact
- else loc_Inexact (if Zle_bool r q then Lt else Gt) in
- (q, Zdiv2 e'', l).
-
-Lemma Bsqrt_correct_aux :
- forall m mx ex (Hx : bounded mx ex = true),
- let x := F2R (Float radix2 (Zpos mx) ex) in
- let z :=
- let '(mz, ez, lz) := Fsqrt_core_binary (Zpos mx) ex in
- match mz with
- | Zpos mz => binary_round_aux m false mz ez lz
- | _ => F754_nan false xH (* dummy *)
- end in
- valid_binary z = true /\
- FF2R radix2 z = round radix2 fexp (round_mode m) (sqrt x) /\
- is_finite_FF z = true /\ sign_FF z = false.
-Proof with auto with typeclass_instances.
-intros m mx ex Hx.
-replace (Fsqrt_core_binary (Zpos mx) ex) with (Fsqrt_core radix2 prec (Zpos mx) ex).
-simpl.
-refine (_ (Fsqrt_core_correct radix2 prec (Zpos mx) ex _)) ; try easy.
-destruct (Fsqrt_core radix2 prec (Zpos mx) ex) as ((mz, ez), lz).
-intros (Pz, Bz).
-destruct mz as [|mz|mz].
-(* . mz = 0 *)
-elim (Zlt_irrefl prec).
-now apply Zle_lt_trans with Z0.
-(* . mz > 0 *)
-refine (_ (binary_round_aux_correct m (sqrt (F2R (Float radix2 (Zpos mx) ex))) mz ez lz _ _)).
-rewrite Rlt_bool_false. 2: apply sqrt_ge_0.
-rewrite Rlt_bool_true.
-easy.
-(* .. *)
-rewrite Rabs_pos_eq.
-refine (_ (relative_error_FLT_ex radix2 emin prec (prec_gt_0 prec) (round_mode m) (sqrt (F2R (Float radix2 (Zpos mx) ex))) _)).
-fold fexp.
-intros (eps, (Heps, Hr)).
-rewrite Hr.
-assert (Heps': (Rabs eps < 1)%R).
-apply Rlt_le_trans with (1 := Heps).
-fold (bpow radix2 0).
-apply bpow_le.
-generalize (prec_gt_0 prec).
-clear ; omega.
-apply Rsqr_incrst_0.
-3: apply bpow_ge_0.
-rewrite Rsqr_mult.
-rewrite Rsqr_sqrt.
-2: now apply F2R_ge_0_compat.
-unfold Rsqr.
-apply Rmult_ge_0_gt_0_lt_compat.
-apply Rle_ge.
-apply Rle_0_sqr.
-apply bpow_gt_0.
-now apply bounded_lt_emax.
-apply Rlt_le_trans with 4%R.
-apply Rsqr_incrst_1.
-apply Rplus_lt_compat_l.
-apply (Rabs_lt_inv _ _ Heps').
-rewrite <- (Rplus_opp_r 1).
-apply Rplus_le_compat_l.
-apply Rlt_le.
-apply (Rabs_lt_inv _ _ Heps').
-now apply (Z2R_le 0 2).
-change 4%R with (bpow radix2 2).
-apply bpow_le.
-generalize (prec_gt_0 prec).
-clear -Hmax ; omega.
-apply Rmult_le_pos.
-apply sqrt_ge_0.
-rewrite <- (Rplus_opp_r 1).
-apply Rplus_le_compat_l.
-apply Rlt_le.
-apply (Rabs_lt_inv _ _ Heps').
-rewrite Rabs_pos_eq.
-2: apply sqrt_ge_0.
-apply Rsqr_incr_0.
-2: apply bpow_ge_0.
-2: apply sqrt_ge_0.
-rewrite Rsqr_sqrt.
-2: now apply F2R_ge_0_compat.
-apply Rle_trans with (bpow radix2 emin).
-unfold Rsqr.
-rewrite <- bpow_plus.
-apply bpow_le.
-unfold emin.
-clear -Hmax ; omega.
-apply generic_format_ge_bpow with fexp.
-intros.
-apply Zle_max_r.
-now apply F2R_gt_0_compat.
-apply generic_format_canonic.
-apply (canonic_canonic_mantissa false).
-apply (andb_prop _ _ Hx).
-(* .. *)
-apply round_ge_generic...
-apply generic_format_0.
-apply sqrt_ge_0.
-rewrite Rabs_pos_eq.
-exact Bz.
-apply sqrt_ge_0.
-revert Pz.
-generalize (Zdigits radix2 (Zpos mz)).
-unfold fexp, FLT_exp.
-clear.
-intros ; zify ; subst.
-omega.
-(* . mz < 0 *)
-elim Rlt_not_le with (1 := proj2 (inbetween_float_bounds _ _ _ _ _ Bz)).
-apply Rle_trans with R0.
-apply F2R_le_0_compat.
-now case mz.
-apply sqrt_ge_0.
-(* *)
-unfold Fsqrt_core, Fsqrt_core_binary.
-rewrite Zdigits2_Zdigits.
-destruct (if Zeven _ then _ else _) as [[|s'|s'] e''] ; try easy.
-now rewrite Z.shiftl_mul_pow2.
-Qed.
-
-Definition Bsqrt sqrt_nan m x :=
- let f pl := B754_nan (fst pl) (snd pl) in
- match x with
- | B754_nan sx plx => f (sqrt_nan x)
- | B754_infinity false => x
- | B754_infinity true => f (sqrt_nan x)
- | B754_finite true _ _ _ => f (sqrt_nan x)
- | B754_zero _ => x
- | B754_finite sx mx ex Hx =>
- FF2B _ (proj1 (Bsqrt_correct_aux m mx ex Hx))
- end.
-
-Theorem Bsqrt_correct :
- forall sqrt_nan m x,
- B2R (Bsqrt sqrt_nan m x) = round radix2 fexp (round_mode m) (sqrt (B2R x)) /\
- is_finite (Bsqrt sqrt_nan m x) = match x with B754_zero _ => true | B754_finite false _ _ _ => true | _ => false end /\
- (is_nan (Bsqrt sqrt_nan m x) = false -> Bsign (Bsqrt sqrt_nan m x) = Bsign x).
-Proof.
-intros sqrt_nan m [sx|[|]| |sx mx ex Hx] ; try ( now simpl ; rewrite sqrt_0, round_0 ; intuition auto with typeclass_instances ).
-simpl.
-case Bsqrt_correct_aux.
-intros H1 (H2, (H3, H4)).
-case sx.
-refine (conj _ (conj (refl_equal false) _)).
-apply sym_eq.
-unfold sqrt.
-case Rcase_abs.
-intros _.
-apply round_0.
-auto with typeclass_instances.
-intros H.
-elim Rge_not_lt with (1 := H).
-now apply F2R_lt_0_compat.
-easy.
-split.
-now rewrite B2R_FF2B.
-split.
-now rewrite is_finite_FF2B.
-intro. rewrite Bsign_FF2B. auto.
-Qed.
-
-End Binary.
diff --git a/flocq/Calc/Fcalc_bracket.v b/flocq/Calc/Bracket.v
index 03ef7bd3..83714e87 100644
--- a/flocq/Calc/Fcalc_bracket.v
+++ b/flocq/Calc/Bracket.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2010-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2010-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -19,9 +19,7 @@ COPYING file for more details.
(** * Locations: where a real number is positioned with respect to its rounded-down value in an arbitrary format. *)
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_float_prop.
+Require Import Raux Defs Float_prop.
Section Fcalc_bracket.
@@ -146,23 +144,17 @@ assert (0 < v < 1)%R.
split.
unfold v, Rdiv.
apply Rmult_lt_0_compat.
-case l.
-now apply (Z2R_lt 0 2).
-now apply (Z2R_lt 0 1).
-now apply (Z2R_lt 0 3).
+case l ; now apply IZR_lt.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 4).
+now apply IZR_lt.
unfold v, Rdiv.
apply Rmult_lt_reg_r with 4%R.
-now apply (Z2R_lt 0 4).
+now apply IZR_lt.
rewrite Rmult_assoc, Rinv_l.
rewrite Rmult_1_r, Rmult_1_l.
-case l.
-now apply (Z2R_lt 2 4).
-now apply (Z2R_lt 1 4).
-now apply (Z2R_lt 3 4).
+case l ; now apply IZR_lt.
apply Rgt_not_eq.
-now apply (Z2R_lt 0 4).
+now apply IZR_lt.
split.
apply Rplus_lt_reg_r with (d * (v - 1))%R.
ring_simplify.
@@ -179,7 +171,7 @@ exact Hdu.
set (v := (match l with Lt => 1 | Eq => 2 | Gt => 3 end)%R).
rewrite <- (Rcompare_plus_r (- (d + u) / 2)).
rewrite <- (Rcompare_mult_r 4).
-2: now apply (Z2R_lt 0 4).
+2: now apply IZR_lt.
replace (((d + u) / 2 + - (d + u) / 2) * 4)%R with ((u - d) * 0)%R by field.
replace ((d + v / 4 * (u - d) + - (d + u) / 2) * 4)%R with ((u - d) * (v - 2))%R by field.
rewrite Rcompare_mult_l.
@@ -187,10 +179,7 @@ rewrite Rcompare_mult_l.
rewrite <- (Rcompare_plus_r 2).
ring_simplify (v - 2 + 2)%R (0 + 2)%R.
unfold v.
-case l.
-exact (Rcompare_Z2R 2 2).
-exact (Rcompare_Z2R 1 2).
-exact (Rcompare_Z2R 3 2).
+case l ; apply Rcompare_IZR.
Qed.
Section Fcalc_bracket_step.
@@ -201,19 +190,19 @@ Variable Hstep : (0 < step)%R.
Lemma ordered_steps :
forall k,
- (start + Z2R k * step < start + Z2R (k + 1) * step)%R.
+ (start + IZR k * step < start + IZR (k + 1) * step)%R.
Proof.
intros k.
apply Rplus_lt_compat_l.
apply Rmult_lt_compat_r.
exact Hstep.
-apply Z2R_lt.
+apply IZR_lt.
apply Zlt_succ.
Qed.
Lemma middle_range :
forall k,
- ((start + (start + Z2R k * step)) / 2 = start + (Z2R k / 2 * step))%R.
+ ((start + (start + IZR k * step)) / 2 = start + (IZR k / 2 * step))%R.
Proof.
intros k.
field.
@@ -223,10 +212,10 @@ Hypothesis (Hnb_steps : (1 < nb_steps)%Z).
Lemma inbetween_step_not_Eq :
forall x k l l',
- inbetween (start + Z2R k * step) (start + Z2R (k + 1) * step) x l ->
+ inbetween (start + IZR k * step) (start + IZR (k + 1) * step) x l ->
(0 < k < nb_steps)%Z ->
- Rcompare x (start + (Z2R nb_steps / 2 * step))%R = l' ->
- inbetween start (start + Z2R nb_steps * step) x (loc_Inexact l').
+ Rcompare x (start + (IZR nb_steps / 2 * step))%R = l' ->
+ inbetween start (start + IZR nb_steps * step) x (loc_Inexact l').
Proof.
intros x k l l' Hx Hk Hl'.
constructor.
@@ -237,13 +226,13 @@ apply Rlt_le_trans with (2 := proj1 Hx').
rewrite <- (Rplus_0_r start) at 1.
apply Rplus_lt_compat_l.
apply Rmult_lt_0_compat.
-now apply (Z2R_lt 0).
+now apply IZR_lt.
exact Hstep.
apply Rlt_le_trans with (1 := proj2 Hx').
apply Rplus_le_compat_l.
apply Rmult_le_compat_r.
now apply Rlt_le.
-apply Z2R_le.
+apply IZR_le.
omega.
(* . *)
now rewrite middle_range.
@@ -251,9 +240,9 @@ Qed.
Theorem inbetween_step_Lo :
forall x k l,
- inbetween (start + Z2R k * step) (start + Z2R (k + 1) * step) x l ->
+ inbetween (start + IZR k * step) (start + IZR (k + 1) * step) x l ->
(0 < k)%Z -> (2 * k + 1 < nb_steps)%Z ->
- inbetween start (start + Z2R nb_steps * step) x (loc_Inexact Lt).
+ inbetween start (start + IZR nb_steps * step) x (loc_Inexact Lt).
Proof.
intros x k l Hx Hk1 Hk2.
apply inbetween_step_not_Eq with (1 := Hx).
@@ -264,18 +253,17 @@ apply Rlt_le_trans with (1 := proj2 Hx').
apply Rcompare_not_Lt_inv.
rewrite Rcompare_plus_l, Rcompare_mult_r, Rcompare_half_l.
apply Rcompare_not_Lt.
-change 2%R with (Z2R 2).
-rewrite <- Z2R_mult.
-apply Z2R_le.
+rewrite <- mult_IZR.
+apply IZR_le.
omega.
exact Hstep.
Qed.
Theorem inbetween_step_Hi :
forall x k l,
- inbetween (start + Z2R k * step) (start + Z2R (k + 1) * step) x l ->
+ inbetween (start + IZR k * step) (start + IZR (k + 1) * step) x l ->
(nb_steps < 2 * k)%Z -> (k < nb_steps)%Z ->
- inbetween start (start + Z2R nb_steps * step) x (loc_Inexact Gt).
+ inbetween start (start + IZR nb_steps * step) x (loc_Inexact Gt).
Proof.
intros x k l Hx Hk1 Hk2.
apply inbetween_step_not_Eq with (1 := Hx).
@@ -286,9 +274,8 @@ apply Rlt_le_trans with (2 := proj1 Hx').
apply Rcompare_Lt_inv.
rewrite Rcompare_plus_l, Rcompare_mult_r, Rcompare_half_l.
apply Rcompare_Lt.
-change 2%R with (Z2R 2).
-rewrite <- Z2R_mult.
-apply Z2R_lt.
+rewrite <- mult_IZR.
+apply IZR_lt.
omega.
exact Hstep.
Qed.
@@ -297,7 +284,7 @@ Theorem inbetween_step_Lo_not_Eq :
forall x l,
inbetween start (start + step) x l ->
l <> loc_Exact ->
- inbetween start (start + Z2R nb_steps * step) x (loc_Inexact Lt).
+ inbetween start (start + IZR nb_steps * step) x (loc_Inexact Lt).
Proof.
intros x l Hx Hl.
assert (Hx' := inbetween_bounds_not_Eq _ _ _ _ Hx Hl).
@@ -310,7 +297,7 @@ apply Rplus_lt_compat_l.
rewrite <- (Rmult_1_l step) at 1.
apply Rmult_lt_compat_r.
exact Hstep.
-now apply (Z2R_lt 1).
+now apply IZR_lt.
(* . *)
apply Rcompare_Lt.
apply Rlt_le_trans with (1 := proj2 Hx').
@@ -320,7 +307,7 @@ rewrite <- (Rmult_1_l step) at 2.
rewrite Rcompare_plus_l, Rcompare_mult_r, Rcompare_half_l.
rewrite Rmult_1_r.
apply Rcompare_not_Lt.
-apply (Z2R_le 2).
+apply IZR_le.
now apply (Zlt_le_succ 1).
exact Hstep.
Qed.
@@ -328,19 +315,19 @@ Qed.
Lemma middle_odd :
forall k,
(2 * k + 1 = nb_steps)%Z ->
- (((start + Z2R k * step) + (start + Z2R (k + 1) * step))/2 = start + Z2R nb_steps /2 * step)%R.
+ (((start + IZR k * step) + (start + IZR (k + 1) * step))/2 = start + IZR nb_steps /2 * step)%R.
Proof.
intros k Hk.
rewrite <- Hk.
-rewrite 2!Z2R_plus, Z2R_mult.
+rewrite 2!plus_IZR, mult_IZR.
simpl. field.
Qed.
Theorem inbetween_step_any_Mi_odd :
forall x k l,
- inbetween (start + Z2R k * step) (start + Z2R (k + 1) * step) x (loc_Inexact l) ->
+ inbetween (start + IZR k * step) (start + IZR (k + 1) * step) x (loc_Inexact l) ->
(2 * k + 1 = nb_steps)%Z ->
- inbetween start (start + Z2R nb_steps * step) x (loc_Inexact l).
+ inbetween start (start + IZR nb_steps * step) x (loc_Inexact l).
Proof.
intros x k l Hx Hk.
apply inbetween_step_not_Eq with (1 := Hx).
@@ -351,9 +338,9 @@ Qed.
Theorem inbetween_step_Lo_Mi_Eq_odd :
forall x k,
- inbetween (start + Z2R k * step) (start + Z2R (k + 1) * step) x loc_Exact ->
+ inbetween (start + IZR k * step) (start + IZR (k + 1) * step) x loc_Exact ->
(2 * k + 1 = nb_steps)%Z ->
- inbetween start (start + Z2R nb_steps * step) x (loc_Inexact Lt).
+ inbetween start (start + IZR nb_steps * step) x (loc_Inexact Lt).
Proof.
intros x k Hx Hk.
apply inbetween_step_not_Eq with (1 := Hx).
@@ -362,9 +349,8 @@ inversion_clear Hx as [Hl|].
rewrite Hl.
rewrite Rcompare_plus_l, Rcompare_mult_r, Rcompare_half_r.
apply Rcompare_Lt.
-change 2%R with (Z2R 2).
-rewrite <- Z2R_mult.
-apply Z2R_lt.
+rewrite <- mult_IZR.
+apply IZR_lt.
rewrite <- Hk.
apply Zlt_succ.
exact Hstep.
@@ -372,10 +358,10 @@ Qed.
Theorem inbetween_step_Hi_Mi_even :
forall x k l,
- inbetween (start + Z2R k * step) (start + Z2R (k + 1) * step) x l ->
+ inbetween (start + IZR k * step) (start + IZR (k + 1) * step) x l ->
l <> loc_Exact ->
(2 * k = nb_steps)%Z ->
- inbetween start (start + Z2R nb_steps * step) x (loc_Inexact Gt).
+ inbetween start (start + IZR nb_steps * step) x (loc_Inexact Gt).
Proof.
intros x k l Hx Hl Hk.
apply inbetween_step_not_Eq with (1 := Hx).
@@ -385,28 +371,26 @@ assert (Hx' := inbetween_bounds_not_Eq _ _ _ _ Hx Hl).
apply Rle_lt_trans with (2 := proj1 Hx').
apply Rcompare_not_Lt_inv.
rewrite Rcompare_plus_l, Rcompare_mult_r, Rcompare_half_r.
-change 2%R with (Z2R 2).
-rewrite <- Z2R_mult.
+rewrite <- mult_IZR.
apply Rcompare_not_Lt.
-apply Z2R_le.
+apply IZR_le.
rewrite Hk.
-apply Zle_refl.
+apply Z.le_refl.
exact Hstep.
Qed.
Theorem inbetween_step_Mi_Mi_even :
forall x k,
- inbetween (start + Z2R k * step) (start + Z2R (k + 1) * step) x loc_Exact ->
+ inbetween (start + IZR k * step) (start + IZR (k + 1) * step) x loc_Exact ->
(2 * k = nb_steps)%Z ->
- inbetween start (start + Z2R nb_steps * step) x (loc_Inexact Eq).
+ inbetween start (start + IZR nb_steps * step) x (loc_Inexact Eq).
Proof.
intros x k Hx Hk.
apply inbetween_step_not_Eq with (1 := Hx).
omega.
apply Rcompare_Eq.
inversion_clear Hx as [Hx'|].
-rewrite Hx', <- Hk, Z2R_mult.
-simpl (Z2R 2).
+rewrite Hx', <- Hk, mult_IZR.
field.
Qed.
@@ -419,17 +403,17 @@ Definition new_location_even k l :=
match l with loc_Exact => l | _ => loc_Inexact Lt end
else
loc_Inexact
- match Zcompare (2 * k) nb_steps with
+ match Z.compare (2 * k) nb_steps with
| Lt => Lt
| Eq => match l with loc_Exact => Eq | _ => Gt end
| Gt => Gt
end.
Theorem new_location_even_correct :
- Zeven nb_steps = true ->
+ Z.even nb_steps = true ->
forall x k l, (0 <= k < nb_steps)%Z ->
- inbetween (start + Z2R k * step) (start + Z2R (k + 1) * step) x l ->
- inbetween start (start + Z2R nb_steps * step) x (new_location_even k l).
+ inbetween (start + IZR k * step) (start + IZR (k + 1) * step) x l ->
+ inbetween start (start + IZR nb_steps * step) x (new_location_even k l).
Proof.
intros He x k l Hk Hx.
unfold new_location_even.
@@ -476,17 +460,17 @@ Definition new_location_odd k l :=
match l with loc_Exact => l | _ => loc_Inexact Lt end
else
loc_Inexact
- match Zcompare (2 * k + 1) nb_steps with
+ match Z.compare (2 * k + 1) nb_steps with
| Lt => Lt
| Eq => match l with loc_Inexact l => l | loc_Exact => Lt end
| Gt => Gt
end.
Theorem new_location_odd_correct :
- Zeven nb_steps = false ->
+ Z.even nb_steps = false ->
forall x k l, (0 <= k < nb_steps)%Z ->
- inbetween (start + Z2R k * step) (start + Z2R (k + 1) * step) x l ->
- inbetween start (start + Z2R nb_steps * step) x (new_location_odd k l).
+ inbetween (start + IZR k * step) (start + IZR (k + 1) * step) x l ->
+ inbetween start (start + IZR nb_steps * step) x (new_location_odd k l).
Proof.
intros Ho x k l Hk Hx.
unfold new_location_odd.
@@ -520,16 +504,16 @@ apply Hk.
Qed.
Definition new_location :=
- if Zeven nb_steps then new_location_even else new_location_odd.
+ if Z.even nb_steps then new_location_even else new_location_odd.
Theorem new_location_correct :
forall x k l, (0 <= k < nb_steps)%Z ->
- inbetween (start + Z2R k * step) (start + Z2R (k + 1) * step) x l ->
- inbetween start (start + Z2R nb_steps * step) x (new_location k l).
+ inbetween (start + IZR k * step) (start + IZR (k + 1) * step) x l ->
+ inbetween start (start + IZR nb_steps * step) x (new_location k l).
Proof.
intros x k l Hk Hx.
unfold new_location.
-generalize (refl_equal nb_steps) (Zle_lt_trans _ _ _ (proj1 Hk) (proj2 Hk)).
+generalize (refl_equal nb_steps) (Z.le_lt_trans _ _ _ (proj1 Hk) (proj2 Hk)).
pattern nb_steps at 2 3 5 ; case nb_steps.
now intros _.
(* . *)
@@ -603,7 +587,7 @@ intros x m e l [Hx|l' Hx Hl].
rewrite Hx.
split.
apply Rle_refl.
-apply F2R_lt_compat.
+apply F2R_lt.
apply Zlt_succ.
split.
now apply Rlt_le.
@@ -613,13 +597,13 @@ Qed.
(** Specialization of inbetween for two consecutive integers. *)
Definition inbetween_int m x l :=
- inbetween (Z2R m) (Z2R (m + 1)) x l.
+ inbetween (IZR m) (IZR (m + 1)) x l.
Theorem inbetween_float_new_location :
forall x m e l k,
(0 < k)%Z ->
inbetween_float m e x l ->
- inbetween_float (Zdiv m (Zpower beta k)) (e + k) x (new_location (Zpower beta k) (Zmod m (Zpower beta k)) l).
+ inbetween_float (Z.div m (Zpower beta k)) (e + k) x (new_location (Zpower beta k) (Zmod m (Zpower beta k)) l).
Proof.
intros x m e l k Hk Hx.
unfold inbetween_float in *.
@@ -630,19 +614,19 @@ apply (f_equal (fun r => F2R (Float beta (m * Zpower _ r) e))).
ring.
omega.
assert (Hp: (Zpower beta k > 0)%Z).
-apply Zlt_gt.
+apply Z.lt_gt.
apply Zpower_gt_0.
now apply Zlt_le_weak.
(* . *)
rewrite 2!Hr.
rewrite Zmult_plus_distr_l, Zmult_1_l.
unfold F2R at 2. simpl.
-rewrite Z2R_plus, Rmult_plus_distr_r.
+rewrite plus_IZR, Rmult_plus_distr_r.
apply new_location_correct.
apply bpow_gt_0.
now apply Zpower_gt_1.
now apply Z_mod_lt.
-rewrite <- 2!Rmult_plus_distr_r, <- 2!Z2R_plus.
+rewrite <- 2!Rmult_plus_distr_r, <- 2!plus_IZR.
rewrite Zmult_comm, Zplus_assoc.
now rewrite <- Z_div_mod_eq.
Qed.
@@ -650,7 +634,7 @@ Qed.
Theorem inbetween_float_new_location_single :
forall x m e l,
inbetween_float m e x l ->
- inbetween_float (Zdiv m beta) (e + 1) x (new_location beta (Zmod m beta) l).
+ inbetween_float (Z.div m beta) (e + 1) x (new_location beta (Zmod m beta) l).
Proof.
intros x m e l Hx.
replace (radix_val beta) with (Zpower beta 1).
@@ -665,7 +649,7 @@ Theorem inbetween_float_ex :
Proof.
intros m e l.
apply inbetween_ex.
-apply F2R_lt_compat.
+apply F2R_lt.
apply Zlt_succ.
Qed.
@@ -682,7 +666,7 @@ apply inbetween_unique with (1 := H) (2 := H').
destruct (inbetween_float_bounds x m e l H) as (H1,H2).
destruct (inbetween_float_bounds x m' e l' H') as (H3,H4).
cut (m < m' + 1 /\ m' < m + 1)%Z. clear ; omega.
-now split ; apply F2R_lt_reg with beta e ; apply Rle_lt_trans with x.
+now split ; apply lt_F2R with beta e ; apply Rle_lt_trans with x.
Qed.
End Fcalc_bracket_generic.
diff --git a/flocq/Calc/Div.v b/flocq/Calc/Div.v
new file mode 100644
index 00000000..65195562
--- /dev/null
+++ b/flocq/Calc/Div.v
@@ -0,0 +1,159 @@
+(**
+This file is part of the Flocq formalization of floating-point
+arithmetic in Coq: http://flocq.gforge.inria.fr/
+
+Copyright (C) 2010-2018 Sylvie Boldo
+#<br />#
+Copyright (C) 2010-2018 Guillaume Melquiond
+
+This library is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+This library is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+COPYING file for more details.
+*)
+
+(** * Helper function and theorem for computing the rounded quotient of two floating-point numbers. *)
+
+Require Import Raux Defs Generic_fmt Float_prop Digits Bracket.
+
+Set Implicit Arguments.
+Set Strongly Strict Implicit.
+
+Section Fcalc_div.
+
+Variable beta : radix.
+Notation bpow e := (bpow beta e).
+
+Variable fexp : Z -> Z.
+
+(** Computes a mantissa of precision p, the corresponding exponent,
+ and the position with respect to the real quotient of the
+ input floating-point numbers.
+
+The algorithm performs the following steps:
+- Shift dividend mantissa so that it has at least p2 + p digits.
+- Perform the Euclidean division.
+- Compute the position according to the division remainder.
+
+Complexity is fine as long as p1 <= 2p and p2 <= p.
+*)
+
+Lemma mag_div_F2R :
+ forall m1 e1 m2 e2,
+ (0 < m1)%Z -> (0 < m2)%Z ->
+ let e := ((Zdigits beta m1 + e1) - (Zdigits beta m2 + e2))%Z in
+ (e <= mag beta (F2R (Float beta m1 e1) / F2R (Float beta m2 e2)) <= e + 1)%Z.
+Proof.
+intros m1 e1 m2 e2 Hm1 Hm2.
+rewrite <- (mag_F2R_Zdigits beta m1 e1) by now apply Zgt_not_eq.
+rewrite <- (mag_F2R_Zdigits beta m2 e2) by now apply Zgt_not_eq.
+apply mag_div.
+now apply F2R_neq_0, Zgt_not_eq.
+now apply F2R_neq_0, Zgt_not_eq.
+Qed.
+
+Definition Fdiv_core m1 e1 m2 e2 e :=
+ let (m1', m2') :=
+ if Zle_bool e (e1 - e2)%Z
+ then (m1 * Zpower beta (e1 - e2 - e), m2)%Z
+ else (m1, m2 * Zpower beta (e - (e1 - e2)))%Z in
+ let '(q, r) := Z.div_eucl m1' m2' in
+ (q, new_location m2' r loc_Exact).
+
+Theorem Fdiv_core_correct :
+ forall m1 e1 m2 e2 e,
+ (0 < m1)%Z -> (0 < m2)%Z ->
+ let '(m, l) := Fdiv_core m1 e1 m2 e2 e in
+ inbetween_float beta m e (F2R (Float beta m1 e1) / F2R (Float beta m2 e2)) l.
+Proof.
+intros m1 e1 m2 e2 e Hm1 Hm2.
+unfold Fdiv_core.
+match goal with |- context [if ?b then ?b1 else ?b2] => set (m12 := if b then b1 else b2) end.
+case_eq m12 ; intros m1' m2' Hm.
+assert ((F2R (Float beta m1 e1) / F2R (Float beta m2 e2) = IZR m1' / IZR m2' * bpow e)%R /\ (0 < m2')%Z) as [Hf Hm2'].
+{ unfold F2R, Zminus ; simpl.
+ destruct (Zle_bool e (e1 - e2)) eqn:He' ; injection Hm ; intros ; subst.
+ - split ; try easy.
+ apply Zle_bool_imp_le in He'.
+ rewrite mult_IZR, IZR_Zpower by omega.
+ unfold Zminus ; rewrite 2!bpow_plus, 2!bpow_opp.
+ field.
+ repeat split ; try apply Rgt_not_eq, bpow_gt_0.
+ now apply IZR_neq, Zgt_not_eq.
+ - apply Z.leb_gt in He'.
+ split ; cycle 1.
+ { apply Z.mul_pos_pos with (1 := Hm2).
+ apply Zpower_gt_0 ; omega. }
+ rewrite mult_IZR, IZR_Zpower by omega.
+ unfold Zminus ; rewrite bpow_plus, bpow_opp, bpow_plus, bpow_opp.
+ field.
+ repeat split ; try apply Rgt_not_eq, bpow_gt_0.
+ now apply IZR_neq, Zgt_not_eq. }
+clearbody m12 ; clear Hm Hm1 Hm2.
+generalize (Z_div_mod m1' m2' (Z.lt_gt _ _ Hm2')).
+destruct (Z.div_eucl m1' m2') as (q, r).
+intros (Hq, Hr).
+rewrite Hf.
+unfold inbetween_float, F2R. simpl.
+rewrite Hq, 2!plus_IZR, mult_IZR.
+apply inbetween_mult_compat.
+ apply bpow_gt_0.
+destruct (Z_lt_le_dec 1 m2') as [Hm2''|Hm2''].
+- replace 1%R with (IZR m2' * /IZR m2')%R.
+ apply new_location_correct ; try easy.
+ apply Rinv_0_lt_compat.
+ now apply IZR_lt.
+ constructor.
+ field.
+ now apply IZR_neq, Zgt_not_eq.
+ field.
+ now apply IZR_neq, Zgt_not_eq.
+- assert (r = 0 /\ m2' = 1)%Z as [-> ->] by (clear -Hr Hm2'' ; omega).
+ unfold Rdiv.
+ rewrite Rmult_1_l, Rplus_0_r, Rinv_1, Rmult_1_r.
+ now constructor.
+Qed.
+
+Definition Fdiv (x y : float beta) :=
+ let (m1, e1) := x in
+ let (m2, e2) := y in
+ let e' := ((Zdigits beta m1 + e1) - (Zdigits beta m2 + e2))%Z in
+ let e := Z.min (Z.min (fexp e') (fexp (e' + 1))) (e1 - e2) in
+ let '(m, l) := Fdiv_core m1 e1 m2 e2 e in
+ (m, e, l).
+
+Theorem Fdiv_correct :
+ forall x y,
+ (0 < F2R x)%R -> (0 < F2R y)%R ->
+ let '(m, e, l) := Fdiv x y in
+ (e <= cexp beta fexp (F2R x / F2R y))%Z /\
+ inbetween_float beta m e (F2R x / F2R y) l.
+Proof.
+intros [m1 e1] [m2 e2] Hm1 Hm2.
+apply gt_0_F2R in Hm1.
+apply gt_0_F2R in Hm2.
+unfold Fdiv.
+generalize (mag_div_F2R m1 e1 m2 e2 Hm1 Hm2).
+set (e := Zminus _ _).
+set (e' := Z.min (Z.min (fexp e) (fexp (e + 1))) (e1 - e2)).
+intros [H1 H2].
+generalize (Fdiv_core_correct m1 e1 m2 e2 e' Hm1 Hm2).
+destruct Fdiv_core as [m' l].
+apply conj.
+apply Z.le_trans with (1 := Z.le_min_l _ _).
+unfold cexp.
+destruct (Zle_lt_or_eq _ _ H1) as [H|H].
+- replace (fexp (mag _ _)) with (fexp (e + 1)).
+ apply Z.le_min_r.
+ clear -H1 H2 H ; apply f_equal ; omega.
+- replace (fexp (mag _ _)) with (fexp e).
+ apply Z.le_min_l.
+ clear -H1 H2 H ; apply f_equal ; omega.
+Qed.
+
+End Fcalc_div.
diff --git a/flocq/Calc/Fcalc_digits.v b/flocq/Calc/Fcalc_digits.v
deleted file mode 100644
index 45133e81..00000000
--- a/flocq/Calc/Fcalc_digits.v
+++ /dev/null
@@ -1,63 +0,0 @@
-(**
-This file is part of the Flocq formalization of floating-point
-arithmetic in Coq: http://flocq.gforge.inria.fr/
-
-Copyright (C) 2010-2013 Sylvie Boldo
-#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
-
-This library is free software; you can redistribute it and/or
-modify it under the terms of the GNU Lesser General Public
-License as published by the Free Software Foundation; either
-version 3 of the License, or (at your option) any later version.
-
-This library is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-COPYING file for more details.
-*)
-
-(** * Functions for computing the number of digits of integers and related theorems. *)
-
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_float_prop.
-Require Import Fcore_digits.
-
-Section Fcalc_digits.
-
-Variable beta : radix.
-Notation bpow e := (bpow beta e).
-
-Theorem Zdigits_ln_beta :
- forall n,
- n <> Z0 ->
- Zdigits beta n = ln_beta beta (Z2R n).
-Proof.
-intros n Hn.
-destruct (ln_beta beta (Z2R n)) as (e, He) ; simpl.
-specialize (He (Z2R_neq _ _ Hn)).
-rewrite <- Z2R_abs in He.
-assert (Hd := Zdigits_correct beta n).
-assert (Hd' := Zdigits_gt_0 beta n).
-apply Zle_antisym ; apply (bpow_lt_bpow beta).
-apply Rle_lt_trans with (2 := proj2 He).
-rewrite <- Z2R_Zpower by omega.
-now apply Z2R_le.
-apply Rle_lt_trans with (1 := proj1 He).
-rewrite <- Z2R_Zpower by omega.
-now apply Z2R_lt.
-Qed.
-
-Theorem ln_beta_F2R_Zdigits :
- forall m e, m <> Z0 ->
- (ln_beta beta (F2R (Float beta m e)) = Zdigits beta m + e :> Z)%Z.
-Proof.
-intros m e Hm.
-rewrite ln_beta_F2R with (1 := Hm).
-apply (f_equal (fun v => Zplus v e)).
-apply sym_eq.
-now apply Zdigits_ln_beta.
-Qed.
-
-End Fcalc_digits.
diff --git a/flocq/Calc/Fcalc_div.v b/flocq/Calc/Fcalc_div.v
deleted file mode 100644
index c8f1f9fc..00000000
--- a/flocq/Calc/Fcalc_div.v
+++ /dev/null
@@ -1,165 +0,0 @@
-(**
-This file is part of the Flocq formalization of floating-point
-arithmetic in Coq: http://flocq.gforge.inria.fr/
-
-Copyright (C) 2010-2013 Sylvie Boldo
-#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
-
-This library is free software; you can redistribute it and/or
-modify it under the terms of the GNU Lesser General Public
-License as published by the Free Software Foundation; either
-version 3 of the License, or (at your option) any later version.
-
-This library is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-COPYING file for more details.
-*)
-
-(** * Helper function and theorem for computing the rounded quotient of two floating-point numbers. *)
-
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_float_prop.
-Require Import Fcore_digits.
-Require Import Fcalc_bracket.
-Require Import Fcalc_digits.
-
-Section Fcalc_div.
-
-Variable beta : radix.
-Notation bpow e := (bpow beta e).
-
-(** Computes a mantissa of precision p, the corresponding exponent,
- and the position with respect to the real quotient of the
- input floating-point numbers.
-
-The algorithm performs the following steps:
-- Shift dividend mantissa so that it has at least p2 + p digits.
-- Perform the Euclidean division.
-- Compute the position according to the division remainder.
-
-Complexity is fine as long as p1 <= 2p and p2 <= p.
-*)
-
-Definition Fdiv_core prec m1 e1 m2 e2 :=
- let d1 := Zdigits beta m1 in
- let d2 := Zdigits beta m2 in
- let e := (e1 - e2)%Z in
- let (m, e') :=
- match (d2 + prec - d1)%Z with
- | Zpos p => (m1 * Zpower_pos beta p, e + Zneg p)%Z
- | _ => (m1, e)
- end in
- let '(q, r) := Zdiv_eucl m m2 in
- (q, e', new_location m2 r loc_Exact).
-
-Theorem Fdiv_core_correct :
- forall prec m1 e1 m2 e2,
- (0 < prec)%Z ->
- (0 < m1)%Z -> (0 < m2)%Z ->
- let '(m, e, l) := Fdiv_core prec m1 e1 m2 e2 in
- (prec <= Zdigits beta m)%Z /\
- inbetween_float beta m e (F2R (Float beta m1 e1) / F2R (Float beta m2 e2)) l.
-Proof.
-intros prec m1 e1 m2 e2 Hprec Hm1 Hm2.
-unfold Fdiv_core.
-set (d1 := Zdigits beta m1).
-set (d2 := Zdigits beta m2).
-case_eq
- (match (d2 + prec - d1)%Z with
- | Zpos p => ((m1 * Zpower_pos beta p)%Z, (e1 - e2 + Zneg p)%Z)
- | _ => (m1, (e1 - e2)%Z)
- end).
-intros m' e' Hme.
-(* . the shifted mantissa m' has enough digits *)
-assert (Hs: F2R (Float beta m' (e' + e2)) = F2R (Float beta m1 e1) /\ (0 < m')%Z /\ (d2 + prec <= Zdigits beta m')%Z).
-replace (d2 + prec)%Z with (d2 + prec - d1 + d1)%Z by ring.
-destruct (d2 + prec - d1)%Z as [|p|p] ;
- unfold d1 ;
- inversion Hme.
-ring_simplify (e1 - e2 + e2)%Z.
-repeat split.
-now rewrite <- H0.
-apply Zle_refl.
-replace (e1 - e2 + Zneg p + e2)%Z with (e1 - Zpos p)%Z by (unfold Zminus ; simpl ; ring).
-fold (Zpower beta (Zpos p)).
-split.
-pattern (Zpos p) at 1 ; replace (Zpos p) with (e1 - (e1 - Zpos p))%Z by ring.
-apply sym_eq.
-apply F2R_change_exp.
-assert (0 < Zpos p)%Z by easy.
-omega.
-split.
-apply Zmult_lt_0_compat.
-exact Hm1.
-now apply Zpower_gt_0.
-rewrite Zdigits_mult_Zpower.
-rewrite Zplus_comm.
-apply Zle_refl.
-apply sym_not_eq.
-now apply Zlt_not_eq.
-easy.
-split.
-now ring_simplify (e1 - e2 + e2)%Z.
-assert (Zneg p < 0)%Z by easy.
-omega.
-(* . *)
-destruct Hs as (Hs1, (Hs2, Hs3)).
-rewrite <- Hs1.
-generalize (Z_div_mod m' m2 (Zlt_gt _ _ Hm2)).
-destruct (Zdiv_eucl m' m2) as (q, r).
-intros (Hq, Hr).
-split.
-(* . the result mantissa q has enough digits *)
-cut (Zdigits beta m' <= d2 + Zdigits beta q)%Z. omega.
-unfold d2.
-rewrite Hq.
-assert (Hq': (0 < q)%Z).
-apply Zmult_lt_reg_r with (1 := Hm2).
-assert (m2 < m')%Z.
-apply lt_Zdigits with beta.
-now apply Zlt_le_weak.
-unfold d2 in Hs3.
-clear -Hprec Hs3 ; omega.
-cut (q * m2 = m' - r)%Z. clear -Hr H ; omega.
-rewrite Hq.
-ring.
-apply Zle_trans with (Zdigits beta (m2 + q + m2 * q)).
-apply Zdigits_le.
-rewrite <- Hq.
-now apply Zlt_le_weak.
-clear -Hr Hq'. omega.
-apply Zdigits_mult_strong ; apply Zlt_le_weak.
-now apply Zle_lt_trans with r.
-exact Hq'.
-(* . the location is correctly computed *)
-unfold inbetween_float, F2R. simpl.
-rewrite bpow_plus, Z2R_plus.
-rewrite Hq, Z2R_plus, Z2R_mult.
-replace ((Z2R m2 * Z2R q + Z2R r) * (bpow e' * bpow e2) / (Z2R m2 * bpow e2))%R
- with ((Z2R q + Z2R r / Z2R m2) * bpow e')%R.
-apply inbetween_mult_compat.
-apply bpow_gt_0.
-destruct (Z_lt_le_dec 1 m2) as [Hm2''|Hm2''].
-replace (Z2R 1) with (Z2R m2 * /Z2R m2)%R.
-apply new_location_correct ; try easy.
-apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0).
-now constructor.
-apply Rinv_r.
-apply Rgt_not_eq.
-now apply (Z2R_lt 0).
-assert (r = 0 /\ m2 = 1)%Z by (clear -Hr Hm2'' ; omega).
-rewrite (proj1 H), (proj2 H).
-unfold Rdiv.
-rewrite Rmult_0_l, Rplus_0_r.
-now constructor.
-field.
-split ; apply Rgt_not_eq.
-apply bpow_gt_0.
-now apply (Z2R_lt 0).
-Qed.
-
-End Fcalc_div.
diff --git a/flocq/Calc/Fcalc_sqrt.v b/flocq/Calc/Fcalc_sqrt.v
deleted file mode 100644
index 5f541d83..00000000
--- a/flocq/Calc/Fcalc_sqrt.v
+++ /dev/null
@@ -1,244 +0,0 @@
-(**
-This file is part of the Flocq formalization of floating-point
-arithmetic in Coq: http://flocq.gforge.inria.fr/
-
-Copyright (C) 2010-2013 Sylvie Boldo
-#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
-
-This library is free software; you can redistribute it and/or
-modify it under the terms of the GNU Lesser General Public
-License as published by the Free Software Foundation; either
-version 3 of the License, or (at your option) any later version.
-
-This library is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-COPYING file for more details.
-*)
-
-(** * Helper functions and theorems for computing the rounded square root of a floating-point number. *)
-
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_digits.
-Require Import Fcore_float_prop.
-Require Import Fcalc_bracket.
-Require Import Fcalc_digits.
-
-Section Fcalc_sqrt.
-
-Variable beta : radix.
-Notation bpow e := (bpow beta e).
-
-(** Computes a mantissa of precision p, the corresponding exponent,
- and the position with respect to the real square root of the
- input floating-point number.
-
-The algorithm performs the following steps:
-- Shift the mantissa so that it has at least 2p-1 digits;
- shift it one digit more if the new exponent is not even.
-- Compute the square root s (at least p digits) of the new
- mantissa, and its remainder r.
-- Compute the position according to the remainder:
- -- r == 0 => Eq,
- -- r <= s => Lo,
- -- r >= s => Up.
-
-Complexity is fine as long as p1 <= 2p-1.
-*)
-
-Definition Fsqrt_core prec m e :=
- let d := Zdigits beta m in
- let s := Zmax (2 * prec - d) 0 in
- let e' := (e - s)%Z in
- let (s', e'') := if Zeven e' then (s, e') else (s + 1, e' - 1)%Z in
- let m' :=
- match s' with
- | Zpos p => (m * Zpower_pos beta p)%Z
- | _ => m
- end in
- let (q, r) := Z.sqrtrem m' in
- let l :=
- if Zeq_bool r 0 then loc_Exact
- else loc_Inexact (if Zle_bool r q then Lt else Gt) in
- (q, Zdiv2 e'', l).
-
-Theorem Fsqrt_core_correct :
- forall prec m e,
- (0 < m)%Z ->
- let '(m', e', l) := Fsqrt_core prec m e in
- (prec <= Zdigits beta m')%Z /\
- inbetween_float beta m' e' (sqrt (F2R (Float beta m e))) l.
-Proof.
-intros prec m e Hm.
-unfold Fsqrt_core.
-set (d := Zdigits beta m).
-set (s := Zmax (2 * prec - d) 0).
-(* . exponent *)
-case_eq (if Zeven (e - s) then (s, (e - s)%Z) else ((s + 1)%Z, (e - s - 1)%Z)).
-intros s' e' Hse.
-assert (He: (Zeven e' = true /\ 0 <= s' /\ 2 * prec - d <= s' /\ s' + e' = e)%Z).
-revert Hse.
-case_eq (Zeven (e - s)) ; intros He Hse ; inversion Hse.
-repeat split.
-exact He.
-unfold s.
-apply Zle_max_r.
-apply Zle_max_l.
-ring.
-assert (H: (Zmax (2 * prec - d) 0 <= s + 1)%Z).
-fold s.
-apply Zle_succ.
-repeat split.
-unfold Zminus at 1.
-now rewrite Zeven_plus, He.
-apply Zle_trans with (2 := H).
-apply Zle_max_r.
-apply Zle_trans with (2 := H).
-apply Zle_max_l.
-ring.
-clear -Hm He.
-destruct He as (He1, (He2, (He3, He4))).
-(* . shift *)
-set (m' := match s' with
- | Z0 => m
- | Zpos p => (m * Zpower_pos beta p)%Z
- | Zneg _ => m
- end).
-assert (Hs: F2R (Float beta m' e') = F2R (Float beta m e) /\ (2 * prec <= Zdigits beta m')%Z /\ (0 < m')%Z).
-rewrite <- He4.
-unfold m'.
-destruct s' as [|p|p].
-repeat split ; try easy.
-fold d.
-omega.
-fold (Zpower beta (Zpos p)).
-split.
-replace (Zpos p) with (Zpos p + e' - e')%Z by ring.
-rewrite <- F2R_change_exp.
-apply (f_equal (fun v => F2R (Float beta m v))).
-ring.
-assert (0 < Zpos p)%Z by easy.
-omega.
-split.
-rewrite Zdigits_mult_Zpower.
-fold d.
-omega.
-apply sym_not_eq.
-now apply Zlt_not_eq.
-easy.
-apply Zmult_lt_0_compat.
-exact Hm.
-now apply Zpower_gt_0.
-now elim He2.
-clearbody m'.
-destruct Hs as (Hs1, (Hs2, Hs3)).
-generalize (Z.sqrtrem_spec m' (Zlt_le_weak _ _ Hs3)).
-destruct (Z.sqrtrem m') as (q, r).
-intros (Hq, Hr).
-rewrite <- Hs1. clear Hs1.
-split.
-(* . mantissa width *)
-apply Zmult_le_reg_r with 2%Z.
-easy.
-rewrite Zmult_comm.
-apply Zle_trans with (1 := Hs2).
-rewrite Hq.
-apply Zle_trans with (Zdigits beta (q + q + q * q)).
-apply Zdigits_le.
-rewrite <- Hq.
-now apply Zlt_le_weak.
-omega.
-replace (Zdigits beta q * 2)%Z with (Zdigits beta q + Zdigits beta q)%Z by ring.
-apply Zdigits_mult_strong.
-omega.
-omega.
-(* . round *)
-unfold inbetween_float, F2R. simpl.
-rewrite sqrt_mult.
-2: now apply (Z2R_le 0) ; apply Zlt_le_weak.
-2: apply Rlt_le ; apply bpow_gt_0.
-destruct (Zeven_ex e') as (e2, Hev).
-rewrite He1, Zplus_0_r in Hev. clear He1.
-rewrite Hev.
-replace (Zdiv2 (2 * e2)) with e2 by now case e2.
-replace (2 * e2)%Z with (e2 + e2)%Z by ring.
-rewrite bpow_plus.
-fold (Rsqr (bpow e2)).
-rewrite sqrt_Rsqr.
-2: apply Rlt_le ; apply bpow_gt_0.
-apply inbetween_mult_compat.
-apply bpow_gt_0.
-rewrite Hq.
-case Zeq_bool_spec ; intros Hr'.
-(* .. r = 0 *)
-rewrite Hr', Zplus_0_r, Z2R_mult.
-fold (Rsqr (Z2R q)).
-rewrite sqrt_Rsqr.
-now constructor.
-apply (Z2R_le 0).
-omega.
-(* .. r <> 0 *)
-constructor.
-split.
-(* ... bounds *)
-apply Rle_lt_trans with (sqrt (Z2R (q * q))).
-rewrite Z2R_mult.
-fold (Rsqr (Z2R q)).
-rewrite sqrt_Rsqr.
-apply Rle_refl.
-apply (Z2R_le 0).
-omega.
-apply sqrt_lt_1.
-rewrite Z2R_mult.
-apply Rle_0_sqr.
-rewrite <- Hq.
-apply (Z2R_le 0).
-now apply Zlt_le_weak.
-apply Z2R_lt.
-omega.
-apply Rlt_le_trans with (sqrt (Z2R ((q + 1) * (q + 1)))).
-apply sqrt_lt_1.
-rewrite <- Hq.
-apply (Z2R_le 0).
-now apply Zlt_le_weak.
-rewrite Z2R_mult.
-apply Rle_0_sqr.
-apply Z2R_lt.
-ring_simplify.
-omega.
-rewrite Z2R_mult.
-fold (Rsqr (Z2R (q + 1))).
-rewrite sqrt_Rsqr.
-apply Rle_refl.
-apply (Z2R_le 0).
-omega.
-(* ... location *)
-rewrite Rcompare_half_r.
-rewrite <- Rcompare_sqr.
-replace ((2 * sqrt (Z2R (q * q + r))) * (2 * sqrt (Z2R (q * q + r))))%R
- with (4 * Rsqr (sqrt (Z2R (q * q + r))))%R by (unfold Rsqr ; ring).
-rewrite Rsqr_sqrt.
-change 4%R with (Z2R 4).
-rewrite <- Z2R_plus, <- 2!Z2R_mult.
-rewrite Rcompare_Z2R.
-replace ((q + (q + 1)) * (q + (q + 1)))%Z with (4 * (q * q) + 4 * q + 1)%Z by ring.
-generalize (Zle_cases r q).
-case (Zle_bool r q) ; intros Hr''.
-change (4 * (q * q + r) < 4 * (q * q) + 4 * q + 1)%Z.
-omega.
-change (4 * (q * q + r) > 4 * (q * q) + 4 * q + 1)%Z.
-omega.
-rewrite <- Hq.
-apply (Z2R_le 0).
-now apply Zlt_le_weak.
-apply Rmult_le_pos.
-now apply (Z2R_le 0 2).
-apply sqrt_ge_0.
-rewrite <- Z2R_plus.
-apply (Z2R_le 0).
-omega.
-Qed.
-
-End Fcalc_sqrt.
diff --git a/flocq/Calc/Fcalc_ops.v b/flocq/Calc/Operations.v
index e834c044..3416cb4e 100644
--- a/flocq/Calc/Fcalc_ops.v
+++ b/flocq/Calc/Operations.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2009-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,9 +18,10 @@ COPYING file for more details.
*)
(** Basic operations on floats: alignment, addition, multiplication *)
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_float_prop.
+Require Import Raux Defs Float_prop.
+
+Set Implicit Arguments.
+Set Strongly Strict Implicit.
Section Float_ops.
@@ -28,7 +29,7 @@ Variable beta : radix.
Notation bpow e := (bpow beta e).
-Arguments Float {beta} Fnum Fexp.
+Arguments Float {beta}.
Definition Falign (f1 f2 : float beta) :=
let '(Float m1 e1) := f1 in
@@ -54,7 +55,7 @@ Qed.
Theorem Falign_spec_exp:
forall f1 f2 : float beta,
- snd (Falign f1 f2) = Zmin (Fexp f1) (Fexp f2).
+ snd (Falign f1 f2) = Z.min (Fexp f1) (Fexp f2).
Proof.
intros (m1,e1) (m2,e2).
unfold Falign; simpl.
@@ -76,7 +77,7 @@ Qed.
Definition Fabs (f1 : float beta) : float beta :=
let '(Float m1 e1) := f1 in
- Float (Zabs m1)%Z e1.
+ Float (Z.abs m1)%Z e1.
Theorem F2R_abs :
forall f1 : float beta,
@@ -100,7 +101,7 @@ destruct (Falign f1 f2) as ((m1, m2), e).
intros (H1, H2).
rewrite H1, H2.
unfold F2R. simpl.
-rewrite Z2R_plus.
+rewrite plus_IZR.
apply Rmult_plus_distr_r.
Qed.
@@ -116,7 +117,7 @@ Qed.
Theorem Fexp_Fplus :
forall f1 f2 : float beta,
- Fexp (Fplus f1 f2) = Zmin (Fexp f1) (Fexp f2).
+ Fexp (Fplus f1 f2) = Z.min (Fexp f1) (Fexp f2).
Proof.
intros f1 f2.
unfold Fplus.
@@ -156,7 +157,7 @@ Theorem F2R_mult :
Proof.
intros (m1, e1) (m2, e2).
unfold Fmult, F2R. simpl.
-rewrite Z2R_mult, bpow_plus.
+rewrite mult_IZR, bpow_plus.
ring.
Qed.
diff --git a/flocq/Calc/Fcalc_round.v b/flocq/Calc/Round.v
index 86422247..5bde6af4 100644
--- a/flocq/Calc/Fcalc_round.v
+++ b/flocq/Calc/Round.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2010-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2010-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -19,10 +19,7 @@ COPYING file for more details.
(** * Helper function for computing the rounded value of a real number. *)
-Require Import Fcore.
-Require Import Fcore_digits.
-Require Import Fcalc_bracket.
-Require Import Fcalc_digits.
+Require Import Core Digits Float_prop Bracket.
Section Fcalc_round.
@@ -35,19 +32,78 @@ Variable fexp : Z -> Z.
Context { valid_exp : Valid_exp fexp }.
Notation format := (generic_format beta fexp).
+Theorem cexp_inbetween_float :
+ forall x m e l,
+ (0 < x)%R ->
+ inbetween_float beta m e x l ->
+ (e <= cexp beta fexp x \/ e <= fexp (Zdigits beta m + e))%Z ->
+ cexp beta fexp x = fexp (Zdigits beta m + e).
+Proof.
+intros x m e l Px Bx He.
+unfold cexp.
+apply inbetween_float_bounds in Bx.
+assert (0 <= m)%Z as Hm.
+{ apply Zlt_succ_le.
+ eapply gt_0_F2R.
+ apply Rlt_trans with (1 := Px).
+ apply Bx. }
+destruct (Zle_lt_or_eq _ _ Hm) as [Hm'|<-].
+ now erewrite <- mag_F2R_bounds_Zdigits with (1 := Hm').
+clear Hm.
+assert (mag beta x <= e)%Z as Hx.
+{ apply mag_le_bpow.
+ now apply Rgt_not_eq.
+ rewrite Rabs_pos_eq.
+ now rewrite <- F2R_bpow.
+ now apply Rlt_le. }
+simpl in He |- *.
+clear Bx.
+destruct He as [He|He].
+- apply eq_sym, valid_exp with (2 := He).
+ now apply Z.le_trans with e.
+- apply valid_exp with (1 := He).
+ now apply Z.le_trans with e.
+Qed.
+
+Theorem cexp_inbetween_float_loc_Exact :
+ forall x m e l,
+ (0 <= x)%R ->
+ inbetween_float beta m e x l ->
+ (e <= cexp beta fexp x \/ l = loc_Exact <->
+ e <= fexp (Zdigits beta m + e) \/ l = loc_Exact)%Z.
+Proof.
+intros x m e l Px Bx.
+destruct Px as [Px|Px].
+- split ; (intros [H|H] ; [left|now right]).
+ rewrite <- cexp_inbetween_float with (1 := Px) (2 := Bx).
+ exact H.
+ now left.
+ rewrite cexp_inbetween_float with (1 := Px) (2 := Bx).
+ exact H.
+ now right.
+- assert (H := Bx).
+ destruct Bx as [|c Bx _].
+ now split ; right.
+ rewrite <- Px in Bx.
+ destruct Bx as [Bx1 Bx2].
+ apply lt_0_F2R in Bx1.
+ apply gt_0_F2R in Bx2.
+ omega.
+Qed.
+
(** Relates location and rounding. *)
Theorem inbetween_float_round :
forall rnd choice,
( forall x m l, inbetween_int m x l -> rnd x = choice m l ) ->
forall x m l,
- let e := canonic_exp beta fexp x in
+ let e := cexp beta fexp x in
inbetween_float beta m e x l ->
round beta fexp rnd x = F2R (Float beta (choice m l) e).
Proof.
intros rnd choice Hc x m l e Hl.
unfold round, F2R. simpl.
-apply (f_equal (fun m => (Z2R m * bpow e)%R)).
+apply (f_equal (fun m => (IZR m * bpow e)%R)).
apply Hc.
apply inbetween_mult_reg with (bpow e).
apply bpow_gt_0.
@@ -61,12 +117,12 @@ Theorem inbetween_float_round_sign :
( forall x m l, inbetween_int m (Rabs x) l ->
rnd x = cond_Zopp (Rlt_bool x 0) (choice (Rlt_bool x 0) m l) ) ->
forall x m l,
- let e := canonic_exp beta fexp x in
+ let e := cexp beta fexp x in
inbetween_float beta m e (Rabs x) l ->
round beta fexp rnd x = F2R (Float beta (cond_Zopp (Rlt_bool x 0) (choice (Rlt_bool x 0) m l)) e).
Proof.
intros rnd choice Hc x m l e Hx.
-apply (f_equal (fun m => (Z2R m * bpow e)%R)).
+apply (f_equal (fun m => (IZR m * bpow e)%R)).
simpl.
replace (Rlt_bool x 0) with (Rlt_bool (scaled_mantissa beta fexp x) 0).
(* *)
@@ -99,13 +155,13 @@ Proof.
intros x m l Hl.
refine (Zfloor_imp m _ _).
apply inbetween_bounds with (2 := Hl).
-apply Z2R_lt.
+apply IZR_lt.
apply Zlt_succ.
Qed.
Theorem inbetween_float_DN :
forall x m l,
- let e := canonic_exp beta fexp x in
+ let e := cexp beta fexp x in
inbetween_float beta m e x l ->
round beta fexp Zfloor x = F2R (Float beta m e).
Proof.
@@ -131,23 +187,23 @@ destruct (Rcase_abs x) as [Zx|Zx] .
rewrite Rlt_bool_true with (1 := Zx).
inversion_clear Hl ; simpl.
rewrite <- (Ropp_involutive x).
-rewrite H, <- Z2R_opp.
-apply Zfloor_Z2R.
+rewrite H, <- opp_IZR.
+apply Zfloor_IZR.
apply Zfloor_imp.
split.
apply Rlt_le.
-rewrite Z2R_opp.
+rewrite opp_IZR.
apply Ropp_lt_cancel.
now rewrite Ropp_involutive.
ring_simplify (- (m + 1) + 1)%Z.
-rewrite Z2R_opp.
+rewrite opp_IZR.
apply Ropp_lt_cancel.
now rewrite Ropp_involutive.
(* *)
rewrite Rlt_bool_false.
inversion_clear Hl ; simpl.
rewrite H.
-apply Zfloor_Z2R.
+apply Zfloor_IZR.
apply Zfloor_imp.
split.
now apply Rlt_le.
@@ -157,7 +213,7 @@ Qed.
Theorem inbetween_float_DN_sign :
forall x m l,
- let e := canonic_exp beta fexp x in
+ let e := cexp beta fexp x in
inbetween_float beta m e (Rabs x) l ->
round beta fexp Zfloor x = F2R (Float beta (cond_Zopp (Rlt_bool x 0) (cond_incr (round_sign_DN (Rlt_bool x 0) l) m)) e).
Proof.
@@ -186,7 +242,7 @@ destruct Hl' as [Hl'|(Hl1, Hl2)].
rewrite Hl'.
destruct Hl ; try easy.
rewrite H.
-exact (Zceil_Z2R _).
+exact (Zceil_IZR _).
(* not Exact *)
rewrite Hl2.
simpl.
@@ -198,7 +254,7 @@ Qed.
Theorem inbetween_float_UP :
forall x m l,
- let e := canonic_exp beta fexp x in
+ let e := cexp beta fexp x in
inbetween_float beta m e x l ->
round beta fexp Zceil x = F2R (Float beta (cond_incr (round_UP l) m) e).
Proof.
@@ -227,7 +283,7 @@ unfold Zceil.
apply f_equal.
inversion_clear Hl ; simpl.
rewrite H.
-apply Zfloor_Z2R.
+apply Zfloor_IZR.
apply Zfloor_imp.
split.
now apply Rlt_le.
@@ -237,10 +293,10 @@ rewrite Rlt_bool_false.
simpl.
inversion_clear Hl ; simpl.
rewrite H.
-apply Zceil_Z2R.
+apply Zceil_IZR.
apply Zceil_imp.
split.
-change (m + 1 - 1)%Z with (Zpred (Zsucc m)).
+change (m + 1 - 1)%Z with (Z.pred (Z.succ m)).
now rewrite <- Zpred_succ.
now apply Rlt_le.
now apply Rge_le.
@@ -248,7 +304,7 @@ Qed.
Theorem inbetween_float_UP_sign :
forall x m l,
- let e := canonic_exp beta fexp x in
+ let e := cexp beta fexp x in
inbetween_float beta m e (Rabs x) l ->
round beta fexp Zceil x = F2R (Float beta (cond_Zopp (Rlt_bool x 0) (cond_incr (round_sign_UP (Rlt_bool x 0) l) m)) e).
Proof.
@@ -273,7 +329,7 @@ intros x m l Hl.
inversion_clear Hl as [Hx|l' Hx Hl'].
(* Exact *)
rewrite Hx.
-rewrite Zrnd_Z2R...
+rewrite Zrnd_IZR...
(* not Exact *)
unfold Ztrunc.
assert (Hm: Zfloor x = m).
@@ -288,10 +344,10 @@ case Rlt_bool_spec ; intros Hx' ;
elim Rlt_not_le with (1 := Hx').
apply Rlt_le.
apply Rle_lt_trans with (2 := proj1 Hx).
-now apply (Z2R_le 0).
+now apply IZR_le.
elim Rle_not_lt with (1 := Hx').
apply Rlt_le_trans with (1 := proj2 Hx).
-apply (Z2R_le _ 0).
+apply IZR_le.
now apply Zlt_le_succ.
rewrite Hm.
now apply Rlt_not_eq.
@@ -299,7 +355,7 @@ Qed.
Theorem inbetween_float_ZR :
forall x m l,
- let e := canonic_exp beta fexp x in
+ let e := cexp beta fexp x in
inbetween_float beta m e x l ->
round beta fexp Ztrunc x = F2R (Float beta (cond_incr (round_ZR (Zlt_bool m 0) l) m) e).
Proof.
@@ -324,7 +380,7 @@ apply f_equal.
apply Zfloor_imp.
rewrite <- Rabs_left with (1 := Zx).
apply inbetween_bounds with (2 := Hl).
-apply Z2R_lt.
+apply IZR_lt.
apply Zlt_succ.
(* *)
rewrite Rlt_bool_false with (1 := Zx).
@@ -332,13 +388,13 @@ simpl.
apply Zfloor_imp.
rewrite <- Rabs_pos_eq with (1 := Zx).
apply inbetween_bounds with (2 := Hl).
-apply Z2R_lt.
+apply IZR_lt.
apply Zlt_succ.
Qed.
Theorem inbetween_float_ZR_sign :
forall x m l,
- let e := canonic_exp beta fexp x in
+ let e := cexp beta fexp x in
inbetween_float beta m e (Rabs x) l ->
round beta fexp Ztrunc x = F2R (Float beta (cond_Zopp (Rlt_bool x 0) m) e).
Proof.
@@ -365,7 +421,7 @@ intros choice x m l Hl.
inversion_clear Hl as [Hx|l' Hx Hl'].
(* Exact *)
rewrite Hx.
-rewrite Zrnd_Z2R...
+rewrite Zrnd_IZR...
(* not Exact *)
unfold Znearest.
assert (Hm: Zfloor x = m).
@@ -373,13 +429,12 @@ apply Zfloor_imp.
exact (conj (Rlt_le _ _ (proj1 Hx)) (proj2 Hx)).
rewrite Zceil_floor_neq.
rewrite Hm.
-replace (Rcompare (x - Z2R m) (/2)) with l'.
+replace (Rcompare (x - IZR m) (/2)) with l'.
now case l'.
rewrite <- Hl'.
-rewrite Z2R_plus.
-rewrite <- (Rcompare_plus_r (- Z2R m) x).
+rewrite plus_IZR.
+rewrite <- (Rcompare_plus_r (- IZR m) x).
apply f_equal.
-simpl (Z2R 1).
field.
rewrite Hm.
now apply Rlt_not_eq.
@@ -402,20 +457,19 @@ rewrite Znearest_opp.
apply f_equal.
inversion_clear Hl as [Hx|l' Hx Hl'].
rewrite Hx.
-apply Zrnd_Z2R...
+apply Zrnd_IZR...
assert (Hm: Zfloor (-x) = m).
apply Zfloor_imp.
exact (conj (Rlt_le _ _ (proj1 Hx)) (proj2 Hx)).
unfold Znearest.
rewrite Zceil_floor_neq.
rewrite Hm.
-replace (Rcompare (- x - Z2R m) (/2)) with l'.
+replace (Rcompare (- x - IZR m) (/2)) with l'.
now case l'.
rewrite <- Hl'.
-rewrite Z2R_plus.
-rewrite <- (Rcompare_plus_r (- Z2R m) (-x)).
+rewrite plus_IZR.
+rewrite <- (Rcompare_plus_r (- IZR m) (-x)).
apply f_equal.
-simpl (Z2R 1).
field.
rewrite Hm.
now apply Rlt_not_eq.
@@ -426,20 +480,19 @@ rewrite Rlt_bool_false with (1 := Zx).
simpl.
inversion_clear Hl as [Hx|l' Hx Hl'].
rewrite Hx.
-apply Zrnd_Z2R...
+apply Zrnd_IZR...
assert (Hm: Zfloor x = m).
apply Zfloor_imp.
exact (conj (Rlt_le _ _ (proj1 Hx)) (proj2 Hx)).
unfold Znearest.
rewrite Zceil_floor_neq.
rewrite Hm.
-replace (Rcompare (x - Z2R m) (/2)) with l'.
+replace (Rcompare (x - IZR m) (/2)) with l'.
now case l'.
rewrite <- Hl'.
-rewrite Z2R_plus.
-rewrite <- (Rcompare_plus_r (- Z2R m) x).
+rewrite plus_IZR.
+rewrite <- (Rcompare_plus_r (- IZR m) x).
apply f_equal.
-simpl (Z2R 1).
field.
rewrite Hm.
now apply Rlt_not_eq.
@@ -450,44 +503,44 @@ Qed.
Theorem inbetween_int_NE :
forall x m l,
inbetween_int m x l ->
- ZnearestE x = cond_incr (round_N (negb (Zeven m)) l) m.
+ ZnearestE x = cond_incr (round_N (negb (Z.even m)) l) m.
Proof.
intros x m l Hl.
-now apply inbetween_int_N with (choice := fun x => negb (Zeven x)).
+now apply inbetween_int_N with (choice := fun x => negb (Z.even x)).
Qed.
Theorem inbetween_float_NE :
forall x m l,
- let e := canonic_exp beta fexp x in
+ let e := cexp beta fexp x in
inbetween_float beta m e x l ->
- round beta fexp ZnearestE x = F2R (Float beta (cond_incr (round_N (negb (Zeven m)) l) m) e).
+ round beta fexp ZnearestE x = F2R (Float beta (cond_incr (round_N (negb (Z.even m)) l) m) e).
Proof.
-apply inbetween_float_round with (choice := fun m l => cond_incr (round_N (negb (Zeven m)) l) m).
+apply inbetween_float_round with (choice := fun m l => cond_incr (round_N (negb (Z.even m)) l) m).
exact inbetween_int_NE.
Qed.
Theorem inbetween_int_NE_sign :
forall x m l,
inbetween_int m (Rabs x) l ->
- ZnearestE x = cond_Zopp (Rlt_bool x 0) (cond_incr (round_N (negb (Zeven m)) l) m).
+ ZnearestE x = cond_Zopp (Rlt_bool x 0) (cond_incr (round_N (negb (Z.even m)) l) m).
Proof.
intros x m l Hl.
-erewrite inbetween_int_N_sign with (choice := fun x => negb (Zeven x)).
+erewrite inbetween_int_N_sign with (choice := fun x => negb (Z.even x)).
2: eexact Hl.
apply f_equal.
case Rlt_bool.
-rewrite Zeven_opp, Zeven_plus.
-now case (Zeven m).
+rewrite Z.even_opp, Z.even_add.
+now case (Z.even m).
apply refl_equal.
Qed.
Theorem inbetween_float_NE_sign :
forall x m l,
- let e := canonic_exp beta fexp x in
+ let e := cexp beta fexp x in
inbetween_float beta m e (Rabs x) l ->
- round beta fexp ZnearestE x = F2R (Float beta (cond_Zopp (Rlt_bool x 0) (cond_incr (round_N (negb (Zeven m)) l) m)) e).
+ round beta fexp ZnearestE x = F2R (Float beta (cond_Zopp (Rlt_bool x 0) (cond_incr (round_N (negb (Z.even m)) l) m)) e).
Proof.
-apply inbetween_float_round_sign with (choice := fun s m l => cond_incr (round_N (negb (Zeven m)) l) m).
+apply inbetween_float_round_sign with (choice := fun s m l => cond_incr (round_N (negb (Z.even m)) l) m).
exact inbetween_int_NE_sign.
Qed.
@@ -504,7 +557,7 @@ Qed.
Theorem inbetween_float_NA :
forall x m l,
- let e := canonic_exp beta fexp x in
+ let e := cexp beta fexp x in
inbetween_float beta m e x l ->
round beta fexp ZnearestA x = F2R (Float beta (cond_incr (round_N (Zle_bool 0 m) l) m) e).
Proof.
@@ -523,11 +576,11 @@ erewrite inbetween_int_N_sign with (choice := Zle_bool 0).
apply f_equal.
assert (Hm: (0 <= m)%Z).
apply Zlt_succ_le.
-apply lt_Z2R.
+apply lt_IZR.
apply Rle_lt_trans with (Rabs x).
apply Rabs_pos.
refine (proj2 (inbetween_bounds _ _ _ _ _ Hl)).
-apply Z2R_lt.
+apply IZR_lt.
apply Zlt_succ.
rewrite Zle_bool_true with (1 := Hm).
rewrite Zle_bool_false.
@@ -538,7 +591,7 @@ Qed.
Definition truncate_aux t k :=
let '(m, e, l) := t in
let p := Zpower beta k in
- (Zdiv m p, (e + k)%Z, new_location p (Zmod m p) l).
+ (Z.div m p, (e + k)%Z, new_location p (Zmod m p) l).
Theorem truncate_aux_comp :
forall t k1 k2,
@@ -597,28 +650,28 @@ case Zlt_bool_spec ; intros Hk.
unfold truncate_aux.
apply generic_format_F2R.
intros Hd.
-unfold canonic_exp.
-rewrite ln_beta_F2R_Zdigits with (1 := Hd).
+unfold cexp.
+rewrite mag_F2R_Zdigits with (1 := Hd).
rewrite Zdigits_div_Zpower with (1 := Hm).
replace (Zdigits beta m - k + (e + k))%Z with (Zdigits beta m + e)%Z by ring.
unfold k.
ring_simplify.
-apply Zle_refl.
+apply Z.le_refl.
split.
now apply Zlt_le_weak.
apply Znot_gt_le.
contradict Hd.
apply Zdiv_small.
apply conj with (1 := Hm).
-rewrite <- Zabs_eq with (1 := Hm).
+rewrite <- Z.abs_eq with (1 := Hm).
apply Zpower_gt_Zdigits.
apply Zlt_le_weak.
-now apply Zgt_lt.
+now apply Z.gt_lt.
(* *)
destruct (Zle_lt_or_eq _ _ Hm) as [Hm'|Hm'].
apply generic_format_F2R.
-unfold canonic_exp.
-rewrite ln_beta_F2R_Zdigits.
+unfold cexp.
+rewrite mag_F2R_Zdigits.
2: now apply Zgt_not_eq.
unfold k in Hk. clear -Hk.
omega.
@@ -633,26 +686,26 @@ Theorem truncate_correct_format :
generic_format beta fexp x ->
(e <= fexp (Zdigits beta m + e))%Z ->
let '(m', e', l') := truncate (m, e, loc_Exact) in
- x = F2R (Float beta m' e') /\ e' = canonic_exp beta fexp x.
+ x = F2R (Float beta m' e') /\ e' = cexp beta fexp x.
Proof.
intros m e Hm x Fx He.
-assert (Hc: canonic_exp beta fexp x = fexp (Zdigits beta m + e)).
-unfold canonic_exp, x.
-now rewrite ln_beta_F2R_Zdigits.
+assert (Hc: cexp beta fexp x = fexp (Zdigits beta m + e)).
+unfold cexp, x.
+now rewrite mag_F2R_Zdigits.
unfold truncate.
rewrite <- Hc.
-set (k := (canonic_exp beta fexp x - e)%Z).
+set (k := (cexp beta fexp x - e)%Z).
case Zlt_bool_spec ; intros Hk.
(* *)
unfold truncate_aux.
rewrite Fx at 1.
-assert (H: (e + k)%Z = canonic_exp beta fexp x).
+assert (H: (e + k)%Z = cexp beta fexp x).
unfold k. ring.
refine (conj _ H).
rewrite <- H.
-apply F2R_eq_compat.
-replace (scaled_mantissa beta fexp x) with (Z2R (Zfloor (scaled_mantissa beta fexp x))).
-rewrite Ztrunc_Z2R.
+apply F2R_eq.
+replace (scaled_mantissa beta fexp x) with (IZR (Zfloor (scaled_mantissa beta fexp x))).
+rewrite Ztrunc_IZR.
unfold scaled_mantissa.
rewrite <- H.
unfold x, F2R. simpl.
@@ -666,7 +719,7 @@ intros H.
generalize (Zpower_pos_gt_0 beta k) (Zle_bool_imp_le _ _ (radix_prop beta)).
omega.
rewrite scaled_mantissa_generic with (1 := Fx).
-now rewrite Zfloor_Z2R.
+now rewrite Zfloor_IZR.
(* *)
split.
apply refl_equal.
@@ -674,73 +727,111 @@ unfold k in Hk.
omega.
Qed.
+Theorem truncate_correct_partial' :
+ forall x m e l,
+ (0 < x)%R ->
+ inbetween_float beta m e x l ->
+ (e <= cexp beta fexp x)%Z ->
+ let '(m', e', l') := truncate (m, e, l) in
+ inbetween_float beta m' e' x l' /\ e' = cexp beta fexp x.
+Proof.
+intros x m e l Hx H1 H2.
+unfold truncate.
+rewrite <- cexp_inbetween_float with (1 := Hx) (2 := H1) by now left.
+generalize (Zlt_cases 0 (cexp beta fexp x - e)).
+destruct Zlt_bool ; intros Hk.
+- split.
+ now apply inbetween_float_new_location.
+ ring.
+- apply (conj H1).
+ omega.
+Qed.
+
Theorem truncate_correct_partial :
forall x m e l,
(0 < x)%R ->
inbetween_float beta m e x l ->
(e <= fexp (Zdigits beta m + e))%Z ->
let '(m', e', l') := truncate (m, e, l) in
- inbetween_float beta m' e' x l' /\ e' = canonic_exp beta fexp x.
+ inbetween_float beta m' e' x l' /\ e' = cexp beta fexp x.
Proof.
intros x m e l Hx H1 H2.
-unfold truncate.
-set (k := (fexp (Zdigits beta m + e) - e)%Z).
-set (p := Zpower beta k).
-(* *)
-assert (Hx': (F2R (Float beta m e) <= x < F2R (Float beta (m + 1) e))%R).
-apply inbetween_float_bounds with (1 := H1).
-(* *)
-assert (Hm: (0 <= m)%Z).
-cut (0 < m + 1)%Z. omega.
-apply F2R_lt_reg with beta e.
-rewrite F2R_0.
-apply Rlt_trans with (1 := Hx).
-apply Hx'.
-assert (He: (e + k = canonic_exp beta fexp x)%Z).
-(* . *)
-unfold canonic_exp.
-destruct (Zle_lt_or_eq _ _ Hm) as [Hm'|Hm'].
-(* .. 0 < m *)
-rewrite ln_beta_F2R_bounds with (1 := Hm') (2 := Hx').
-assert (H: m <> Z0).
-apply sym_not_eq.
-now apply Zlt_not_eq.
-rewrite ln_beta_F2R with (1 := H).
-rewrite <- Zdigits_ln_beta with (1 := H).
-unfold k.
-ring.
-(* .. m = 0 *)
-rewrite <- Hm' in H2.
-destruct (ln_beta beta x) as (ex, Hex).
-simpl.
-specialize (Hex (Rgt_not_eq _ _ Hx)).
-unfold k.
-ring_simplify.
-rewrite <- Hm'.
-simpl.
-apply sym_eq.
-apply valid_exp.
-exact H2.
-apply Zle_trans with e.
-eapply bpow_lt_bpow.
-apply Rle_lt_trans with (1 := proj1 Hex).
-rewrite Rabs_pos_eq.
-rewrite <- F2R_bpow.
-rewrite <- Hm' in Hx'.
-apply Hx'.
-now apply Rlt_le.
+apply truncate_correct_partial' with (1 := Hx) (2 := H1).
+rewrite cexp_inbetween_float with (1 := Hx) (2 := H1).
exact H2.
-(* . *)
-generalize (Zlt_cases 0 k).
-case (Zlt_bool 0 k) ; intros Hk ; unfold k in Hk.
-split.
-now apply inbetween_float_new_location.
-exact He.
-split.
-exact H1.
-rewrite <- He.
-unfold k.
-omega.
+now right.
+Qed.
+
+Theorem truncate_correct' :
+ forall x m e l,
+ (0 <= x)%R ->
+ inbetween_float beta m e x l ->
+ (e <= cexp beta fexp x)%Z \/ l = loc_Exact ->
+ let '(m', e', l') := truncate (m, e, l) in
+ inbetween_float beta m' e' x l' /\
+ (e' = cexp beta fexp x \/ (l' = loc_Exact /\ format x)).
+Proof.
+intros x m e l [Hx|Hx] H1 H2.
+- destruct (Zle_or_lt e (fexp (Zdigits beta m + e))) as [H3|H3].
+ + generalize (truncate_correct_partial x m e l Hx H1 H3).
+ destruct (truncate (m, e, l)) as [[m' e'] l'].
+ intros [H4 H5].
+ apply (conj H4).
+ now left.
+ + destruct H2 as [H2|H2].
+ generalize (truncate_correct_partial' x m e l Hx H1 H2).
+ destruct (truncate (m, e, l)) as [[m' e'] l'].
+ intros [H4 H5].
+ apply (conj H4).
+ now left.
+ rewrite H2 in H1 |- *.
+ simpl.
+ generalize (Zlt_cases 0 (fexp (Zdigits beta m + e) - e)).
+ destruct Zlt_bool.
+ intros H.
+ apply False_ind.
+ omega.
+ intros _.
+ apply (conj H1).
+ right.
+ repeat split.
+ inversion_clear H1.
+ rewrite H.
+ apply generic_format_F2R.
+ intros Zm.
+ unfold cexp.
+ rewrite mag_F2R_Zdigits with (1 := Zm).
+ now apply Zlt_le_weak.
+- assert (Hm: m = 0%Z).
+ cut (m <= 0 < m + 1)%Z. omega.
+ assert (F2R (Float beta m e) <= x < F2R (Float beta (m + 1) e))%R as Hx'.
+ apply inbetween_float_bounds with (1 := H1).
+ rewrite <- Hx in Hx'.
+ split.
+ apply le_0_F2R with (1 := proj1 Hx').
+ apply gt_0_F2R with (1 := proj2 Hx').
+ rewrite Hm, <- Hx in H1 |- *.
+ clear -H1.
+ destruct H1 as [_ | l' [H _] _].
+ + assert (exists e', truncate (Z0, e, loc_Exact) = (Z0, e', loc_Exact)).
+ unfold truncate, truncate_aux.
+ case Zlt_bool.
+ rewrite Zdiv_0_l, Zmod_0_l.
+ eexists.
+ apply f_equal.
+ unfold new_location.
+ now case Z.even.
+ now eexists.
+ destruct H as [e' H].
+ rewrite H.
+ split.
+ constructor.
+ apply eq_sym, F2R_0.
+ right.
+ repeat split.
+ apply generic_format_0.
+ + rewrite F2R_0 in H.
+ elim Rlt_irrefl with (1 := H).
Qed.
Theorem truncate_correct :
@@ -750,78 +841,11 @@ Theorem truncate_correct :
(e <= fexp (Zdigits beta m + e))%Z \/ l = loc_Exact ->
let '(m', e', l') := truncate (m, e, l) in
inbetween_float beta m' e' x l' /\
- (e' = canonic_exp beta fexp x \/ (l' = loc_Exact /\ format x)).
+ (e' = cexp beta fexp x \/ (l' = loc_Exact /\ format x)).
Proof.
-intros x m e l [Hx|Hx] H1 H2.
-(* 0 < x *)
-destruct (Zle_or_lt e (fexp (Zdigits beta m + e))) as [H3|H3].
-(* . enough digits *)
-generalize (truncate_correct_partial x m e l Hx H1 H3).
-destruct (truncate (m, e, l)) as ((m', e'), l').
-intros (H4, H5).
-split.
-exact H4.
-now left.
-(* . not enough digits but loc_Exact *)
-destruct H2 as [H2|H2].
-elim (Zlt_irrefl e).
-now apply Zle_lt_trans with (1 := H2).
-rewrite H2 in H1 |- *.
-unfold truncate.
-generalize (Zlt_cases 0 (fexp (Zdigits beta m + e) - e)).
-case Zlt_bool.
-intros H.
-apply False_ind.
-omega.
-intros _.
-split.
-exact H1.
-right.
-split.
-apply refl_equal.
-inversion_clear H1.
-rewrite H.
-apply generic_format_F2R.
-intros Zm.
-unfold canonic_exp.
-rewrite ln_beta_F2R_Zdigits with (1 := Zm).
-now apply Zlt_le_weak.
-(* x = 0 *)
-assert (Hm: m = Z0).
-cut (m <= 0 < m + 1)%Z. omega.
-assert (Hx': (F2R (Float beta m e) <= x < F2R (Float beta (m + 1) e))%R).
-apply inbetween_float_bounds with (1 := H1).
-rewrite <- Hx in Hx'.
-split.
-apply F2R_le_0_reg with (1 := proj1 Hx').
-apply F2R_gt_0_reg with (1 := proj2 Hx').
-rewrite Hm, <- Hx in H1 |- *.
-clear -H1.
-case H1.
-(* . *)
-intros _.
-assert (exists e', truncate (Z0, e, loc_Exact) = (Z0, e', loc_Exact)).
-unfold truncate, truncate_aux.
-case Zlt_bool.
-rewrite Zdiv_0_l, Zmod_0_l.
-eexists.
-apply f_equal.
-unfold new_location.
-now case Zeven.
-now eexists.
-destruct H as (e', H).
-rewrite H.
-split.
-constructor.
-apply sym_eq.
-apply F2R_0.
-right.
-repeat split.
-apply generic_format_0.
-(* . *)
-intros l' (H, _) _.
-rewrite F2R_0 in H.
-elim Rlt_irrefl with (1 := H).
+intros x m e l Hx H1 H2.
+apply truncate_correct' with (1 := Hx) (2 := H1).
+now apply cexp_inbetween_float_loc_Exact with (2 := H1).
Qed.
Section round_dir.
@@ -838,7 +862,7 @@ Hypothesis inbetween_int_valid :
Theorem round_any_correct :
forall x m e l,
inbetween_float beta m e x l ->
- (e = canonic_exp beta fexp x \/ (l = loc_Exact /\ format x)) ->
+ (e = cexp beta fexp x \/ (l = loc_Exact /\ format x)) ->
round beta fexp rnd x = F2R (Float beta (choice m l) e).
Proof with auto with typeclass_instances.
intros x m e l Hin [He|(Hl,Hf)].
@@ -851,7 +875,7 @@ rewrite Hl.
replace (choice m loc_Exact) with m.
rewrite <- H.
apply round_generic...
-rewrite <- (Zrnd_Z2R rnd m) at 1.
+rewrite <- (Zrnd_IZR rnd m) at 1.
apply inbetween_int_valid.
now constructor.
Qed.
@@ -872,6 +896,20 @@ intros (H1, H2).
now apply round_any_correct.
Qed.
+Theorem round_trunc_any_correct' :
+ forall x m e l,
+ (0 <= x)%R ->
+ inbetween_float beta m e x l ->
+ (e <= cexp beta fexp x)%Z \/ l = loc_Exact ->
+ round beta fexp rnd x = let '(m', e', l') := truncate (m, e, l) in F2R (Float beta (choice m' l') e').
+Proof.
+intros x m e l Hx Hl He.
+generalize (truncate_correct' x m e l Hx Hl He).
+destruct (truncate (m, e, l)) as [[m' e'] l'].
+intros [H1 H2].
+now apply round_any_correct.
+Qed.
+
End round_dir.
Section round_dir_sign.
@@ -888,7 +926,7 @@ Hypothesis inbetween_int_valid :
Theorem round_sign_any_correct :
forall x m e l,
inbetween_float beta m e (Rabs x) l ->
- (e = canonic_exp beta fexp x \/ (l = loc_Exact /\ format x)) ->
+ (e = cexp beta fexp x \/ (l = loc_Exact /\ format x)) ->
round beta fexp rnd x = F2R (Float beta (cond_Zopp (Rlt_bool x 0) (choice (Rlt_bool x 0) m l)) e).
Proof with auto with typeclass_instances.
intros x m e l Hin [He|(Hl,Hf)].
@@ -915,14 +953,14 @@ now apply Rge_le.
(* *)
destruct (Rlt_bool_spec x 0) as [Zx|Zx].
(* . *)
-apply Zopp_inj.
+apply Z.opp_inj.
change (- m = cond_Zopp true (choice true m loc_Exact))%Z.
-rewrite <- (Zrnd_Z2R rnd (-m)) at 1.
-assert (Z2R (-m) < 0)%R.
-rewrite Z2R_opp.
+rewrite <- (Zrnd_IZR rnd (-m)) at 1.
+assert (IZR (-m) < 0)%R.
+rewrite opp_IZR.
apply Ropp_lt_gt_0_contravar.
-apply (Z2R_lt 0).
-apply F2R_gt_0_reg with beta e.
+apply IZR_lt.
+apply gt_0_F2R with beta e.
rewrite <- H.
apply Rabs_pos_lt.
now apply Rlt_not_eq.
@@ -930,14 +968,14 @@ rewrite <- Rlt_bool_true with (1 := H0).
apply inbetween_int_valid.
constructor.
rewrite Rabs_left with (1 := H0).
-rewrite Z2R_opp.
+rewrite opp_IZR.
apply Ropp_involutive.
(* . *)
change (m = cond_Zopp false (choice false m loc_Exact))%Z.
-rewrite <- (Zrnd_Z2R rnd m) at 1.
-assert (0 <= Z2R m)%R.
-apply (Z2R_le 0).
-apply F2R_ge_0_reg with beta e.
+rewrite <- (Zrnd_IZR rnd m) at 1.
+assert (0 <= IZR m)%R.
+apply IZR_le.
+apply ge_0_F2R with beta e.
rewrite <- H.
apply Rabs_pos.
rewrite <- Rlt_bool_false with (1 := H0).
@@ -948,29 +986,38 @@ Qed.
(** Truncating a triple is sufficient to round a real number. *)
-Theorem round_trunc_sign_any_correct :
+Theorem round_trunc_sign_any_correct' :
forall x m e l,
inbetween_float beta m e (Rabs x) l ->
- (e <= fexp (Zdigits beta m + e))%Z \/ l = loc_Exact ->
+ (e <= cexp beta fexp x)%Z \/ l = loc_Exact ->
round beta fexp rnd x = let '(m', e', l') := truncate (m, e, l) in F2R (Float beta (cond_Zopp (Rlt_bool x 0) (choice (Rlt_bool x 0) m' l')) e').
Proof.
intros x m e l Hl He.
-generalize (truncate_correct (Rabs x) m e l (Rabs_pos _) Hl He).
-destruct (truncate (m, e, l)) as ((m', e'), l').
-intros (H1, H2).
+rewrite <- cexp_abs in He.
+generalize (truncate_correct' (Rabs x) m e l (Rabs_pos _) Hl He).
+destruct (truncate (m, e, l)) as [[m' e'] l'].
+intros [H1 H2].
apply round_sign_any_correct.
exact H1.
-destruct H2 as [H2|(H2,H3)].
+destruct H2 as [H2|[H2 H3]].
left.
-now rewrite <- canonic_exp_abs.
+now rewrite <- cexp_abs.
right.
-split.
-exact H2.
-unfold Rabs in H3.
-destruct (Rcase_abs x) in H3.
-rewrite <- Ropp_involutive.
-now apply generic_format_opp.
-exact H3.
+apply (conj H2).
+now apply generic_format_abs_inv.
+Qed.
+
+Theorem round_trunc_sign_any_correct :
+ forall x m e l,
+ inbetween_float beta m e (Rabs x) l ->
+ (e <= fexp (Zdigits beta m + e))%Z \/ l = loc_Exact ->
+ round beta fexp rnd x = let '(m', e', l') := truncate (m, e, l) in F2R (Float beta (cond_Zopp (Rlt_bool x 0) (choice (Rlt_bool x 0) m' l')) e').
+Proof.
+intros x m e l Hl He.
+apply round_trunc_sign_any_correct' with (1 := Hl).
+rewrite <- cexp_abs.
+apply cexp_inbetween_float_loc_Exact with (2 := Hl) (3 := He).
+apply Rabs_pos.
Qed.
End round_dir_sign.
@@ -983,47 +1030,71 @@ Definition round_DN_correct :=
Definition round_trunc_DN_correct :=
round_trunc_any_correct _ (fun m _ => m) inbetween_int_DN.
+Definition round_trunc_DN_correct' :=
+ round_trunc_any_correct' _ (fun m _ => m) inbetween_int_DN.
+
Definition round_sign_DN_correct :=
round_sign_any_correct _ (fun s m l => cond_incr (round_sign_DN s l) m) inbetween_int_DN_sign.
Definition round_trunc_sign_DN_correct :=
round_trunc_sign_any_correct _ (fun s m l => cond_incr (round_sign_DN s l) m) inbetween_int_DN_sign.
+Definition round_trunc_sign_DN_correct' :=
+ round_trunc_sign_any_correct' _ (fun s m l => cond_incr (round_sign_DN s l) m) inbetween_int_DN_sign.
+
Definition round_UP_correct :=
round_any_correct _ (fun m l => cond_incr (round_UP l) m) inbetween_int_UP.
Definition round_trunc_UP_correct :=
round_trunc_any_correct _ (fun m l => cond_incr (round_UP l) m) inbetween_int_UP.
+Definition round_trunc_UP_correct' :=
+ round_trunc_any_correct' _ (fun m l => cond_incr (round_UP l) m) inbetween_int_UP.
+
Definition round_sign_UP_correct :=
round_sign_any_correct _ (fun s m l => cond_incr (round_sign_UP s l) m) inbetween_int_UP_sign.
Definition round_trunc_sign_UP_correct :=
round_trunc_sign_any_correct _ (fun s m l => cond_incr (round_sign_UP s l) m) inbetween_int_UP_sign.
+Definition round_trunc_sign_UP_correct' :=
+ round_trunc_sign_any_correct' _ (fun s m l => cond_incr (round_sign_UP s l) m) inbetween_int_UP_sign.
+
Definition round_ZR_correct :=
round_any_correct _ (fun m l => cond_incr (round_ZR (Zlt_bool m 0) l) m) inbetween_int_ZR.
Definition round_trunc_ZR_correct :=
round_trunc_any_correct _ (fun m l => cond_incr (round_ZR (Zlt_bool m 0) l) m) inbetween_int_ZR.
+Definition round_trunc_ZR_correct' :=
+ round_trunc_any_correct' _ (fun m l => cond_incr (round_ZR (Zlt_bool m 0) l) m) inbetween_int_ZR.
+
Definition round_sign_ZR_correct :=
round_sign_any_correct _ (fun s m l => m) inbetween_int_ZR_sign.
Definition round_trunc_sign_ZR_correct :=
round_trunc_sign_any_correct _ (fun s m l => m) inbetween_int_ZR_sign.
+Definition round_trunc_sign_ZR_correct' :=
+ round_trunc_sign_any_correct' _ (fun s m l => m) inbetween_int_ZR_sign.
+
Definition round_NE_correct :=
- round_any_correct _ (fun m l => cond_incr (round_N (negb (Zeven m)) l) m) inbetween_int_NE.
+ round_any_correct _ (fun m l => cond_incr (round_N (negb (Z.even m)) l) m) inbetween_int_NE.
Definition round_trunc_NE_correct :=
- round_trunc_any_correct _ (fun m l => cond_incr (round_N (negb (Zeven m)) l) m) inbetween_int_NE.
+ round_trunc_any_correct _ (fun m l => cond_incr (round_N (negb (Z.even m)) l) m) inbetween_int_NE.
+
+Definition round_trunc_NE_correct' :=
+ round_trunc_any_correct' _ (fun m l => cond_incr (round_N (negb (Z.even m)) l) m) inbetween_int_NE.
Definition round_sign_NE_correct :=
- round_sign_any_correct _ (fun s m l => cond_incr (round_N (negb (Zeven m)) l) m) inbetween_int_NE_sign.
+ round_sign_any_correct _ (fun s m l => cond_incr (round_N (negb (Z.even m)) l) m) inbetween_int_NE_sign.
Definition round_trunc_sign_NE_correct :=
- round_trunc_sign_any_correct _ (fun s m l => cond_incr (round_N (negb (Zeven m)) l) m) inbetween_int_NE_sign.
+ round_trunc_sign_any_correct _ (fun s m l => cond_incr (round_N (negb (Z.even m)) l) m) inbetween_int_NE_sign.
+
+Definition round_trunc_sign_NE_correct' :=
+ round_trunc_sign_any_correct' _ (fun s m l => cond_incr (round_N (negb (Z.even m)) l) m) inbetween_int_NE_sign.
Definition round_NA_correct :=
round_any_correct _ (fun m l => cond_incr (round_N (Zle_bool 0 m) l) m) inbetween_int_NA.
@@ -1031,12 +1102,18 @@ Definition round_NA_correct :=
Definition round_trunc_NA_correct :=
round_trunc_any_correct _ (fun m l => cond_incr (round_N (Zle_bool 0 m) l) m) inbetween_int_NA.
+Definition round_trunc_NA_correct' :=
+ round_trunc_any_correct' _ (fun m l => cond_incr (round_N (Zle_bool 0 m) l) m) inbetween_int_NA.
+
Definition round_sign_NA_correct :=
round_sign_any_correct _ (fun s m l => cond_incr (round_N true l) m) inbetween_int_NA_sign.
Definition round_trunc_sign_NA_correct :=
round_trunc_sign_any_correct _ (fun s m l => cond_incr (round_N true l) m) inbetween_int_NA_sign.
+Definition round_trunc_sign_NA_correct' :=
+ round_trunc_sign_any_correct' _ (fun s m l => cond_incr (round_N true l) m) inbetween_int_NA_sign.
+
End Fcalc_round_fexp.
(** Specialization of truncate for FIX formats. *)
@@ -1048,7 +1125,7 @@ Definition truncate_FIX t :=
let k := (emin - e)%Z in
if Zlt_bool 0 k then
let p := Zpower beta k in
- (Zdiv m p, (e + k)%Z, new_location p (Zmod m p) l)
+ (Z.div m p, (e + k)%Z, new_location p (Zmod m p) l)
else t.
Theorem truncate_FIX_correct :
@@ -1057,13 +1134,13 @@ Theorem truncate_FIX_correct :
(e <= emin)%Z \/ l = loc_Exact ->
let '(m', e', l') := truncate_FIX (m, e, l) in
inbetween_float beta m' e' x l' /\
- (e' = canonic_exp beta (FIX_exp emin) x \/ (l' = loc_Exact /\ generic_format beta (FIX_exp emin) x)).
+ (e' = cexp beta (FIX_exp emin) x \/ (l' = loc_Exact /\ generic_format beta (FIX_exp emin) x)).
Proof.
intros x m e l H1 H2.
unfold truncate_FIX.
set (k := (emin - e)%Z).
set (p := Zpower beta k).
-unfold canonic_exp, FIX_exp.
+unfold cexp, FIX_exp.
generalize (Zlt_cases 0 k).
case (Zlt_bool 0 k) ; intros Hk.
(* shift *)
@@ -1087,7 +1164,7 @@ rewrite H2 in H1.
inversion_clear H1.
rewrite H.
apply generic_format_F2R.
-unfold canonic_exp.
+unfold cexp.
omega.
Qed.
diff --git a/flocq/Calc/Sqrt.v b/flocq/Calc/Sqrt.v
new file mode 100644
index 00000000..8843d21e
--- /dev/null
+++ b/flocq/Calc/Sqrt.v
@@ -0,0 +1,201 @@
+(**
+This file is part of the Flocq formalization of floating-point
+arithmetic in Coq: http://flocq.gforge.inria.fr/
+
+Copyright (C) 2010-2018 Sylvie Boldo
+#<br />#
+Copyright (C) 2010-2018 Guillaume Melquiond
+
+This library is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+This library is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+COPYING file for more details.
+*)
+
+(** * Helper functions and theorems for computing the rounded square root of a floating-point number. *)
+
+Require Import Raux Defs Digits Generic_fmt Float_prop Bracket.
+
+Set Implicit Arguments.
+Set Strongly Strict Implicit.
+
+Section Fcalc_sqrt.
+
+Variable beta : radix.
+Notation bpow e := (bpow beta e).
+
+Variable fexp : Z -> Z.
+
+(** Computes a mantissa of precision p, the corresponding exponent,
+ and the position with respect to the real square root of the
+ input floating-point number.
+
+The algorithm performs the following steps:
+- Shift the mantissa so that it has at least 2p-1 digits;
+ shift it one digit more if the new exponent is not even.
+- Compute the square root s (at least p digits) of the new
+ mantissa, and its remainder r.
+- Compute the position according to the remainder:
+ -- r == 0 => Eq,
+ -- r <= s => Lo,
+ -- r >= s => Up.
+
+Complexity is fine as long as p1 <= 2p-1.
+*)
+
+Lemma mag_sqrt_F2R :
+ forall m1 e1,
+ (0 < m1)%Z ->
+ mag beta (sqrt (F2R (Float beta m1 e1))) = Z.div2 (Zdigits beta m1 + e1 + 1) :> Z.
+Proof.
+intros m1 e1 Hm1.
+rewrite <- (mag_F2R_Zdigits beta m1 e1) by now apply Zgt_not_eq.
+apply mag_sqrt.
+now apply F2R_gt_0.
+Qed.
+
+Definition Fsqrt_core m1 e1 e :=
+ let d1 := Zdigits beta m1 in
+ let m1' := (m1 * Zpower beta (e1 - 2 * e))%Z in
+ let (q, r) := Z.sqrtrem m1' in
+ let l :=
+ if Zeq_bool r 0 then loc_Exact
+ else loc_Inexact (if Zle_bool r q then Lt else Gt) in
+ (q, l).
+
+Theorem Fsqrt_core_correct :
+ forall m1 e1 e,
+ (0 < m1)%Z ->
+ (2 * e <= e1)%Z ->
+ let '(m, l) := Fsqrt_core m1 e1 e in
+ inbetween_float beta m e (sqrt (F2R (Float beta m1 e1))) l.
+Proof.
+intros m1 e1 e Hm1 He.
+unfold Fsqrt_core.
+set (m' := Zmult _ _).
+assert (0 <= m')%Z as Hm'.
+{ apply Z.mul_nonneg_nonneg.
+ now apply Zlt_le_weak.
+ apply Zpower_ge_0. }
+assert (sqrt (F2R (Float beta m1 e1)) = sqrt (IZR m') * bpow e)%R as Hf.
+{ rewrite <- (sqrt_Rsqr (bpow e)) by apply bpow_ge_0.
+ rewrite <- sqrt_mult.
+ unfold Rsqr, m'.
+ rewrite mult_IZR, IZR_Zpower by omega.
+ rewrite Rmult_assoc, <- 2!bpow_plus.
+ now replace (_ + _)%Z with e1 by ring.
+ now apply IZR_le.
+ apply Rle_0_sqr. }
+generalize (Z.sqrtrem_spec m' Hm').
+destruct Z.sqrtrem as [q r].
+intros [Hq Hr].
+rewrite Hf.
+unfold inbetween_float, F2R. simpl Fnum.
+apply inbetween_mult_compat.
+apply bpow_gt_0.
+rewrite Hq.
+case Zeq_bool_spec ; intros Hr'.
+(* .. r = 0 *)
+rewrite Hr', Zplus_0_r, mult_IZR.
+fold (Rsqr (IZR q)).
+rewrite sqrt_Rsqr.
+now constructor.
+apply IZR_le.
+clear -Hr ; omega.
+(* .. r <> 0 *)
+constructor.
+split.
+(* ... bounds *)
+apply Rle_lt_trans with (sqrt (IZR (q * q))).
+rewrite mult_IZR.
+fold (Rsqr (IZR q)).
+rewrite sqrt_Rsqr.
+apply Rle_refl.
+apply IZR_le.
+clear -Hr ; omega.
+apply sqrt_lt_1.
+rewrite mult_IZR.
+apply Rle_0_sqr.
+rewrite <- Hq.
+now apply IZR_le.
+apply IZR_lt.
+omega.
+apply Rlt_le_trans with (sqrt (IZR ((q + 1) * (q + 1)))).
+apply sqrt_lt_1.
+rewrite <- Hq.
+now apply IZR_le.
+rewrite mult_IZR.
+apply Rle_0_sqr.
+apply IZR_lt.
+ring_simplify.
+omega.
+rewrite mult_IZR.
+fold (Rsqr (IZR (q + 1))).
+rewrite sqrt_Rsqr.
+apply Rle_refl.
+apply IZR_le.
+clear -Hr ; omega.
+(* ... location *)
+rewrite Rcompare_half_r.
+generalize (Rcompare_sqr (2 * sqrt (IZR (q * q + r))) (IZR q + IZR (q + 1))).
+rewrite 2!Rabs_pos_eq.
+intros <-.
+replace ((2 * sqrt (IZR (q * q + r))) * (2 * sqrt (IZR (q * q + r))))%R
+ with (4 * Rsqr (sqrt (IZR (q * q + r))))%R by (unfold Rsqr ; ring).
+rewrite Rsqr_sqrt.
+rewrite <- plus_IZR, <- 2!mult_IZR.
+rewrite Rcompare_IZR.
+replace ((q + (q + 1)) * (q + (q + 1)))%Z with (4 * (q * q) + 4 * q + 1)%Z by ring.
+generalize (Zle_cases r q).
+case (Zle_bool r q) ; intros Hr''.
+change (4 * (q * q + r) < 4 * (q * q) + 4 * q + 1)%Z.
+omega.
+change (4 * (q * q + r) > 4 * (q * q) + 4 * q + 1)%Z.
+omega.
+rewrite <- Hq.
+now apply IZR_le.
+rewrite <- plus_IZR.
+apply IZR_le.
+clear -Hr ; omega.
+apply Rmult_le_pos.
+now apply IZR_le.
+apply sqrt_ge_0.
+Qed.
+
+Definition Fsqrt (x : float beta) :=
+ let (m1, e1) := x in
+ let e' := (Zdigits beta m1 + e1 + 1)%Z in
+ let e := Z.min (fexp (Z.div2 e')) (Z.div2 e1) in
+ let '(m, l) := Fsqrt_core m1 e1 e in
+ (m, e, l).
+
+Theorem Fsqrt_correct :
+ forall x,
+ (0 < F2R x)%R ->
+ let '(m, e, l) := Fsqrt x in
+ (e <= cexp beta fexp (sqrt (F2R x)))%Z /\
+ inbetween_float beta m e (sqrt (F2R x)) l.
+Proof.
+intros [m1 e1] Hm1.
+apply gt_0_F2R in Hm1.
+unfold Fsqrt.
+set (e := Z.min _ _).
+assert (2 * e <= e1)%Z as He.
+{ assert (e <= Z.div2 e1)%Z by apply Z.le_min_r.
+ rewrite (Zdiv2_odd_eqn e1).
+ destruct Z.odd ; omega. }
+generalize (Fsqrt_core_correct m1 e1 e Hm1 He).
+destruct Fsqrt_core as [m l].
+apply conj.
+apply Z.le_trans with (1 := Z.le_min_l _ _).
+unfold cexp.
+rewrite (mag_sqrt_F2R m1 e1 Hm1).
+apply Z.le_refl.
+Qed.
+
+End Fcalc_sqrt.
diff --git a/flocq/Core/Fcore.v b/flocq/Core/Core.v
index 2a5a5f02..78a140e1 100644
--- a/flocq/Core/Fcore.v
+++ b/flocq/Core/Core.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2010-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2010-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,13 +18,5 @@ COPYING file for more details.
*)
(** To ease the import *)
-Require Export Fcore_Raux.
-Require Export Fcore_defs.
-Require Export Fcore_float_prop.
-Require Export Fcore_rnd.
-Require Export Fcore_generic_fmt.
-Require Export Fcore_rnd_ne.
-Require Export Fcore_FIX.
-Require Export Fcore_FLX.
-Require Export Fcore_FLT.
-Require Export Fcore_ulp.
+Require Export Raux Defs Float_prop Round_pred Generic_fmt Round_NE.
+Require Export FIX FLX FLT Ulp.
diff --git a/flocq/Core/Fcore_defs.v b/flocq/Core/Defs.v
index 01b868ab..f5c6f33b 100644
--- a/flocq/Core/Fcore_defs.v
+++ b/flocq/Core/Defs.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2009-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,20 +18,20 @@ COPYING file for more details.
*)
(** * Basic definitions: float and rounding property *)
-Require Import Fcore_Raux.
+Require Import Raux.
Section Def.
(** Definition of a floating-point number *)
Record float (beta : radix) := Float { Fnum : Z ; Fexp : Z }.
-Arguments Fnum {beta} f.
-Arguments Fexp {beta} f.
+Arguments Fnum {beta}.
+Arguments Fexp {beta}.
Variable beta : radix.
Definition F2R (f : float beta) :=
- (Z2R (Fnum f) * bpow beta (Fexp f))%R.
+ (IZR (Fnum f) * bpow beta (Fexp f))%R.
(** Requirements on a rounding mode *)
Definition round_pred_total (P : R -> R -> Prop) :=
@@ -46,9 +46,9 @@ Definition round_pred (P : R -> R -> Prop) :=
End Def.
-Arguments Fnum {beta} f.
-Arguments Fexp {beta} f.
-Arguments F2R {beta} f.
+Arguments Fnum {beta}.
+Arguments Fexp {beta}.
+Arguments F2R {beta}.
Section RND.
@@ -57,45 +57,27 @@ Definition Rnd_DN_pt (F : R -> Prop) (x f : R) :=
F f /\ (f <= x)%R /\
forall g : R, F g -> (g <= x)%R -> (g <= f)%R.
-Definition Rnd_DN (F : R -> Prop) (rnd : R -> R) :=
- forall x : R, Rnd_DN_pt F x (rnd x).
-
(** property of being a round toward +inf *)
Definition Rnd_UP_pt (F : R -> Prop) (x f : R) :=
F f /\ (x <= f)%R /\
forall g : R, F g -> (x <= g)%R -> (f <= g)%R.
-Definition Rnd_UP (F : R -> Prop) (rnd : R -> R) :=
- forall x : R, Rnd_UP_pt F x (rnd x).
-
(** property of being a round toward zero *)
Definition Rnd_ZR_pt (F : R -> Prop) (x f : R) :=
( (0 <= x)%R -> Rnd_DN_pt F x f ) /\
( (x <= 0)%R -> Rnd_UP_pt F x f ).
-Definition Rnd_ZR (F : R -> Prop) (rnd : R -> R) :=
- forall x : R, Rnd_ZR_pt F x (rnd x).
-
(** property of being a round to nearest *)
Definition Rnd_N_pt (F : R -> Prop) (x f : R) :=
F f /\
forall g : R, F g -> (Rabs (f - x) <= Rabs (g - x))%R.
-Definition Rnd_N (F : R -> Prop) (rnd : R -> R) :=
- forall x : R, Rnd_N_pt F x (rnd x).
-
Definition Rnd_NG_pt (F : R -> Prop) (P : R -> R -> Prop) (x f : R) :=
Rnd_N_pt F x f /\
( P x f \/ forall f2 : R, Rnd_N_pt F x f2 -> f2 = f ).
-Definition Rnd_NG (F : R -> Prop) (P : R -> R -> Prop) (rnd : R -> R) :=
- forall x : R, Rnd_NG_pt F P x (rnd x).
-
Definition Rnd_NA_pt (F : R -> Prop) (x f : R) :=
Rnd_N_pt F x f /\
forall f2 : R, Rnd_N_pt F x f2 -> (Rabs f2 <= Rabs f)%R.
-Definition Rnd_NA (F : R -> Prop) (rnd : R -> R) :=
- forall x : R, Rnd_NA_pt F x (rnd x).
-
End RND.
diff --git a/flocq/Core/Fcore_digits.v b/flocq/Core/Digits.v
index 53743035..bed2e20a 100644
--- a/flocq/Core/Fcore_digits.v
+++ b/flocq/Core/Digits.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2011-2013 Sylvie Boldo
+Copyright (C) 2011-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2011-2013 Guillaume Melquiond
+Copyright (C) 2011-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -17,9 +17,8 @@ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)
-Require Import ZArith.
-Require Import Zquot.
-Require Import Fcore_Zaux.
+Require Import ZArith Zquot.
+Require Import Zaux.
(** Number of bits (radix 2) of a positive integer.
@@ -74,7 +73,7 @@ Qed.
Theorem Zdigit_opp :
forall n k,
- Zdigit (-n) k = Zopp (Zdigit n k).
+ Zdigit (-n) k = Z.opp (Zdigit n k).
Proof.
intros n k.
unfold Zdigit.
@@ -89,11 +88,11 @@ Theorem Zdigit_ge_Zpower_pos :
Proof.
intros e n Hn k Hk.
unfold Zdigit.
-rewrite Zquot_small.
+rewrite Z.quot_small.
apply Zrem_0_l.
split.
apply Hn.
-apply Zlt_le_trans with (1 := proj2 Hn).
+apply Z.lt_le_trans with (1 := proj2 Hn).
replace k with (e + (k - e))%Z by ring.
rewrite Zpower_plus.
rewrite <- (Zmult_1_r (beta ^ e)) at 1.
@@ -102,8 +101,8 @@ apply (Zlt_le_succ 0).
apply Zpower_gt_0.
now apply Zle_minus_le_0.
apply Zlt_le_weak.
-now apply Zle_lt_trans with n.
-generalize (Zle_lt_trans _ _ _ (proj1 Hn) (proj2 Hn)).
+now apply Z.le_lt_trans with n.
+generalize (Z.le_lt_trans _ _ _ (proj1 Hn) (proj2 Hn)).
clear.
now destruct e as [|e|e].
now apply Zle_minus_le_0.
@@ -111,7 +110,7 @@ Qed.
Theorem Zdigit_ge_Zpower :
forall e n,
- (Zabs n < Zpower beta e)%Z ->
+ (Z.abs n < Zpower beta e)%Z ->
forall k, (e <= k)%Z -> Zdigit n k = Z0.
Proof.
intros e [|n|n] Hn k.
@@ -119,10 +118,10 @@ easy.
apply Zdigit_ge_Zpower_pos.
now split.
intros He.
-change (Zneg n) with (Zopp (Zpos n)).
+change (Zneg n) with (Z.opp (Zpos n)).
rewrite Zdigit_opp.
rewrite Zdigit_ge_Zpower_pos with (2 := He).
-apply Zopp_0.
+apply Z.opp_0.
now split.
Qed.
@@ -134,17 +133,17 @@ Proof.
intros e n He (Hn1,Hn2).
unfold Zdigit.
rewrite <- ZOdiv_mod_mult.
-rewrite Zrem_small.
+rewrite Z.rem_small.
intros H.
apply Zle_not_lt with (1 := Hn1).
rewrite (Z.quot_rem' n (beta ^ e)).
rewrite H, Zmult_0_r, Zplus_0_l.
apply Zrem_lt_pos_pos.
-apply Zle_trans with (2 := Hn1).
+apply Z.le_trans with (2 := Hn1).
apply Zpower_ge_0.
now apply Zpower_gt_0.
split.
-apply Zle_trans with (2 := Hn1).
+apply Z.le_trans with (2 := Hn1).
apply Zpower_ge_0.
replace (beta ^ e * beta)%Z with (beta ^ (e + 1))%Z.
exact Hn2.
@@ -154,12 +153,12 @@ Qed.
Theorem Zdigit_not_0 :
forall e n, (0 <= e)%Z ->
- (Zpower beta e <= Zabs n < Zpower beta (e + 1))%Z ->
+ (Zpower beta e <= Z.abs n < Zpower beta (e + 1))%Z ->
Zdigit n e <> Z0.
Proof.
intros e n He Hn.
destruct (Zle_or_lt 0 n) as [Hn'|Hn'].
-rewrite (Zabs_eq _ Hn') in Hn.
+rewrite (Z.abs_eq _ Hn') in Hn.
now apply Zdigit_not_0_pos.
intros H.
rewrite (Zabs_non_eq n) in Hn by now apply Zlt_le_weak.
@@ -245,8 +244,8 @@ intros n k k' Hk.
unfold Zdigit.
rewrite ZOdiv_small_abs.
apply Zrem_0_l.
-apply Zlt_le_trans with (Zpower beta k').
-rewrite <- (Zabs_eq (beta ^ k')) at 2 by apply Zpower_ge_0.
+apply Z.lt_le_trans with (Zpower beta k').
+rewrite <- (Z.abs_eq (beta ^ k')) at 2 by apply Zpower_ge_0.
apply Zrem_lt.
apply Zgt_not_eq.
now apply Zpower_gt_0.
@@ -266,7 +265,7 @@ Proof.
intros n.
induction k.
apply sym_eq.
-apply Zrem_1_r.
+apply Z.rem_1_r.
simpl Zsum_digit.
rewrite IHk.
unfold Zdigit.
@@ -284,65 +283,35 @@ apply Zle_0_nat.
easy.
Qed.
-Theorem Zpower_gt_id :
- forall n, (n < Zpower beta n)%Z.
-Proof.
-intros [|n|n] ; try easy.
-simpl.
-rewrite Zpower_pos_nat.
-rewrite Zpos_eq_Z_of_nat_o_nat_of_P.
-induction (nat_of_P n).
-easy.
-rewrite inj_S.
-change (Zpower_nat beta (S n0)) with (beta * Zpower_nat beta n0)%Z.
-unfold Zsucc.
-apply Zlt_le_trans with (beta * (Z_of_nat n0 + 1))%Z.
-clear.
-apply Zlt_0_minus_lt.
-replace (beta * (Z_of_nat n0 + 1) - (Z_of_nat n0 + 1))%Z with ((beta - 1) * (Z_of_nat n0 + 1))%Z by ring.
-apply Zmult_lt_0_compat.
-cut (2 <= beta)%Z. omega.
-apply Zle_bool_imp_le.
-apply beta.
-apply (Zle_lt_succ 0).
-apply Zle_0_nat.
-apply Zmult_le_compat_l.
-now apply Zlt_le_succ.
-apply Zle_trans with 2%Z.
-easy.
-apply Zle_bool_imp_le.
-apply beta.
-Qed.
-
Theorem Zdigit_ext :
forall n1 n2,
(forall k, (0 <= k)%Z -> Zdigit n1 k = Zdigit n2 k) ->
n1 = n2.
Proof.
intros n1 n2 H.
-rewrite <- (ZOmod_small_abs n1 (Zpower beta (Zmax (Zabs n1) (Zabs n2)))).
-rewrite <- (ZOmod_small_abs n2 (Zpower beta (Zmax (Zabs n1) (Zabs n2)))) at 2.
-replace (Zmax (Zabs n1) (Zabs n2)) with (Z_of_nat (Zabs_nat (Zmax (Zabs n1) (Zabs n2)))).
+rewrite <- (ZOmod_small_abs n1 (Zpower beta (Z.max (Z.abs n1) (Z.abs n2)))).
+rewrite <- (ZOmod_small_abs n2 (Zpower beta (Z.max (Z.abs n1) (Z.abs n2)))) at 2.
+replace (Z.max (Z.abs n1) (Z.abs n2)) with (Z_of_nat (Z.abs_nat (Z.max (Z.abs n1) (Z.abs n2)))).
rewrite <- 2!Zsum_digit_digit.
-induction (Zabs_nat (Zmax (Zabs n1) (Zabs n2))).
+induction (Z.abs_nat (Z.max (Z.abs n1) (Z.abs n2))).
easy.
simpl.
rewrite H, IHn.
apply refl_equal.
apply Zle_0_nat.
rewrite inj_Zabs_nat.
-apply Zabs_eq.
-apply Zle_trans with (Zabs n1).
+apply Z.abs_eq.
+apply Z.le_trans with (Z.abs n1).
apply Zabs_pos.
-apply Zle_max_l.
-apply Zlt_le_trans with (Zpower beta (Zabs n2)).
+apply Z.le_max_l.
+apply Z.lt_le_trans with (Zpower beta (Z.abs n2)).
apply Zpower_gt_id.
apply Zpower_le.
-apply Zle_max_r.
-apply Zlt_le_trans with (Zpower beta (Zabs n1)).
+apply Z.le_max_r.
+apply Z.lt_le_trans with (Zpower beta (Z.abs n1)).
apply Zpower_gt_id.
apply Zpower_le.
-apply Zle_max_l.
+apply Z.le_max_l.
Qed.
Theorem ZOmod_plus_pow_digit :
@@ -354,11 +323,11 @@ intros u v n Huv Hd.
destruct (Zle_or_lt 0 n) as [Hn|Hn].
rewrite Zplus_rem with (1 := Huv).
apply ZOmod_small_abs.
-generalize (Zle_refl n).
-pattern n at -2 ; rewrite <- Zabs_eq with (1 := Hn).
+generalize (Z.le_refl n).
+pattern n at -2 ; rewrite <- Z.abs_eq with (1 := Hn).
rewrite <- (inj_Zabs_nat n).
-induction (Zabs_nat n) as [|p IHp].
-now rewrite 2!Zrem_1_r.
+induction (Z.abs_nat n) as [|p IHp].
+now rewrite 2!Z.rem_1_r.
rewrite <- 2!Zsum_digit_digit.
simpl Zsum_digit.
rewrite inj_S.
@@ -367,39 +336,39 @@ replace (Zsum_digit (Zdigit u) p + Zdigit u (Z_of_nat p) * beta ^ Z_of_nat p +
(Zsum_digit (Zdigit v) p + Zdigit v (Z_of_nat p) * beta ^ Z_of_nat p))%Z with
(Zsum_digit (Zdigit u) p + Zsum_digit (Zdigit v) p +
(Zdigit u (Z_of_nat p) + Zdigit v (Z_of_nat p)) * beta ^ Z_of_nat p)%Z by ring.
-apply (Zle_lt_trans _ _ _ (Zabs_triangle _ _)).
-replace (beta ^ Zsucc (Z_of_nat p))%Z with (beta ^ Z_of_nat p + (beta - 1) * beta ^ Z_of_nat p)%Z.
+apply (Z.le_lt_trans _ _ _ (Z.abs_triangle _ _)).
+replace (beta ^ Z.succ (Z_of_nat p))%Z with (beta ^ Z_of_nat p + (beta - 1) * beta ^ Z_of_nat p)%Z.
apply Zplus_lt_le_compat.
rewrite 2!Zsum_digit_digit.
apply IHp.
now apply Zle_succ_le.
rewrite Zabs_Zmult.
-rewrite (Zabs_eq (beta ^ Z_of_nat p)) by apply Zpower_ge_0.
+rewrite (Z.abs_eq (beta ^ Z_of_nat p)) by apply Zpower_ge_0.
apply Zmult_le_compat_r. 2: apply Zpower_ge_0.
apply Zlt_succ_le.
-assert (forall u v, Zabs (Zdigit u v) < Zsucc (beta - 1))%Z.
+assert (forall u v, Z.abs (Zdigit u v) < Z.succ (beta - 1))%Z.
clear ; intros n k.
assert (0 < beta)%Z.
-apply Zlt_le_trans with 2%Z.
+apply Z.lt_le_trans with 2%Z.
apply refl_equal.
apply Zle_bool_imp_le.
apply beta.
-replace (Zsucc (beta - 1)) with (Zabs beta).
+replace (Z.succ (beta - 1)) with (Z.abs beta).
apply Zrem_lt.
now apply Zgt_not_eq.
-rewrite Zabs_eq.
+rewrite Z.abs_eq.
apply Zsucc_pred.
now apply Zlt_le_weak.
assert (0 <= Z_of_nat p < n)%Z.
split.
apply Zle_0_nat.
-apply Zgt_lt.
+apply Z.gt_lt.
now apply Zle_succ_gt.
destruct (Hd (Z_of_nat p) H0) as [K|K] ; rewrite K.
apply H.
rewrite Zplus_0_r.
apply H.
-unfold Zsucc.
+unfold Z.succ.
ring_simplify.
rewrite Zpower_plus.
change (beta ^1)%Z with (beta * 1)%Z.
@@ -422,7 +391,7 @@ rewrite <- ZOmod_plus_pow_digit by assumption.
apply f_equal.
destruct (Zle_or_lt 0 n) as [Hn|Hn].
apply ZOdiv_small_abs.
-rewrite <- Zabs_eq.
+rewrite <- Z.abs_eq.
apply Zrem_lt.
apply Zgt_not_eq.
now apply Zpower_gt_0.
@@ -562,7 +531,7 @@ rewrite Zle_bool_true.
rewrite Zdigit_mod_pow by apply Hk.
rewrite Zdigit_scale by apply Hk.
unfold Zminus.
-now rewrite Zopp_involutive, Zplus_comm.
+now rewrite Z.opp_involutive, Zplus_comm.
omega.
Qed.
@@ -608,13 +577,13 @@ Qed.
Theorem Zslice_slice :
forall n k1 k2 k1' k2', (0 <= k1' <= k2)%Z ->
- Zslice (Zslice n k1 k2) k1' k2' = Zslice n (k1 + k1') (Zmin (k2 - k1') k2').
+ Zslice (Zslice n k1 k2) k1' k2' = Zslice n (k1 + k1') (Z.min (k2 - k1') k2').
Proof.
intros n k1 k2 k1' k2' Hk1'.
destruct (Zle_or_lt 0 k2') as [Hk2'|Hk2'].
apply Zdigit_ext.
intros k Hk.
-destruct (Zle_or_lt (Zmin (k2 - k1') k2') k) as [Hk'|Hk'].
+destruct (Zle_or_lt (Z.min (k2 - k1') k2') k) as [Hk'|Hk'].
rewrite (Zdigit_slice_out n (k1 + k1')) with (1 := Hk').
destruct (Zle_or_lt k2' k) as [Hk''|Hk''].
now apply Zdigit_slice_out.
@@ -627,7 +596,7 @@ rewrite Zdigit_slice.
now rewrite Zplus_assoc.
zify ; omega.
unfold Zslice.
-rewrite Zmin_r.
+rewrite Z.min_r.
now rewrite Zle_bool_false.
omega.
Qed.
@@ -659,11 +628,11 @@ replace k1 with Z0 by omega.
case Zle_bool_spec ; intros Hk'.
replace k with Z0 by omega.
simpl.
-now rewrite Zquot_1_r.
-rewrite Zopp_involutive.
+now rewrite Z.quot_1_r.
+rewrite Z.opp_involutive.
apply Zmult_1_r.
rewrite Zle_bool_false by omega.
-rewrite 2!Zopp_involutive, Zplus_comm.
+rewrite 2!Z.opp_involutive, Zplus_comm.
rewrite Zpower_plus by assumption.
apply Zquot_Zquot.
Qed.
@@ -689,7 +658,7 @@ apply Zdigit_ext.
intros k' Hk'.
rewrite Zdigit_scale with (1 := Hk').
unfold Zminus.
-rewrite (Zplus_comm k'), Zopp_involutive.
+rewrite (Zplus_comm k'), Z.opp_involutive.
destruct (Zle_or_lt k2 k') as [Hk2|Hk2].
rewrite Zdigit_slice_out with (1 := Hk2).
apply sym_eq.
@@ -770,7 +739,7 @@ Definition Zdigits n :=
Theorem Zdigits_correct :
forall n,
- (Zpower beta (Zdigits n - 1) <= Zabs n < Zpower beta (Zdigits n))%Z.
+ (Zpower beta (Zdigits n - 1) <= Z.abs n < Zpower beta (Zdigits n))%Z.
Proof.
cut (forall p, Zpower beta (Zdigits (Zpos p) - 1) <= Zpos p < Zpower beta (Zdigits (Zpos p)))%Z.
intros H [|n|n] ; try exact (H n).
@@ -779,7 +748,7 @@ intros n.
simpl.
(* *)
assert (U: (Zpos n < Zpower beta (Z_of_nat (S (digits2_Pnat n))))%Z).
-apply Zlt_le_trans with (1 := proj2 (digits2_Pnat_correct n)).
+apply Z.lt_le_trans with (1 := proj2 (digits2_Pnat_correct n)).
rewrite Zpower_Zpower_nat.
rewrite Zabs_nat_Z_of_nat.
induction (S (digits2_Pnat n)).
@@ -797,7 +766,7 @@ apply Zle_0_nat.
(* *)
revert U.
rewrite inj_S.
-unfold Zsucc.
+unfold Z.succ.
generalize (digits2_Pnat n).
intros u U.
pattern (radix_val beta) at 2 4 ; replace (radix_val beta) with (Zpower beta 1) by apply Zmult_1_r.
@@ -805,12 +774,12 @@ assert (V: (Zpower beta (1 - 1) <= Zpos n)%Z).
now apply (Zlt_le_succ 0).
generalize (conj V U).
clear.
-generalize (Zle_refl 1).
+generalize (Z.le_refl 1).
generalize 1%Z at 2 3 5 6 7 9 10.
(* *)
induction u.
easy.
-rewrite inj_S; unfold Zsucc.
+rewrite inj_S; unfold Z.succ.
simpl Zdigits_aux.
intros v Hv U.
case Zlt_bool_spec ; intros K.
@@ -829,20 +798,20 @@ Qed.
Theorem Zdigits_unique :
forall n d,
- (Zpower beta (d - 1) <= Zabs n < Zpower beta d)%Z ->
+ (Zpower beta (d - 1) <= Z.abs n < Zpower beta d)%Z ->
Zdigits n = d.
Proof.
intros n d Hd.
assert (Hd' := Zdigits_correct n).
apply Zle_antisym.
apply (Zpower_lt_Zpower beta).
-now apply Zle_lt_trans with (Zabs n).
+now apply Z.le_lt_trans with (Z.abs n).
apply (Zpower_lt_Zpower beta).
-now apply Zle_lt_trans with (Zabs n).
+now apply Z.le_lt_trans with (Z.abs n).
Qed.
Theorem Zdigits_abs :
- forall n, Zdigits (Zabs n) = Zdigits n.
+ forall n, Zdigits (Z.abs n) = Zdigits n.
Proof.
now intros [|n|n].
Qed.
@@ -852,10 +821,10 @@ Theorem Zdigits_gt_0 :
Proof.
intros n Zn.
rewrite <- (Zdigits_abs n).
-assert (Hn: (0 < Zabs n)%Z).
+assert (Hn: (0 < Z.abs n)%Z).
destruct n ; [|easy|easy].
now elim Zn.
-destruct (Zabs n) as [|p|p] ; try easy ; clear.
+destruct (Z.abs n) as [|p|p] ; try easy ; clear.
simpl.
generalize 1%Z (radix_val beta) (refl_equal Lt : (0 < 1)%Z).
induction (digits2_Pnat p).
@@ -872,7 +841,7 @@ Theorem Zdigits_ge_0 :
forall n, (0 <= Zdigits n)%Z.
Proof.
intros n.
-destruct (Z_eq_dec n 0) as [H|H].
+destruct (Z.eq_dec n 0) as [H|H].
now rewrite H.
apply Zlt_le_weak.
now apply Zdigits_gt_0.
@@ -908,8 +877,8 @@ unfold Zslice.
rewrite Zle_bool_true with (1 := Hl).
destruct (Zdigits_correct (Z.rem (Zscale n (- k)) (Zpower beta l))) as (H1,H2).
apply Zpower_lt_Zpower with beta.
-apply Zle_lt_trans with (1 := H1).
-rewrite <- (Zabs_eq (beta ^ l)) at 2 by apply Zpower_ge_0.
+apply Z.le_lt_trans with (1 := H1).
+rewrite <- (Z.abs_eq (beta ^ l)) at 2 by apply Zpower_ge_0.
apply Zrem_lt.
apply Zgt_not_eq.
now apply Zpower_gt_0.
@@ -923,7 +892,7 @@ Proof.
intros m e Hm He.
assert (H := Zdigits_correct m).
apply Zdigits_unique.
-rewrite Z.abs_mul, Z.abs_pow, (Zabs_eq beta).
+rewrite Z.abs_mul, Z.abs_pow, (Z.abs_eq beta).
2: now apply Zlt_le_weak, radix_gt_0.
split.
replace (Zdigits m + e - 1)%Z with (Zdigits m - 1 + e)%Z by ring.
@@ -976,18 +945,18 @@ Qed.
Theorem Zpower_le_Zdigits :
forall e x,
(e < Zdigits x)%Z ->
- (Zpower beta e <= Zabs x)%Z.
+ (Zpower beta e <= Z.abs x)%Z.
Proof.
intros e x Hex.
destruct (Zdigits_correct x) as [H1 H2].
-apply Zle_trans with (2 := H1).
+apply Z.le_trans with (2 := H1).
apply Zpower_le.
clear -Hex ; omega.
Qed.
Theorem Zdigits_le_Zpower :
forall e x,
- (Zabs x < Zpower beta e)%Z ->
+ (Z.abs x < Zpower beta e)%Z ->
(Zdigits x <= e)%Z.
Proof.
intros e x.
@@ -998,17 +967,17 @@ Qed.
Theorem Zpower_gt_Zdigits :
forall e x,
(Zdigits x <= e)%Z ->
- (Zabs x < Zpower beta e)%Z.
+ (Z.abs x < Zpower beta e)%Z.
Proof.
intros e x Hex.
destruct (Zdigits_correct x) as [H1 H2].
-apply Zlt_le_trans with (1 := H2).
+apply Z.lt_le_trans with (1 := H2).
now apply Zpower_le.
Qed.
Theorem Zdigits_gt_Zpower :
forall e x,
- (Zpower beta e <= Zabs x)%Z ->
+ (Zpower beta e <= Z.abs x)%Z ->
(e < Zdigits x)%Z.
Proof.
intros e x Hex.
@@ -1029,17 +998,17 @@ Theorem Zdigits_mult_strong :
Proof.
intros x y Hx Hy.
apply Zdigits_le_Zpower.
-rewrite Zabs_eq.
-apply Zlt_le_trans with ((x + 1) * (y + 1))%Z.
+rewrite Z.abs_eq.
+apply Z.lt_le_trans with ((x + 1) * (y + 1))%Z.
ring_simplify.
-apply Zle_lt_succ, Zle_refl.
+apply Zle_lt_succ, Z.le_refl.
rewrite Zpower_plus by apply Zdigits_ge_0.
apply Zmult_le_compat.
apply Zlt_le_succ.
-rewrite <- (Zabs_eq x) at 1 by easy.
+rewrite <- (Z.abs_eq x) at 1 by easy.
apply Zdigits_correct.
apply Zlt_le_succ.
-rewrite <- (Zabs_eq y) at 1 by easy.
+rewrite <- (Z.abs_eq y) at 1 by easy.
apply Zdigits_correct.
clear -Hx ; omega.
clear -Hy ; omega.
@@ -1057,7 +1026,7 @@ intros x y.
rewrite <- Zdigits_abs.
rewrite <- (Zdigits_abs x).
rewrite <- (Zdigits_abs y).
-apply Zle_trans with (Zdigits (Zabs x + Zabs y + Zabs x * Zabs y)).
+apply Z.le_trans with (Zdigits (Z.abs x + Z.abs y + Z.abs x * Z.abs y)).
apply Zdigits_le.
apply Zabs_pos.
rewrite Zabs_Zmult.
@@ -1097,28 +1066,28 @@ intros m e Hm He.
assert (H := Zdigits_correct m).
apply Zdigits_unique.
destruct (Zle_lt_or_eq _ _ (proj2 He)) as [He'|He'].
- rewrite Zabs_eq in H by easy.
+ rewrite Z.abs_eq in H by easy.
destruct H as [H1 H2].
- rewrite Zabs_eq.
+ rewrite Z.abs_eq.
split.
replace (Zdigits m - e - 1)%Z with (Zdigits m - 1 - e)%Z by ring.
rewrite Z.pow_sub_r.
2: apply Zgt_not_eq, radix_gt_0.
2: clear -He He' ; omega.
apply Z_div_le with (2 := H1).
- now apply Zlt_gt, Zpower_gt_0.
+ now apply Z.lt_gt, Zpower_gt_0.
apply Zmult_lt_reg_r with (Zpower beta e).
now apply Zpower_gt_0.
- apply Zle_lt_trans with m.
+ apply Z.le_lt_trans with m.
rewrite Zmult_comm.
apply Z_mult_div_ge.
- now apply Zlt_gt, Zpower_gt_0.
+ now apply Z.lt_gt, Zpower_gt_0.
rewrite <- Zpower_plus.
now replace (Zdigits m - e + e)%Z with (Zdigits m) by ring.
now apply Zle_minus_le_0.
apply He.
apply Z_div_pos with (2 := Hm).
- now apply Zlt_gt, Zpower_gt_0.
+ now apply Z.lt_gt, Zpower_gt_0.
rewrite He'.
rewrite (Zeq_minus _ (Zdigits m)) by reflexivity.
simpl.
@@ -1126,7 +1095,7 @@ rewrite Zdiv_small.
easy.
split.
exact Hm.
-now rewrite <- (Zabs_eq m) at 1.
+now rewrite <- (Z.abs_eq m) at 1.
Qed.
End Fcore_digits.
@@ -1143,7 +1112,7 @@ intros m.
apply eq_sym, Zdigits_unique.
rewrite <- Zpower_nat_Z.
rewrite Nat2Z.inj_succ.
-change (_ - 1)%Z with (Zpred (Zsucc (Z.of_nat (digits2_Pnat m)))).
+change (_ - 1)%Z with (Z.pred (Z.succ (Z.of_nat (digits2_Pnat m)))).
rewrite <- Zpred_succ.
rewrite <- Zpower_nat_Z.
apply digits2_Pnat_correct.
@@ -1152,8 +1121,8 @@ Qed.
Fixpoint digits2_pos (n : positive) : positive :=
match n with
| xH => xH
- | xO p => Psucc (digits2_pos p)
- | xI p => Psucc (digits2_pos p)
+ | xO p => Pos.succ (digits2_pos p)
+ | xI p => Pos.succ (digits2_pos p)
end.
Theorem Zpos_digits2_pos :
diff --git a/flocq/Core/Fcore_FIX.v b/flocq/Core/FIX.v
index e224a64a..4e0a25e6 100644
--- a/flocq/Core/Fcore_FIX.v
+++ b/flocq/Core/FIX.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2009-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,12 +18,7 @@ COPYING file for more details.
*)
(** * Fixed-point format *)
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_rnd.
-Require Import Fcore_generic_fmt.
-Require Import Fcore_ulp.
-Require Import Fcore_rnd_ne.
+Require Import Raux Defs Round_pred Generic_fmt Ulp Round_NE.
Section RND_FIX.
@@ -33,10 +28,9 @@ Notation bpow := (bpow beta).
Variable emin : Z.
-(* fixed-point format with exponent emin *)
-Definition FIX_format (x : R) :=
- exists f : float beta,
- x = F2R f /\ (Fexp f = emin)%Z.
+Inductive FIX_format (x : R) : Prop :=
+ FIX_spec (f : float beta) :
+ x = F2R f -> (Fexp f = emin)%Z -> FIX_format x.
Definition FIX_exp (e : Z) := emin.
@@ -49,16 +43,16 @@ unfold FIX_exp.
split ; intros H.
now apply Zlt_le_weak.
split.
-apply Zle_refl.
+apply Z.le_refl.
now intros _ _.
Qed.
Theorem generic_format_FIX :
forall x, FIX_format x -> generic_format beta FIX_exp x.
Proof.
-intros x ((xm, xe), (Hx1, Hx2)).
+intros x [[xm xe] Hx1 Hx2].
rewrite Hx1.
-now apply generic_format_canonic.
+now apply generic_format_canonical.
Qed.
Theorem FIX_format_generic :
@@ -82,10 +76,11 @@ Qed.
Global Instance FIX_exp_monotone : Monotone_exp FIX_exp.
Proof.
intros ex ey H.
-apply Zle_refl.
+apply Z.le_refl.
Qed.
-Theorem ulp_FIX: forall x, ulp beta FIX_exp x = bpow emin.
+Theorem ulp_FIX :
+ forall x, ulp beta FIX_exp x = bpow emin.
Proof.
intros x; unfold ulp.
case Req_bool_spec; intros Zx.
@@ -96,5 +91,4 @@ intros n _; reflexivity.
reflexivity.
Qed.
-
End RND_FIX.
diff --git a/flocq/Core/Fcore_FLT.v b/flocq/Core/FLT.v
index 2258b1d9..bd48d4b7 100644
--- a/flocq/Core/Fcore_FLT.v
+++ b/flocq/Core/FLT.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2009-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,15 +18,9 @@ COPYING file for more details.
*)
(** * Floating-point format with gradual underflow *)
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_rnd.
-Require Import Fcore_generic_fmt.
-Require Import Fcore_float_prop.
-Require Import Fcore_FLX.
-Require Import Fcore_FIX.
-Require Import Fcore_ulp.
-Require Import Fcore_rnd_ne.
+Require Import Raux Defs Round_pred Generic_fmt Float_prop.
+Require Import FLX FIX Ulp Round_NE.
+Require Import Psatz.
Section RND_FLT.
@@ -38,12 +32,12 @@ Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
-(* floating-point format with gradual underflow *)
-Definition FLT_format (x : R) :=
- exists f : float beta,
- x = F2R f /\ (Zabs (Fnum f) < Zpower beta prec)%Z /\ (emin <= Fexp f)%Z.
+Inductive FLT_format (x : R) : Prop :=
+ FLT_spec (f : float beta) :
+ x = F2R f -> (Z.abs (Fnum f) < Zpower beta prec)%Z ->
+ (emin <= Fexp f)%Z -> FLT_format x.
-Definition FLT_exp e := Zmax (e - prec) emin.
+Definition FLT_exp e := Z.max (e - prec) emin.
(** Properties of the FLT format *)
Global Instance FLT_exp_valid : Valid_exp FLT_exp.
@@ -59,17 +53,17 @@ Theorem generic_format_FLT :
forall x, FLT_format x -> generic_format beta FLT_exp x.
Proof.
clear prec_gt_0_.
-intros x ((mx, ex), (H1, (H2, H3))).
+intros x [[mx ex] H1 H2 H3].
simpl in H2, H3.
rewrite H1.
apply generic_format_F2R.
intros Zmx.
-unfold canonic_exp, FLT_exp.
-rewrite ln_beta_F2R with (1 := Zmx).
-apply Zmax_lub with (2 := H3).
+unfold cexp, FLT_exp.
+rewrite mag_F2R with (1 := Zmx).
+apply Z.max_lub with (2 := H3).
apply Zplus_le_reg_r with (prec - ex)%Z.
ring_simplify.
-now apply ln_beta_le_Zpower.
+now apply mag_le_Zpower.
Qed.
Theorem FLT_format_generic :
@@ -77,32 +71,32 @@ Theorem FLT_format_generic :
Proof.
intros x.
unfold generic_format.
-set (ex := canonic_exp beta FLT_exp x).
+set (ex := cexp beta FLT_exp x).
set (mx := Ztrunc (scaled_mantissa beta FLT_exp x)).
intros Hx.
rewrite Hx.
eexists ; repeat split ; simpl.
-apply lt_Z2R.
-rewrite Z2R_Zpower. 2: now apply Zlt_le_weak.
+apply lt_IZR.
+rewrite IZR_Zpower. 2: now apply Zlt_le_weak.
apply Rmult_lt_reg_r with (bpow ex).
apply bpow_gt_0.
rewrite <- bpow_plus.
-change (F2R (Float beta (Zabs mx) ex) < bpow (prec + ex))%R.
+change (F2R (Float beta (Z.abs mx) ex) < bpow (prec + ex))%R.
rewrite F2R_Zabs.
rewrite <- Hx.
destruct (Req_dec x 0) as [Hx0|Hx0].
rewrite Hx0, Rabs_R0.
apply bpow_gt_0.
-unfold canonic_exp in ex.
-destruct (ln_beta beta x) as (ex', He).
+unfold cexp in ex.
+destruct (mag beta x) as (ex', He).
simpl in ex.
specialize (He Hx0).
apply Rlt_le_trans with (1 := proj2 He).
apply bpow_le.
cut (ex' - prec <= ex)%Z. omega.
unfold ex, FLT_exp.
-apply Zle_max_l.
-apply Zle_max_r.
+apply Z.le_max_l.
+apply Z.le_max_r.
Qed.
@@ -128,18 +122,18 @@ apply FLT_format_generic.
apply generic_format_FLT.
Qed.
-Theorem canonic_exp_FLT_FLX :
+Theorem cexp_FLT_FLX :
forall x,
(bpow (emin + prec - 1) <= Rabs x)%R ->
- canonic_exp beta FLT_exp x = canonic_exp beta (FLX_exp prec) x.
+ cexp beta FLT_exp x = cexp beta (FLX_exp prec) x.
Proof.
intros x Hx.
assert (Hx0: x <> 0%R).
intros H1; rewrite H1, Rabs_R0 in Hx.
contradict Hx; apply Rlt_not_le, bpow_gt_0.
-unfold canonic_exp.
+unfold cexp.
apply Zmax_left.
-destruct (ln_beta beta x) as (ex, He).
+destruct (mag beta x) as (ex, He).
unfold FLX_exp. simpl.
specialize (He Hx0).
cut (emin + prec - 1 < ex)%Z. omega.
@@ -160,7 +154,7 @@ destruct (Req_dec x 0) as [Hx0|Hx0].
rewrite Hx0.
apply generic_format_0.
unfold generic_format, scaled_mantissa.
-now rewrite canonic_exp_FLT_FLX.
+now rewrite cexp_FLT_FLX.
Qed.
Theorem generic_format_FLX_FLT :
@@ -173,29 +167,30 @@ unfold generic_format in Hx; rewrite Hx.
apply generic_format_F2R.
intros _.
rewrite <- Hx.
-unfold canonic_exp, FLX_exp, FLT_exp.
-apply Zle_max_l.
+unfold cexp, FLX_exp, FLT_exp.
+apply Z.le_max_l.
Qed.
Theorem round_FLT_FLX : forall rnd x,
(bpow (emin + prec - 1) <= Rabs x)%R ->
round beta FLT_exp rnd x = round beta (FLX_exp prec) rnd x.
+Proof.
intros rnd x Hx.
unfold round, scaled_mantissa.
-rewrite canonic_exp_FLT_FLX ; trivial.
+rewrite cexp_FLT_FLX ; trivial.
Qed.
(** Links between FLT and FIX (underflow) *)
-Theorem canonic_exp_FLT_FIX :
+Theorem cexp_FLT_FIX :
forall x, x <> 0%R ->
(Rabs x < bpow (emin + prec))%R ->
- canonic_exp beta FLT_exp x = canonic_exp beta (FIX_exp emin) x.
+ cexp beta FLT_exp x = cexp beta (FIX_exp emin) x.
Proof.
intros x Hx0 Hx.
-unfold canonic_exp.
+unfold cexp.
apply Zmax_right.
unfold FIX_exp.
-destruct (ln_beta beta x) as (ex, Hex).
+destruct (mag beta x) as (ex, Hex).
simpl.
cut (ex - 1 < emin + prec)%Z. omega.
apply (lt_bpow beta).
@@ -214,7 +209,7 @@ rewrite Hx.
apply generic_format_F2R.
intros _.
rewrite <- Hx.
-apply Zle_max_r.
+apply Z.le_max_r.
Qed.
Theorem generic_format_FLT_FIX :
@@ -226,9 +221,37 @@ Proof with auto with typeclass_instances.
apply generic_inclusion_le...
intros e He.
unfold FIX_exp.
-apply Zmax_lub.
+apply Z.max_lub.
omega.
-apply Zle_refl.
+apply Z.le_refl.
+Qed.
+
+Lemma negligible_exp_FLT :
+ exists n, negligible_exp FLT_exp = Some n /\ (n <= emin)%Z.
+Proof.
+case (negligible_exp_spec FLT_exp).
+{ intro H; exfalso; specialize (H emin); revert H.
+ apply Zle_not_lt, Z.le_max_r. }
+intros n Hn; exists n; split; [now simpl|].
+destruct (Z.max_spec (n - prec) emin) as [(Hm, Hm')|(Hm, Hm')].
+{ now revert Hn; unfold FLT_exp; rewrite Hm'. }
+revert Hn prec_gt_0_; unfold FLT_exp, Prec_gt_0; rewrite Hm'; lia.
+Qed.
+
+Theorem generic_format_FLT_1 (Hemin : (emin <= 0)%Z) :
+ generic_format beta FLT_exp 1.
+Proof.
+unfold generic_format, scaled_mantissa, cexp, F2R; simpl.
+rewrite Rmult_1_l, (mag_unique beta 1 1).
+{ unfold FLT_exp.
+ destruct (Z.max_spec_le (1 - prec) emin) as [(H,Hm)|(H,Hm)]; rewrite Hm;
+ (rewrite <- IZR_Zpower; [|unfold Prec_gt_0 in prec_gt_0_; omega]);
+ (rewrite Ztrunc_IZR, IZR_Zpower, <-bpow_plus;
+ [|unfold Prec_gt_0 in prec_gt_0_; omega]);
+ now replace (_ + _)%Z with Z0 by ring. }
+rewrite Rabs_R1; simpl; split; [now right|].
+rewrite IZR_Zpower_pos; simpl; rewrite Rmult_1_r; apply IZR_lt.
+apply (Z.lt_le_trans _ 2); [omega|]; apply Zle_bool_imp_le, beta.
Qed.
Theorem ulp_FLT_small: forall x, (Rabs x < bpow (emin+prec))%R ->
@@ -240,7 +263,7 @@ unfold ulp; case Req_bool_spec; intros Hx2.
case (negligible_exp_spec FLT_exp).
intros T; specialize (T (emin-1)%Z); contradict T.
apply Zle_not_lt; unfold FLT_exp.
-apply Zle_trans with (2:=Z.le_max_r _ _); omega.
+apply Z.le_trans with (2:=Z.le_max_r _ _); omega.
assert (V:FLT_exp emin = emin).
unfold FLT_exp; apply Z.max_r.
unfold Prec_gt_0 in prec_gt_0_; omega.
@@ -248,10 +271,10 @@ intros n H2; rewrite <-V.
apply f_equal, fexp_negligible_exp_eq...
omega.
(* x <> 0 *)
-apply f_equal; unfold canonic_exp, FLT_exp.
+apply f_equal; unfold cexp, FLT_exp.
apply Z.max_r.
-assert (ln_beta beta x-1 < emin+prec)%Z;[idtac|omega].
-destruct (ln_beta beta x) as (e,He); simpl.
+assert (mag beta x-1 < emin+prec)%Z;[idtac|omega].
+destruct (mag beta x) as (e,He); simpl.
apply lt_bpow with beta.
apply Rle_lt_trans with (2:=Hx).
now apply He.
@@ -266,8 +289,8 @@ assert (Zx : (x <> 0)%R).
intros Z; contradict Hx; apply Rgt_not_le, Rlt_gt.
rewrite Z, Rabs_R0; apply bpow_gt_0.
rewrite ulp_neq_0 with (1 := Zx).
-unfold canonic_exp, FLT_exp.
-destruct (ln_beta beta x) as (e,He).
+unfold cexp, FLT_exp.
+destruct (mag beta x) as (e,He).
apply Rle_trans with (bpow (e-1)*bpow (1-prec))%R.
rewrite <- bpow_plus.
right; apply f_equal.
@@ -289,17 +312,68 @@ intros x; case (Req_dec x 0); intros Hx.
rewrite Hx, ulp_FLT_small, Rabs_R0, Rmult_0_l; try apply bpow_gt_0.
rewrite Rabs_R0; apply bpow_gt_0.
rewrite ulp_neq_0; try exact Hx.
-unfold canonic_exp, FLT_exp.
-apply Rlt_le_trans with (bpow (ln_beta beta x)*bpow (-prec))%R.
+unfold cexp, FLT_exp.
+apply Rlt_le_trans with (bpow (mag beta x)*bpow (-prec))%R.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
-now apply bpow_ln_beta_gt.
+now apply bpow_mag_gt.
rewrite <- bpow_plus.
apply bpow_le.
apply Z.le_max_l.
Qed.
+Lemma ulp_FLT_exact_shift :
+ forall x e,
+ (x <> 0)%R ->
+ (emin + prec <= mag beta x)%Z ->
+ (emin + prec - mag beta x <= e)%Z ->
+ (ulp beta FLT_exp (x * bpow e) = ulp beta FLT_exp x * bpow e)%R.
+Proof.
+intros x e Nzx Hmx He.
+unfold ulp; rewrite Req_bool_false;
+ [|now intro H; apply Nzx, (Rmult_eq_reg_r (bpow e));
+ [rewrite Rmult_0_l|apply Rgt_not_eq, Rlt_gt, bpow_gt_0]].
+rewrite (Req_bool_false _ _ Nzx), <- bpow_plus; f_equal; unfold cexp, FLT_exp.
+rewrite (mag_mult_bpow _ _ _ Nzx), !Z.max_l; omega.
+Qed.
+
+Lemma succ_FLT_exact_shift_pos :
+ forall x e,
+ (0 < x)%R ->
+ (emin + prec <= mag beta x)%Z ->
+ (emin + prec - mag beta x <= e)%Z ->
+ (succ beta FLT_exp (x * bpow e) = succ beta FLT_exp x * bpow e)%R.
+Proof.
+intros x e Px Hmx He.
+rewrite succ_eq_pos; [|now apply Rlt_le, Rmult_lt_0_compat, bpow_gt_0].
+rewrite (succ_eq_pos _ _ _ (Rlt_le _ _ Px)).
+now rewrite Rmult_plus_distr_r; f_equal; apply ulp_FLT_exact_shift; [lra| |].
+Qed.
+Lemma succ_FLT_exact_shift :
+ forall x e,
+ (x <> 0)%R ->
+ (emin + prec + 1 <= mag beta x)%Z ->
+ (emin + prec - mag beta x + 1 <= e)%Z ->
+ (succ beta FLT_exp (x * bpow e) = succ beta FLT_exp x * bpow e)%R.
+Proof.
+intros x e Nzx Hmx He.
+destruct (Rle_or_lt 0 x) as [Px|Nx].
+{ now apply succ_FLT_exact_shift_pos; [lra|lia|lia]. }
+unfold succ.
+rewrite Rle_bool_false; [|assert (H := bpow_gt_0 beta e); nra].
+rewrite Rle_bool_false; [|now simpl].
+rewrite Ropp_mult_distr_l_reverse, <-Ropp_mult_distr_l_reverse; f_equal.
+unfold pred_pos.
+rewrite mag_mult_bpow; [|lra].
+replace (_ - 1)%Z with (mag beta (- x) - 1 + e)%Z; [|ring]; rewrite bpow_plus.
+unfold Req_bool; rewrite Rcompare_mult_r; [|now apply bpow_gt_0].
+fold (Req_bool (-x) (bpow (mag beta (-x) - 1))); case Req_bool.
+{ rewrite mag_opp; unfold FLT_exp; do 2 (rewrite Z.max_l; [|lia]).
+ replace (_ - _)%Z with (mag beta x - 1 - prec + e)%Z; [|ring].
+ rewrite bpow_plus; ring. }
+rewrite ulp_FLT_exact_shift; [ring|lra| |]; rewrite mag_opp; lia.
+Qed.
(** FLT is a nice format: it has a monotone exponent... *)
Global Instance FLT_exp_monotone : Monotone_exp FLT_exp.
@@ -310,7 +384,7 @@ zify ; omega.
Qed.
(** and it allows a rounding to nearest, ties to even. *)
-Hypothesis NE_prop : Zeven beta = false \/ (1 < prec)%Z.
+Hypothesis NE_prop : Z.even beta = false \/ (1 < prec)%Z.
Global Instance exists_NE_FLT : Exists_NE beta FLT_exp.
Proof.
diff --git a/flocq/Core/FLX.v b/flocq/Core/FLX.v
new file mode 100644
index 00000000..803d96ef
--- /dev/null
+++ b/flocq/Core/FLX.v
@@ -0,0 +1,362 @@
+(**
+This file is part of the Flocq formalization of floating-point
+arithmetic in Coq: http://flocq.gforge.inria.fr/
+
+Copyright (C) 2009-2018 Sylvie Boldo
+#<br />#
+Copyright (C) 2009-2018 Guillaume Melquiond
+
+This library is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+This library is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+COPYING file for more details.
+*)
+
+(** * Floating-point format without underflow *)
+Require Import Raux Defs Round_pred Generic_fmt Float_prop.
+Require Import FIX Ulp Round_NE.
+Require Import Psatz.
+
+Section RND_FLX.
+
+Variable beta : radix.
+
+Notation bpow e := (bpow beta e).
+
+Variable prec : Z.
+
+Class Prec_gt_0 :=
+ prec_gt_0 : (0 < prec)%Z.
+
+Context { prec_gt_0_ : Prec_gt_0 }.
+
+Inductive FLX_format (x : R) : Prop :=
+ FLX_spec (f : float beta) :
+ x = F2R f -> (Z.abs (Fnum f) < Zpower beta prec)%Z -> FLX_format x.
+
+Definition FLX_exp (e : Z) := (e - prec)%Z.
+
+(** Properties of the FLX format *)
+
+Global Instance FLX_exp_valid : Valid_exp FLX_exp.
+Proof.
+intros k.
+unfold FLX_exp.
+generalize prec_gt_0.
+repeat split ; intros ; omega.
+Qed.
+
+Theorem FIX_format_FLX :
+ forall x e,
+ (bpow (e - 1) <= Rabs x <= bpow e)%R ->
+ FLX_format x ->
+ FIX_format beta (e - prec) x.
+Proof.
+clear prec_gt_0_.
+intros x e Hx [[xm xe] H1 H2].
+rewrite H1, (F2R_prec_normalize beta xm xe e prec).
+now eexists.
+exact H2.
+now rewrite <- H1.
+Qed.
+
+Theorem FLX_format_generic :
+ forall x, generic_format beta FLX_exp x -> FLX_format x.
+Proof.
+intros x H.
+rewrite H.
+eexists ; repeat split.
+simpl.
+apply lt_IZR.
+rewrite abs_IZR.
+rewrite <- scaled_mantissa_generic with (1 := H).
+rewrite <- scaled_mantissa_abs.
+apply Rmult_lt_reg_r with (bpow (cexp beta FLX_exp (Rabs x))).
+apply bpow_gt_0.
+rewrite scaled_mantissa_mult_bpow.
+rewrite IZR_Zpower, <- bpow_plus.
+2: now apply Zlt_le_weak.
+unfold cexp, FLX_exp.
+ring_simplify (prec + (mag beta (Rabs x) - prec))%Z.
+rewrite mag_abs.
+destruct (Req_dec x 0) as [Hx|Hx].
+rewrite Hx, Rabs_R0.
+apply bpow_gt_0.
+destruct (mag beta x) as (ex, Ex).
+now apply Ex.
+Qed.
+
+Theorem generic_format_FLX :
+ forall x, FLX_format x -> generic_format beta FLX_exp x.
+Proof.
+clear prec_gt_0_.
+intros x [[mx ex] H1 H2].
+simpl in H2.
+rewrite H1.
+apply generic_format_F2R.
+intros Zmx.
+unfold cexp, FLX_exp.
+rewrite mag_F2R with (1 := Zmx).
+apply Zplus_le_reg_r with (prec - ex)%Z.
+ring_simplify.
+now apply mag_le_Zpower.
+Qed.
+
+Theorem FLX_format_satisfies_any :
+ satisfies_any FLX_format.
+Proof.
+refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FLX_exp)).
+intros x.
+split.
+apply FLX_format_generic.
+apply generic_format_FLX.
+Qed.
+
+Theorem FLX_format_FIX :
+ forall x e,
+ (bpow (e - 1) <= Rabs x <= bpow e)%R ->
+ FIX_format beta (e - prec) x ->
+ FLX_format x.
+Proof with auto with typeclass_instances.
+intros x e Hx Fx.
+apply FLX_format_generic.
+apply generic_format_FIX in Fx.
+revert Fx.
+apply generic_inclusion with (e := e)...
+apply Z.le_refl.
+Qed.
+
+(** unbounded floating-point format with normal mantissas *)
+Inductive FLXN_format (x : R) : Prop :=
+ FLXN_spec (f : float beta) :
+ x = F2R f ->
+ (x <> 0%R -> Zpower beta (prec - 1) <= Z.abs (Fnum f) < Zpower beta prec)%Z ->
+ FLXN_format x.
+
+Theorem generic_format_FLXN :
+ forall x, FLXN_format x -> generic_format beta FLX_exp x.
+Proof.
+intros x [[xm ex] H1 H2].
+destruct (Req_dec x 0) as [Zx|Zx].
+rewrite Zx.
+apply generic_format_0.
+specialize (H2 Zx).
+apply generic_format_FLX.
+rewrite H1.
+eexists ; repeat split.
+apply H2.
+Qed.
+
+Theorem FLXN_format_generic :
+ forall x, generic_format beta FLX_exp x -> FLXN_format x.
+Proof.
+intros x Hx.
+rewrite Hx.
+simpl.
+eexists. easy.
+rewrite <- Hx.
+intros Zx.
+simpl.
+split.
+(* *)
+apply le_IZR.
+rewrite IZR_Zpower.
+2: now apply Zlt_0_le_0_pred.
+rewrite abs_IZR, <- scaled_mantissa_generic with (1 := Hx).
+apply Rmult_le_reg_r with (bpow (cexp beta FLX_exp x)).
+apply bpow_gt_0.
+rewrite <- bpow_plus.
+rewrite <- scaled_mantissa_abs.
+rewrite <- cexp_abs.
+rewrite scaled_mantissa_mult_bpow.
+unfold cexp, FLX_exp.
+rewrite mag_abs.
+ring_simplify (prec - 1 + (mag beta x - prec))%Z.
+destruct (mag beta x) as (ex,Ex).
+now apply Ex.
+(* *)
+apply lt_IZR.
+rewrite IZR_Zpower.
+2: now apply Zlt_le_weak.
+rewrite abs_IZR, <- scaled_mantissa_generic with (1 := Hx).
+apply Rmult_lt_reg_r with (bpow (cexp beta FLX_exp x)).
+apply bpow_gt_0.
+rewrite <- bpow_plus.
+rewrite <- scaled_mantissa_abs.
+rewrite <- cexp_abs.
+rewrite scaled_mantissa_mult_bpow.
+unfold cexp, FLX_exp.
+rewrite mag_abs.
+ring_simplify (prec + (mag beta x - prec))%Z.
+destruct (mag beta x) as (ex,Ex).
+now apply Ex.
+Qed.
+
+Theorem FLXN_format_satisfies_any :
+ satisfies_any FLXN_format.
+Proof.
+refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FLX_exp)).
+split ; intros H.
+now apply FLXN_format_generic.
+now apply generic_format_FLXN.
+Qed.
+
+Lemma negligible_exp_FLX :
+ negligible_exp FLX_exp = None.
+Proof.
+case (negligible_exp_spec FLX_exp).
+intros _; reflexivity.
+intros n H2; contradict H2.
+unfold FLX_exp; unfold Prec_gt_0 in prec_gt_0_; omega.
+Qed.
+
+Theorem generic_format_FLX_1 :
+ generic_format beta FLX_exp 1.
+Proof.
+unfold generic_format, scaled_mantissa, cexp, F2R; simpl.
+rewrite Rmult_1_l, (mag_unique beta 1 1).
+{ unfold FLX_exp.
+ rewrite <- IZR_Zpower; [|unfold Prec_gt_0 in prec_gt_0_; omega].
+ rewrite Ztrunc_IZR, IZR_Zpower; [|unfold Prec_gt_0 in prec_gt_0_; omega].
+ rewrite <- bpow_plus.
+ now replace (_ + _)%Z with Z0 by ring. }
+rewrite Rabs_R1; simpl; split; [now right|].
+unfold Z.pow_pos; simpl; rewrite Zmult_1_r; apply IZR_lt.
+assert (H := Zle_bool_imp_le _ _ (radix_prop beta)); omega.
+Qed.
+
+Theorem ulp_FLX_0: (ulp beta FLX_exp 0 = 0)%R.
+Proof.
+unfold ulp; rewrite Req_bool_true; trivial.
+rewrite negligible_exp_FLX; easy.
+Qed.
+
+Lemma ulp_FLX_1 : ulp beta FLX_exp 1 = bpow (-prec + 1).
+Proof.
+unfold ulp, FLX_exp, cexp; rewrite Req_bool_false; [|apply R1_neq_R0].
+rewrite mag_1; f_equal; ring.
+Qed.
+
+Lemma succ_FLX_1 : (succ beta FLX_exp 1 = 1 + bpow (-prec + 1))%R.
+Proof.
+now unfold succ; rewrite Rle_bool_true; [|apply Rle_0_1]; rewrite ulp_FLX_1.
+Qed.
+
+Theorem eq_0_round_0_FLX :
+ forall rnd {Vr: Valid_rnd rnd} x,
+ round beta FLX_exp rnd x = 0%R -> x = 0%R.
+Proof.
+intros rnd Hr x.
+apply eq_0_round_0_negligible_exp; try assumption.
+apply FLX_exp_valid.
+apply negligible_exp_FLX.
+Qed.
+
+Theorem gt_0_round_gt_0_FLX :
+ forall rnd {Vr: Valid_rnd rnd} x,
+ (0 < x)%R -> (0 < round beta FLX_exp rnd x)%R.
+Proof with auto with typeclass_instances.
+intros rnd Hr x Hx.
+assert (K: (0 <= round beta FLX_exp rnd x)%R).
+rewrite <- (round_0 beta FLX_exp rnd).
+apply round_le... now apply Rlt_le.
+destruct K; try easy.
+absurd (x = 0)%R.
+now apply Rgt_not_eq.
+apply eq_0_round_0_FLX with rnd...
+Qed.
+
+
+Theorem ulp_FLX_le :
+ forall x, (ulp beta FLX_exp x <= Rabs x * bpow (1-prec))%R.
+Proof.
+intros x; case (Req_dec x 0); intros Hx.
+rewrite Hx, ulp_FLX_0, Rabs_R0.
+right; ring.
+rewrite ulp_neq_0; try exact Hx.
+unfold cexp, FLX_exp.
+replace (mag beta x - prec)%Z with ((mag beta x - 1) + (1-prec))%Z by ring.
+rewrite bpow_plus.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+now apply bpow_mag_le.
+Qed.
+
+Theorem ulp_FLX_ge :
+ forall x, (Rabs x * bpow (-prec) <= ulp beta FLX_exp x)%R.
+Proof.
+intros x; case (Req_dec x 0); intros Hx.
+rewrite Hx, ulp_FLX_0, Rabs_R0.
+right; ring.
+rewrite ulp_neq_0; try exact Hx.
+unfold cexp, FLX_exp.
+unfold Zminus; rewrite bpow_plus.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+left; now apply bpow_mag_gt.
+Qed.
+
+Lemma ulp_FLX_exact_shift :
+ forall x e,
+ (ulp beta FLX_exp (x * bpow e) = ulp beta FLX_exp x * bpow e)%R.
+Proof.
+intros x e.
+destruct (Req_dec x 0) as [Hx|Hx].
+{ unfold ulp.
+ now rewrite !Req_bool_true, negligible_exp_FLX; rewrite ?Hx, ?Rmult_0_l. }
+unfold ulp; rewrite Req_bool_false;
+ [|now intro H; apply Hx, (Rmult_eq_reg_r (bpow e));
+ [rewrite Rmult_0_l|apply Rgt_not_eq, Rlt_gt, bpow_gt_0]].
+rewrite (Req_bool_false _ _ Hx), <- bpow_plus; f_equal; unfold cexp, FLX_exp.
+now rewrite mag_mult_bpow; [ring|].
+Qed.
+
+Lemma succ_FLX_exact_shift :
+ forall x e,
+ (succ beta FLX_exp (x * bpow e) = succ beta FLX_exp x * bpow e)%R.
+Proof.
+intros x e.
+destruct (Rle_or_lt 0 x) as [Px|Nx].
+{ rewrite succ_eq_pos; [|now apply Rmult_le_pos, bpow_ge_0].
+ rewrite (succ_eq_pos _ _ _ Px).
+ now rewrite Rmult_plus_distr_r; f_equal; apply ulp_FLX_exact_shift. }
+unfold succ.
+rewrite Rle_bool_false; [|assert (H := bpow_gt_0 beta e); nra].
+rewrite Rle_bool_false; [|now simpl].
+rewrite Ropp_mult_distr_l_reverse, <-Ropp_mult_distr_l_reverse; f_equal.
+unfold pred_pos.
+rewrite mag_mult_bpow; [|lra].
+replace (_ - 1)%Z with (mag beta (- x) - 1 + e)%Z; [|ring]; rewrite bpow_plus.
+unfold Req_bool; rewrite Rcompare_mult_r; [|now apply bpow_gt_0].
+fold (Req_bool (-x) (bpow (mag beta (-x) - 1))); case Req_bool.
+{ unfold FLX_exp.
+ replace (_ - _)%Z with (mag beta (- x) - 1 - prec + e)%Z; [|ring].
+ rewrite bpow_plus; ring. }
+rewrite ulp_FLX_exact_shift; ring.
+Qed.
+
+(** FLX is a nice format: it has a monotone exponent... *)
+Global Instance FLX_exp_monotone : Monotone_exp FLX_exp.
+Proof.
+intros ex ey Hxy.
+now apply Zplus_le_compat_r.
+Qed.
+
+(** and it allows a rounding to nearest, ties to even. *)
+Hypothesis NE_prop : Z.even beta = false \/ (1 < prec)%Z.
+
+Global Instance exists_NE_FLX : Exists_NE beta FLX_exp.
+Proof.
+destruct NE_prop as [H|H].
+now left.
+right.
+unfold FLX_exp.
+split ; omega.
+Qed.
+
+End RND_FLX.
diff --git a/flocq/Core/Fcore_FTZ.v b/flocq/Core/FTZ.v
index a2fab00b..1a93bcd9 100644
--- a/flocq/Core/Fcore_FTZ.v
+++ b/flocq/Core/FTZ.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2009-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,13 +18,8 @@ COPYING file for more details.
*)
(** * Floating-point format with abrupt underflow *)
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_rnd.
-Require Import Fcore_generic_fmt.
-Require Import Fcore_float_prop.
-Require Import Fcore_ulp.
-Require Import Fcore_FLX.
+Require Import Raux Defs Round_pred Generic_fmt.
+Require Import Float_prop Ulp FLX.
Section RND_FTZ.
@@ -36,11 +31,12 @@ Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
-(* floating-point format with abrupt underflow *)
-Definition FTZ_format (x : R) :=
- exists f : float beta,
- x = F2R f /\ (x <> R0 -> Zpower beta (prec - 1) <= Zabs (Fnum f) < Zpower beta prec)%Z /\
- (emin <= Fexp f)%Z.
+Inductive FTZ_format (x : R) : Prop :=
+ FTZ_spec (f : float beta) :
+ x = F2R f ->
+ (x <> 0%R -> Zpower beta (prec - 1) <= Z.abs (Fnum f) < Zpower beta prec)%Z ->
+ (emin <= Fexp f)%Z ->
+ FTZ_format x.
Definition FTZ_exp e := if Zlt_bool (e - prec) emin then (emin + prec - 1)%Z else (e - prec)%Z.
@@ -73,9 +69,10 @@ Qed.
Theorem FLXN_format_FTZ :
forall x, FTZ_format x -> FLXN_format beta prec x.
Proof.
-intros x ((xm, xe), (Hx1, (Hx2, Hx3))).
+intros x [[xm xe] Hx1 Hx2 Hx3].
eexists.
-apply (conj Hx1 Hx2).
+exact Hx1.
+exact Hx2.
Qed.
Theorem generic_format_FTZ :
@@ -83,9 +80,9 @@ Theorem generic_format_FTZ :
Proof.
intros x Hx.
cut (generic_format beta (FLX_exp prec) x).
-apply generic_inclusion_ln_beta.
+apply generic_inclusion_mag.
intros Zx.
-destruct Hx as ((xm, xe), (Hx1, (Hx2, Hx3))).
+destruct Hx as [[xm xe] Hx1 Hx2 Hx3].
simpl in Hx2, Hx3.
specialize (Hx2 Zx).
assert (Zxm: xm <> Z0).
@@ -94,11 +91,11 @@ rewrite Hx1, Zx.
apply F2R_0.
unfold FTZ_exp, FLX_exp.
rewrite Zlt_bool_false.
-apply Zle_refl.
-rewrite Hx1, ln_beta_F2R with (1 := Zxm).
-cut (prec - 1 < ln_beta beta (Z2R xm))%Z.
+apply Z.le_refl.
+rewrite Hx1, mag_F2R with (1 := Zxm).
+cut (prec - 1 < mag beta (IZR xm))%Z.
clear -Hx3 ; omega.
-apply ln_beta_gt_Zpower with (1 := Zxm).
+apply mag_gt_Zpower with (1 := Zxm).
apply Hx2.
apply generic_format_FLXN.
now apply FLXN_format_FTZ.
@@ -108,17 +105,14 @@ Theorem FTZ_format_generic :
forall x, generic_format beta FTZ_exp x -> FTZ_format x.
Proof.
intros x Hx.
-destruct (Req_dec x 0) as [Hx3|Hx3].
+destruct (Req_dec x 0) as [->|Hx3].
exists (Float beta 0 emin).
-split.
-unfold F2R. simpl.
-now rewrite Rmult_0_l.
-split.
+apply sym_eq, F2R_0.
intros H.
now elim H.
-apply Zle_refl.
-unfold generic_format, scaled_mantissa, canonic_exp, FTZ_exp in Hx.
-destruct (ln_beta beta x) as (ex, Hx4).
+apply Z.le_refl.
+unfold generic_format, scaled_mantissa, cexp, FTZ_exp in Hx.
+destruct (mag beta x) as (ex, Hx4).
simpl in Hx.
specialize (Hx4 Hx3).
generalize (Zlt_cases (ex - prec) emin) Hx. clear Hx.
@@ -129,43 +123,43 @@ rewrite Hx2, <- F2R_Zabs.
rewrite <- (Rmult_1_l (bpow ex)).
unfold F2R. simpl.
apply Rmult_le_compat.
-now apply (Z2R_le 0 1).
+now apply IZR_le.
apply bpow_ge_0.
-apply (Z2R_le 1).
+apply IZR_le.
apply (Zlt_le_succ 0).
-apply lt_Z2R.
+apply lt_IZR.
apply Rmult_lt_reg_r with (bpow (emin + prec - 1)).
apply bpow_gt_0.
rewrite Rmult_0_l.
-change (0 < F2R (Float beta (Zabs (Ztrunc (x * bpow (- (emin + prec - 1))))) (emin + prec - 1)))%R.
+change (0 < F2R (Float beta (Z.abs (Ztrunc (x * bpow (- (emin + prec - 1))))) (emin + prec - 1)))%R.
rewrite F2R_Zabs, <- Hx2.
now apply Rabs_pos_lt.
apply bpow_le.
omega.
rewrite Hx2.
eexists ; repeat split ; simpl.
-apply le_Z2R.
-rewrite Z2R_Zpower.
+apply le_IZR.
+rewrite IZR_Zpower.
apply Rmult_le_reg_r with (bpow (ex - prec)).
apply bpow_gt_0.
rewrite <- bpow_plus.
replace (prec - 1 + (ex - prec))%Z with (ex - 1)%Z by ring.
-change (bpow (ex - 1) <= F2R (Float beta (Zabs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)))%R.
+change (bpow (ex - 1) <= F2R (Float beta (Z.abs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)))%R.
rewrite F2R_Zabs, <- Hx2.
apply Hx4.
apply Zle_minus_le_0.
now apply (Zlt_le_succ 0).
-apply lt_Z2R.
-rewrite Z2R_Zpower.
+apply lt_IZR.
+rewrite IZR_Zpower.
apply Rmult_lt_reg_r with (bpow (ex - prec)).
apply bpow_gt_0.
rewrite <- bpow_plus.
replace (prec + (ex - prec))%Z with ex by ring.
-change (F2R (Float beta (Zabs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)) < bpow ex)%R.
+change (F2R (Float beta (Z.abs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)) < bpow ex)%R.
rewrite F2R_Zabs, <- Hx2.
apply Hx4.
now apply Zlt_le_weak.
-now apply Zge_le.
+now apply Z.ge_le.
Qed.
Theorem FTZ_format_satisfies_any :
@@ -191,11 +185,12 @@ apply generic_inclusion_ge.
intros e He.
unfold FTZ_exp.
rewrite Zlt_bool_false.
-apply Zle_refl.
+apply Z.le_refl.
omega.
Qed.
-Theorem ulp_FTZ_0: ulp beta FTZ_exp 0 = bpow (emin+prec-1).
+Theorem ulp_FTZ_0 :
+ ulp beta FTZ_exp 0 = bpow (emin+prec-1).
Proof with auto with typeclass_instances.
unfold ulp; rewrite Req_bool_true; trivial.
case (negligible_exp_spec FTZ_exp).
@@ -230,9 +225,9 @@ case Rle_bool_spec ; intros Hx ;
4: easy.
(* 1 <= |x| *)
now apply Zrnd_le.
-rewrite <- (Zrnd_Z2R rnd 0).
+rewrite <- (Zrnd_IZR rnd 0).
apply Zrnd_le...
-apply Rle_trans with (Z2R (-1)). 2: now apply Z2R_le.
+apply Rle_trans with (-1)%R. 2: now apply IZR_le.
destruct (Rabs_ge_inv _ _ Hx) as [Hx1|Hx1].
exact Hx1.
elim Rle_not_lt with (1 := Hx1).
@@ -240,10 +235,10 @@ apply Rle_lt_trans with (2 := Hy).
apply Rle_trans with (1 := Hxy).
apply RRle_abs.
(* |x| < 1 *)
-rewrite <- (Zrnd_Z2R rnd 0).
+rewrite <- (Zrnd_IZR rnd 0).
apply Zrnd_le...
-apply Rle_trans with (Z2R 1).
-now apply Z2R_le.
+apply Rle_trans with 1%R.
+now apply IZR_le.
destruct (Rabs_ge_inv _ _ Hy) as [Hy1|Hy1].
elim Rle_not_lt with (1 := Hy1).
apply Rlt_le_trans with (2 := Hxy).
@@ -252,12 +247,12 @@ exact Hy1.
(* *)
intros n.
unfold Zrnd_FTZ.
-rewrite Zrnd_Z2R...
+rewrite Zrnd_IZR...
case Rle_bool_spec.
easy.
-rewrite <- Z2R_abs.
+rewrite <- abs_IZR.
intros H.
-generalize (lt_Z2R _ 1 H).
+generalize (lt_IZR _ 1 H).
clear.
now case n ; trivial ; simpl ; intros [p|p|].
Qed.
@@ -268,8 +263,8 @@ Theorem round_FTZ_FLX :
round beta FTZ_exp Zrnd_FTZ x = round beta (FLX_exp prec) rnd x.
Proof.
intros x Hx.
-unfold round, scaled_mantissa, canonic_exp.
-destruct (ln_beta beta x) as (ex, He). simpl.
+unfold round, scaled_mantissa, cexp.
+destruct (mag beta x) as (ex, He). simpl.
assert (Hx0: x <> 0%R).
intros Hx0.
apply Rle_not_lt with (1 := Hx).
@@ -306,14 +301,14 @@ Qed.
Theorem round_FTZ_small :
forall x : R,
(Rabs x < bpow (emin + prec - 1))%R ->
- round beta FTZ_exp Zrnd_FTZ x = R0.
+ round beta FTZ_exp Zrnd_FTZ x = 0%R.
Proof with auto with typeclass_instances.
intros x Hx.
destruct (Req_dec x 0) as [Hx0|Hx0].
rewrite Hx0.
apply round_0...
-unfold round, scaled_mantissa, canonic_exp.
-destruct (ln_beta beta x) as (ex, He). simpl.
+unfold round, scaled_mantissa, cexp.
+destruct (mag beta x) as (ex, He). simpl.
specialize (He Hx0).
unfold Zrnd_FTZ.
rewrite Rle_bool_false.
@@ -331,7 +326,7 @@ unfold FTZ_exp.
generalize (Zlt_cases (ex - prec) emin).
case Zlt_bool.
intros _.
-apply Zle_refl.
+apply Z.le_refl.
intros He'.
elim Rlt_not_le with (1 := Hx).
apply Rle_trans with (2 := proj1 He).
diff --git a/flocq/Core/Fcore_FLX.v b/flocq/Core/Fcore_FLX.v
deleted file mode 100644
index 55f6db61..00000000
--- a/flocq/Core/Fcore_FLX.v
+++ /dev/null
@@ -1,271 +0,0 @@
-(**
-This file is part of the Flocq formalization of floating-point
-arithmetic in Coq: http://flocq.gforge.inria.fr/
-
-Copyright (C) 2010-2013 Sylvie Boldo
-#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
-
-This library is free software; you can redistribute it and/or
-modify it under the terms of the GNU Lesser General Public
-License as published by the Free Software Foundation; either
-version 3 of the License, or (at your option) any later version.
-
-This library is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-COPYING file for more details.
-*)
-
-(** * Floating-point format without underflow *)
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_rnd.
-Require Import Fcore_generic_fmt.
-Require Import Fcore_float_prop.
-Require Import Fcore_FIX.
-Require Import Fcore_ulp.
-Require Import Fcore_rnd_ne.
-
-Section RND_FLX.
-
-Variable beta : radix.
-
-Notation bpow e := (bpow beta e).
-
-Variable prec : Z.
-
-Class Prec_gt_0 :=
- prec_gt_0 : (0 < prec)%Z.
-
-Context { prec_gt_0_ : Prec_gt_0 }.
-
-(* unbounded floating-point format *)
-Definition FLX_format (x : R) :=
- exists f : float beta,
- x = F2R f /\ (Zabs (Fnum f) < Zpower beta prec)%Z.
-
-Definition FLX_exp (e : Z) := (e - prec)%Z.
-
-(** Properties of the FLX format *)
-
-Global Instance FLX_exp_valid : Valid_exp FLX_exp.
-Proof.
-intros k.
-unfold FLX_exp.
-generalize prec_gt_0.
-repeat split ; intros ; omega.
-Qed.
-
-Theorem FIX_format_FLX :
- forall x e,
- (bpow (e - 1) <= Rabs x <= bpow e)%R ->
- FLX_format x ->
- FIX_format beta (e - prec) x.
-Proof.
-clear prec_gt_0_.
-intros x e Hx ((xm, xe), (H1, H2)).
-rewrite H1, (F2R_prec_normalize beta xm xe e prec).
-now eexists.
-exact H2.
-now rewrite <- H1.
-Qed.
-
-Theorem FLX_format_generic :
- forall x, generic_format beta FLX_exp x -> FLX_format x.
-Proof.
-intros x H.
-rewrite H.
-unfold FLX_format.
-eexists ; repeat split.
-simpl.
-apply lt_Z2R.
-rewrite Z2R_abs.
-rewrite <- scaled_mantissa_generic with (1 := H).
-rewrite <- scaled_mantissa_abs.
-apply Rmult_lt_reg_r with (bpow (canonic_exp beta FLX_exp (Rabs x))).
-apply bpow_gt_0.
-rewrite scaled_mantissa_mult_bpow.
-rewrite Z2R_Zpower, <- bpow_plus.
-2: now apply Zlt_le_weak.
-unfold canonic_exp, FLX_exp.
-ring_simplify (prec + (ln_beta beta (Rabs x) - prec))%Z.
-rewrite ln_beta_abs.
-destruct (Req_dec x 0) as [Hx|Hx].
-rewrite Hx, Rabs_R0.
-apply bpow_gt_0.
-destruct (ln_beta beta x) as (ex, Ex).
-now apply Ex.
-Qed.
-
-Theorem generic_format_FLX :
- forall x, FLX_format x -> generic_format beta FLX_exp x.
-Proof.
-clear prec_gt_0_.
-intros x ((mx,ex),(H1,H2)).
-simpl in H2.
-rewrite H1.
-apply generic_format_F2R.
-intros Zmx.
-unfold canonic_exp, FLX_exp.
-rewrite ln_beta_F2R with (1 := Zmx).
-apply Zplus_le_reg_r with (prec - ex)%Z.
-ring_simplify.
-now apply ln_beta_le_Zpower.
-Qed.
-
-Theorem FLX_format_satisfies_any :
- satisfies_any FLX_format.
-Proof.
-refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FLX_exp)).
-intros x.
-split.
-apply FLX_format_generic.
-apply generic_format_FLX.
-Qed.
-
-Theorem FLX_format_FIX :
- forall x e,
- (bpow (e - 1) <= Rabs x <= bpow e)%R ->
- FIX_format beta (e - prec) x ->
- FLX_format x.
-Proof with auto with typeclass_instances.
-intros x e Hx Fx.
-apply FLX_format_generic.
-apply generic_format_FIX in Fx.
-revert Fx.
-apply generic_inclusion with (e := e)...
-apply Zle_refl.
-Qed.
-
-(** unbounded floating-point format with normal mantissas *)
-Definition FLXN_format (x : R) :=
- exists f : float beta,
- x = F2R f /\ (x <> R0 ->
- Zpower beta (prec - 1) <= Zabs (Fnum f) < Zpower beta prec)%Z.
-
-Theorem generic_format_FLXN :
- forall x, FLXN_format x -> generic_format beta FLX_exp x.
-Proof.
-intros x ((xm,ex),(H1,H2)).
-destruct (Req_dec x 0) as [Zx|Zx].
-rewrite Zx.
-apply generic_format_0.
-specialize (H2 Zx).
-apply generic_format_FLX.
-rewrite H1.
-eexists ; repeat split.
-apply H2.
-Qed.
-
-Theorem FLXN_format_generic :
- forall x, generic_format beta FLX_exp x -> FLXN_format x.
-Proof.
-intros x Hx.
-rewrite Hx.
-simpl.
-eexists ; split. split.
-simpl.
-rewrite <- Hx.
-intros Zx.
-split.
-(* *)
-apply le_Z2R.
-rewrite Z2R_Zpower.
-2: now apply Zlt_0_le_0_pred.
-rewrite Z2R_abs, <- scaled_mantissa_generic with (1 := Hx).
-apply Rmult_le_reg_r with (bpow (canonic_exp beta FLX_exp x)).
-apply bpow_gt_0.
-rewrite <- bpow_plus.
-rewrite <- scaled_mantissa_abs.
-rewrite <- canonic_exp_abs.
-rewrite scaled_mantissa_mult_bpow.
-unfold canonic_exp, FLX_exp.
-rewrite ln_beta_abs.
-ring_simplify (prec - 1 + (ln_beta beta x - prec))%Z.
-destruct (ln_beta beta x) as (ex,Ex).
-now apply Ex.
-(* *)
-apply lt_Z2R.
-rewrite Z2R_Zpower.
-2: now apply Zlt_le_weak.
-rewrite Z2R_abs, <- scaled_mantissa_generic with (1 := Hx).
-apply Rmult_lt_reg_r with (bpow (canonic_exp beta FLX_exp x)).
-apply bpow_gt_0.
-rewrite <- bpow_plus.
-rewrite <- scaled_mantissa_abs.
-rewrite <- canonic_exp_abs.
-rewrite scaled_mantissa_mult_bpow.
-unfold canonic_exp, FLX_exp.
-rewrite ln_beta_abs.
-ring_simplify (prec + (ln_beta beta x - prec))%Z.
-destruct (ln_beta beta x) as (ex,Ex).
-now apply Ex.
-Qed.
-
-Theorem FLXN_format_satisfies_any :
- satisfies_any FLXN_format.
-Proof.
-refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FLX_exp)).
-split ; intros H.
-now apply FLXN_format_generic.
-now apply generic_format_FLXN.
-Qed.
-
-Theorem ulp_FLX_0: (ulp beta FLX_exp 0 = 0)%R.
-Proof.
-unfold ulp; rewrite Req_bool_true; trivial.
-case (negligible_exp_spec FLX_exp).
-intros _; reflexivity.
-intros n H2; contradict H2.
-unfold FLX_exp; unfold Prec_gt_0 in prec_gt_0_; omega.
-Qed.
-
-Theorem ulp_FLX_le: forall x, (ulp beta FLX_exp x <= Rabs x * bpow (1-prec))%R.
-Proof.
-intros x; case (Req_dec x 0); intros Hx.
-rewrite Hx, ulp_FLX_0, Rabs_R0.
-right; ring.
-rewrite ulp_neq_0; try exact Hx.
-unfold canonic_exp, FLX_exp.
-replace (ln_beta beta x - prec)%Z with ((ln_beta beta x - 1) + (1-prec))%Z by ring.
-rewrite bpow_plus.
-apply Rmult_le_compat_r.
-apply bpow_ge_0.
-now apply bpow_ln_beta_le.
-Qed.
-
-
-Theorem ulp_FLX_ge: forall x, (Rabs x * bpow (-prec) <= ulp beta FLX_exp x)%R.
-Proof.
-intros x; case (Req_dec x 0); intros Hx.
-rewrite Hx, ulp_FLX_0, Rabs_R0.
-right; ring.
-rewrite ulp_neq_0; try exact Hx.
-unfold canonic_exp, FLX_exp.
-unfold Zminus; rewrite bpow_plus.
-apply Rmult_le_compat_r.
-apply bpow_ge_0.
-left; now apply bpow_ln_beta_gt.
-Qed.
-
-(** FLX is a nice format: it has a monotone exponent... *)
-Global Instance FLX_exp_monotone : Monotone_exp FLX_exp.
-Proof.
-intros ex ey Hxy.
-now apply Zplus_le_compat_r.
-Qed.
-
-(** and it allows a rounding to nearest, ties to even. *)
-Hypothesis NE_prop : Zeven beta = false \/ (1 < prec)%Z.
-
-Global Instance exists_NE_FLX : Exists_NE beta FLX_exp.
-Proof.
-destruct NE_prop as [H|H].
-now left.
-right.
-unfold FLX_exp.
-split ; omega.
-Qed.
-
-End RND_FLX.
diff --git a/flocq/Core/Fcore_float_prop.v b/flocq/Core/Float_prop.v
index a183bf0a..804dd397 100644
--- a/flocq/Core/Fcore_float_prop.v
+++ b/flocq/Core/Float_prop.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2009-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,40 +18,38 @@ COPYING file for more details.
*)
(** * Basic properties of floating-point formats: lemmas about mantissa, exponent... *)
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
+Require Import Raux Defs Digits.
Section Float_prop.
Variable beta : radix.
-
Notation bpow e := (bpow beta e).
Theorem Rcompare_F2R :
forall e m1 m2 : Z,
- Rcompare (F2R (Float beta m1 e)) (F2R (Float beta m2 e)) = Zcompare m1 m2.
+ Rcompare (F2R (Float beta m1 e)) (F2R (Float beta m2 e)) = Z.compare m1 m2.
Proof.
intros e m1 m2.
unfold F2R. simpl.
rewrite Rcompare_mult_r.
-apply Rcompare_Z2R.
+apply Rcompare_IZR.
apply bpow_gt_0.
Qed.
(** Basic facts *)
-Theorem F2R_le_reg :
+Theorem le_F2R :
forall e m1 m2 : Z,
(F2R (Float beta m1 e) <= F2R (Float beta m2 e))%R ->
(m1 <= m2)%Z.
Proof.
intros e m1 m2 H.
-apply le_Z2R.
+apply le_IZR.
apply Rmult_le_reg_r with (bpow e).
apply bpow_gt_0.
exact H.
Qed.
-Theorem F2R_le_compat :
+Theorem F2R_le :
forall m1 m2 e : Z,
(m1 <= m2)%Z ->
(F2R (Float beta m1 e) <= F2R (Float beta m2 e))%R.
@@ -60,22 +58,22 @@ intros m1 m2 e H.
unfold F2R. simpl.
apply Rmult_le_compat_r.
apply bpow_ge_0.
-now apply Z2R_le.
+now apply IZR_le.
Qed.
-Theorem F2R_lt_reg :
+Theorem lt_F2R :
forall e m1 m2 : Z,
(F2R (Float beta m1 e) < F2R (Float beta m2 e))%R ->
(m1 < m2)%Z.
Proof.
intros e m1 m2 H.
-apply lt_Z2R.
+apply lt_IZR.
apply Rmult_lt_reg_r with (bpow e).
apply bpow_gt_0.
exact H.
Qed.
-Theorem F2R_lt_compat :
+Theorem F2R_lt :
forall e m1 m2 : Z,
(m1 < m2)%Z ->
(F2R (Float beta m1 e) < F2R (Float beta m2 e))%R.
@@ -84,10 +82,10 @@ intros e m1 m2 H.
unfold F2R. simpl.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
-now apply Z2R_lt.
+now apply IZR_lt.
Qed.
-Theorem F2R_eq_compat :
+Theorem F2R_eq :
forall e m1 m2 : Z,
(m1 = m2)%Z ->
(F2R (Float beta m1 e) = F2R (Float beta m2 e))%R.
@@ -96,26 +94,26 @@ intros e m1 m2 H.
now apply (f_equal (fun m => F2R (Float beta m e))).
Qed.
-Theorem F2R_eq_reg :
+Theorem eq_F2R :
forall e m1 m2 : Z,
F2R (Float beta m1 e) = F2R (Float beta m2 e) ->
m1 = m2.
Proof.
intros e m1 m2 H.
apply Zle_antisym ;
- apply F2R_le_reg with e ;
+ apply le_F2R with e ;
rewrite H ;
apply Rle_refl.
Qed.
Theorem F2R_Zabs:
forall m e : Z,
- F2R (Float beta (Zabs m) e) = Rabs (F2R (Float beta m e)).
+ F2R (Float beta (Z.abs m) e) = Rabs (F2R (Float beta m e)).
Proof.
intros m e.
unfold F2R.
rewrite Rabs_mult.
-rewrite <- Z2R_abs.
+rewrite <- abs_IZR.
simpl.
apply f_equal.
apply sym_eq; apply Rabs_right.
@@ -125,12 +123,21 @@ Qed.
Theorem F2R_Zopp :
forall m e : Z,
- F2R (Float beta (Zopp m) e) = Ropp (F2R (Float beta m e)).
+ F2R (Float beta (Z.opp m) e) = Ropp (F2R (Float beta m e)).
Proof.
intros m e.
unfold F2R. simpl.
rewrite <- Ropp_mult_distr_l_reverse.
-now rewrite Z2R_opp.
+now rewrite opp_IZR.
+Qed.
+
+Theorem F2R_cond_Zopp :
+ forall b m e,
+ F2R (Float beta (cond_Zopp b m) e) = cond_Ropp b (F2R (Float beta m e)).
+Proof.
+intros [|] m e ; unfold F2R ; simpl.
+now rewrite opp_IZR, Ropp_mult_distr_l_reverse.
+apply refl_equal.
Qed.
(** Sign facts *)
@@ -143,125 +150,125 @@ unfold F2R. simpl.
apply Rmult_0_l.
Qed.
-Theorem F2R_eq_0_reg :
+Theorem eq_0_F2R :
forall m e : Z,
F2R (Float beta m e) = 0%R ->
m = Z0.
Proof.
intros m e H.
-apply F2R_eq_reg with e.
+apply eq_F2R with e.
now rewrite F2R_0.
Qed.
-Theorem F2R_ge_0_reg :
+Theorem ge_0_F2R :
forall m e : Z,
(0 <= F2R (Float beta m e))%R ->
(0 <= m)%Z.
Proof.
intros m e H.
-apply F2R_le_reg with e.
+apply le_F2R with e.
now rewrite F2R_0.
Qed.
-Theorem F2R_le_0_reg :
+Theorem le_0_F2R :
forall m e : Z,
(F2R (Float beta m e) <= 0)%R ->
(m <= 0)%Z.
Proof.
intros m e H.
-apply F2R_le_reg with e.
+apply le_F2R with e.
now rewrite F2R_0.
Qed.
-Theorem F2R_gt_0_reg :
+Theorem gt_0_F2R :
forall m e : Z,
(0 < F2R (Float beta m e))%R ->
(0 < m)%Z.
Proof.
intros m e H.
-apply F2R_lt_reg with e.
+apply lt_F2R with e.
now rewrite F2R_0.
Qed.
-Theorem F2R_lt_0_reg :
+Theorem lt_0_F2R :
forall m e : Z,
(F2R (Float beta m e) < 0)%R ->
(m < 0)%Z.
Proof.
intros m e H.
-apply F2R_lt_reg with e.
+apply lt_F2R with e.
now rewrite F2R_0.
Qed.
-Theorem F2R_ge_0_compat :
+Theorem F2R_ge_0 :
forall f : float beta,
(0 <= Fnum f)%Z ->
(0 <= F2R f)%R.
Proof.
intros f H.
rewrite <- F2R_0 with (Fexp f).
-now apply F2R_le_compat.
+now apply F2R_le.
Qed.
-Theorem F2R_le_0_compat :
+Theorem F2R_le_0 :
forall f : float beta,
(Fnum f <= 0)%Z ->
(F2R f <= 0)%R.
Proof.
intros f H.
rewrite <- F2R_0 with (Fexp f).
-now apply F2R_le_compat.
+now apply F2R_le.
Qed.
-Theorem F2R_gt_0_compat :
+Theorem F2R_gt_0 :
forall f : float beta,
(0 < Fnum f)%Z ->
(0 < F2R f)%R.
Proof.
intros f H.
rewrite <- F2R_0 with (Fexp f).
-now apply F2R_lt_compat.
+now apply F2R_lt.
Qed.
-Theorem F2R_lt_0_compat :
+Theorem F2R_lt_0 :
forall f : float beta,
(Fnum f < 0)%Z ->
(F2R f < 0)%R.
Proof.
intros f H.
rewrite <- F2R_0 with (Fexp f).
-now apply F2R_lt_compat.
+now apply F2R_lt.
Qed.
-Theorem F2R_neq_0_compat :
+Theorem F2R_neq_0 :
forall f : float beta,
(Fnum f <> 0)%Z ->
(F2R f <> 0)%R.
Proof.
intros f H H1.
apply H.
-now apply F2R_eq_0_reg with (Fexp f).
+now apply eq_0_F2R with (Fexp f).
Qed.
-Lemma Fnum_ge_0_compat: forall (f : float beta),
+Lemma Fnum_ge_0: forall (f : float beta),
(0 <= F2R f)%R -> (0 <= Fnum f)%Z.
Proof.
intros f H.
case (Zle_or_lt 0 (Fnum f)); trivial.
intros H1; contradict H.
apply Rlt_not_le.
-now apply F2R_lt_0_compat.
+now apply F2R_lt_0.
Qed.
-Lemma Fnum_le_0_compat: forall (f : float beta),
+Lemma Fnum_le_0: forall (f : float beta),
(F2R f <= 0)%R -> (Fnum f <= 0)%Z.
Proof.
intros f H.
case (Zle_or_lt (Fnum f) 0); trivial.
intros H1; contradict H.
apply Rlt_not_le.
-now apply F2R_gt_0_compat.
+now apply F2R_gt_0.
Qed.
(** Floats and bpow *)
@@ -281,7 +288,7 @@ Theorem bpow_le_F2R :
Proof.
intros m e H.
rewrite <- F2R_bpow.
-apply F2R_le_compat.
+apply F2R_le.
now apply (Zlt_le_succ 0).
Qed.
@@ -301,7 +308,7 @@ unfold F2R. simpl.
rewrite <- (Rmult_1_l (bpow e1)) at 1.
apply Rmult_le_compat_r.
apply bpow_ge_0.
-apply (Z2R_le 1).
+apply IZR_le.
now apply (Zlt_le_succ 0).
now apply Rlt_le.
(* . *)
@@ -309,14 +316,14 @@ revert H.
replace e2 with (e2 - e1 + e1)%Z by ring.
rewrite bpow_plus.
unfold F2R. simpl.
-rewrite <- (Z2R_Zpower beta (e2 - e1)).
+rewrite <- (IZR_Zpower beta (e2 - e1)).
intros H.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rmult_lt_reg_r in H.
-apply Z2R_le.
+apply IZR_le.
apply Zlt_le_succ.
-now apply lt_Z2R.
+now apply lt_IZR.
apply bpow_gt_0.
now apply Zle_minus_le_0.
Qed.
@@ -332,16 +339,16 @@ case (Zle_or_lt e1 e2); intros He.
replace e2 with (e2 - e1 + e1)%Z by ring.
rewrite bpow_plus.
unfold F2R. simpl.
-rewrite <- (Z2R_Zpower beta (e2 - e1)).
+rewrite <- (IZR_Zpower beta (e2 - e1)).
intros H.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rmult_lt_reg_r in H.
-apply Z2R_le.
+apply IZR_le.
rewrite (Zpred_succ (Zpower _ _)).
apply Zplus_le_compat_r.
apply Zlt_le_succ.
-now apply lt_Z2R.
+now apply lt_IZR.
apply bpow_gt_0.
now apply Zle_minus_le_0.
intros H.
@@ -352,14 +359,13 @@ now apply Zlt_le_weak.
unfold F2R. simpl.
apply Rmult_le_compat_r.
apply bpow_ge_0.
-replace 1%R with (Z2R 1) by reflexivity.
-apply Z2R_le.
+apply IZR_le.
omega.
Qed.
Theorem F2R_lt_bpow :
forall f : float beta, forall e',
- (Zabs (Fnum f) < Zpower beta (e' - Fexp f))%Z ->
+ (Z.abs (Fnum f) < Zpower beta (e' - Fexp f))%Z ->
(Rabs (F2R f) < bpow e')%R.
Proof.
intros (m, e) e' Hm.
@@ -369,8 +375,8 @@ unfold F2R. simpl.
apply Rmult_lt_reg_r with (bpow (-e)).
apply bpow_gt_0.
rewrite Rmult_assoc, <- 2!bpow_plus, Zplus_opp_r, Rmult_1_r.
-rewrite <-Z2R_Zpower. 2: now apply Zle_left.
-now apply Z2R_lt.
+rewrite <-IZR_Zpower. 2: now apply Zle_left.
+now apply IZR_lt.
elim Zlt_not_le with (1 := Hm).
simpl.
cut (e' - e < 0)%Z. 2: omega.
@@ -387,7 +393,7 @@ Theorem F2R_change_exp :
Proof.
intros e' m e He.
unfold F2R. simpl.
-rewrite Z2R_mult, Z2R_Zpower, Rmult_assoc.
+rewrite mult_IZR, IZR_Zpower, Rmult_assoc.
apply f_equal.
pattern e at 1 ; replace e with (e - e' + e')%Z by ring.
apply bpow_plus.
@@ -396,7 +402,7 @@ Qed.
Theorem F2R_prec_normalize :
forall m e e' p : Z,
- (Zabs m < Zpower beta p)%Z ->
+ (Z.abs m < Zpower beta p)%Z ->
(bpow (e' - 1)%Z <= Rabs (F2R (Float beta m e)))%R ->
F2R (Float beta m e) = F2R (Float beta (m * Zpower beta (e - e' + p)) (e' - p)).
Proof.
@@ -413,23 +419,23 @@ apply Rle_lt_trans with (1 := Hf).
rewrite <- F2R_Zabs, Zplus_comm, bpow_plus.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
-rewrite <- Z2R_Zpower.
-now apply Z2R_lt.
+rewrite <- IZR_Zpower.
+now apply IZR_lt.
exact Hp.
Qed.
-(** Floats and ln_beta *)
-Theorem ln_beta_F2R_bounds :
+(** Floats and mag *)
+Theorem mag_F2R_bounds :
forall x m e, (0 < m)%Z ->
(F2R (Float beta m e) <= x < F2R (Float beta (m + 1) e))%R ->
- ln_beta beta x = ln_beta beta (F2R (Float beta m e)) :> Z.
+ mag beta x = mag beta (F2R (Float beta m e)) :> Z.
Proof.
intros x m e Hp (Hx,Hx2).
-destruct (ln_beta beta (F2R (Float beta m e))) as (ex, He).
+destruct (mag beta (F2R (Float beta m e))) as (ex, He).
simpl.
-apply ln_beta_unique.
+apply mag_unique.
assert (Hp1: (0 < F2R (Float beta m e))%R).
-now apply F2R_gt_0_compat.
+now apply F2R_gt_0.
specialize (He (Rgt_not_eq _ _ Hp1)).
rewrite Rabs_pos_eq in He. 2: now apply Rlt_le.
destruct He as (He1, He2).
@@ -442,22 +448,65 @@ apply Rlt_le_trans with (1 := Hx2).
now apply F2R_p1_le_bpow.
Qed.
-Theorem ln_beta_F2R :
+Theorem mag_F2R :
forall m e : Z,
m <> Z0 ->
- (ln_beta beta (F2R (Float beta m e)) = ln_beta beta (Z2R m) + e :> Z)%Z.
+ (mag beta (F2R (Float beta m e)) = mag beta (IZR m) + e :> Z)%Z.
Proof.
intros m e H.
unfold F2R ; simpl.
-apply ln_beta_mult_bpow.
-exact (Z2R_neq m 0 H).
+apply mag_mult_bpow.
+now apply IZR_neq.
+Qed.
+
+Theorem Zdigits_mag :
+ forall n,
+ n <> Z0 ->
+ Zdigits beta n = mag beta (IZR n).
+Proof.
+intros n Hn.
+destruct (mag beta (IZR n)) as (e, He) ; simpl.
+specialize (He (IZR_neq _ _ Hn)).
+rewrite <- abs_IZR in He.
+assert (Hd := Zdigits_correct beta n).
+assert (Hd' := Zdigits_gt_0 beta n).
+apply Zle_antisym ; apply (bpow_lt_bpow beta).
+apply Rle_lt_trans with (2 := proj2 He).
+rewrite <- IZR_Zpower by omega.
+now apply IZR_le.
+apply Rle_lt_trans with (1 := proj1 He).
+rewrite <- IZR_Zpower by omega.
+now apply IZR_lt.
+Qed.
+
+Theorem mag_F2R_Zdigits :
+ forall m e, m <> Z0 ->
+ (mag beta (F2R (Float beta m e)) = Zdigits beta m + e :> Z)%Z.
+Proof.
+intros m e Hm.
+rewrite mag_F2R with (1 := Hm).
+apply (f_equal (fun v => Zplus v e)).
+apply sym_eq.
+now apply Zdigits_mag.
+Qed.
+
+Theorem mag_F2R_bounds_Zdigits :
+ forall x m e, (0 < m)%Z ->
+ (F2R (Float beta m e) <= x < F2R (Float beta (m + 1) e))%R ->
+ mag beta x = (Zdigits beta m + e)%Z :> Z.
+Proof.
+intros x m e Hm Bx.
+apply mag_F2R_bounds with (1 := Hm) in Bx.
+rewrite Bx.
+apply mag_F2R_Zdigits.
+now apply Zgt_not_eq.
Qed.
Theorem float_distribution_pos :
forall m1 e1 m2 e2 : Z,
(0 < m1)%Z ->
(F2R (Float beta m1 e1) < F2R (Float beta m2 e2) < F2R (Float beta (m1 + 1) e1))%R ->
- (e2 < e1)%Z /\ (e1 + ln_beta beta (Z2R m1) = e2 + ln_beta beta (Z2R m2))%Z.
+ (e2 < e1)%Z /\ (e1 + mag beta (IZR m1) = e2 + mag beta (IZR m2))%Z.
Proof.
intros m1 e1 m2 e2 Hp1 (H12, H21).
assert (He: (e2 < e1)%Z).
@@ -465,35 +514,35 @@ assert (He: (e2 < e1)%Z).
apply Znot_ge_lt.
intros H0.
elim Rlt_not_le with (1 := H21).
-apply Zge_le in H0.
+apply Z.ge_le in H0.
apply (F2R_change_exp e1 m2 e2) in H0.
rewrite H0.
-apply F2R_le_compat.
+apply F2R_le.
apply Zlt_le_succ.
-apply (F2R_lt_reg e1).
+apply (lt_F2R e1).
now rewrite <- H0.
(* . *)
split.
exact He.
rewrite (Zplus_comm e1), (Zplus_comm e2).
assert (Hp2: (0 < m2)%Z).
-apply (F2R_gt_0_reg m2 e2).
+apply (gt_0_F2R m2 e2).
apply Rlt_trans with (2 := H12).
-now apply F2R_gt_0_compat.
-rewrite <- 2!ln_beta_F2R.
-destruct (ln_beta beta (F2R (Float beta m1 e1))) as (e1', H1).
+now apply F2R_gt_0.
+rewrite <- 2!mag_F2R.
+destruct (mag beta (F2R (Float beta m1 e1))) as (e1', H1).
simpl.
apply sym_eq.
-apply ln_beta_unique.
+apply mag_unique.
assert (H2 : (bpow (e1' - 1) <= F2R (Float beta m1 e1) < bpow e1')%R).
-rewrite <- (Zabs_eq m1), F2R_Zabs.
+rewrite <- (Z.abs_eq m1), F2R_Zabs.
apply H1.
apply Rgt_not_eq.
apply Rlt_gt.
-now apply F2R_gt_0_compat.
+now apply F2R_gt_0.
now apply Zlt_le_weak.
clear H1.
-rewrite <- F2R_Zabs, Zabs_eq.
+rewrite <- F2R_Zabs, Z.abs_eq.
split.
apply Rlt_le.
apply Rle_lt_trans with (2 := H12).
@@ -507,13 +556,4 @@ apply sym_not_eq.
now apply Zlt_not_eq.
Qed.
-Theorem F2R_cond_Zopp :
- forall b m e,
- F2R (Float beta (cond_Zopp b m) e) = cond_Ropp b (F2R (Float beta m e)).
-Proof.
-intros [|] m e ; unfold F2R ; simpl.
-now rewrite Z2R_opp, Ropp_mult_distr_l_reverse.
-apply refl_equal.
-Qed.
-
End Float_prop.
diff --git a/flocq/Core/Fcore_generic_fmt.v b/flocq/Core/Generic_fmt.v
index 668b4da2..cb37bd91 100644
--- a/flocq/Core/Fcore_generic_fmt.v
+++ b/flocq/Core/Generic_fmt.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2009-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,10 +18,7 @@ COPYING file for more details.
*)
(** * What is a real number belonging to a format, and many properties. *)
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_rnd.
-Require Import Fcore_float_prop.
+Require Import Raux Defs Round_pred Float_prop.
Section Generic.
@@ -53,7 +50,7 @@ Proof.
intros k l Hk H.
apply Znot_ge_lt.
intros Hl.
-apply Zge_le in Hl.
+apply Z.ge_le in Hl.
assert (H' := proj2 (proj2 (valid_exp l) Hl) k).
omega.
Qed.
@@ -66,24 +63,24 @@ Proof.
intros k l Hk H.
apply Znot_ge_lt.
intros H'.
-apply Zge_le in H'.
-assert (Hl := Zle_trans _ _ _ H H').
+apply Z.ge_le in H'.
+assert (Hl := Z.le_trans _ _ _ H H').
apply valid_exp in Hl.
assert (H1 := proj2 Hl k H').
omega.
Qed.
-Definition canonic_exp x :=
- fexp (ln_beta beta x).
+Definition cexp x :=
+ fexp (mag beta x).
-Definition canonic (f : float beta) :=
- Fexp f = canonic_exp (F2R f).
+Definition canonical (f : float beta) :=
+ Fexp f = cexp (F2R f).
Definition scaled_mantissa x :=
- (x * bpow (- canonic_exp x))%R.
+ (x * bpow (- cexp x))%R.
Definition generic_format (x : R) :=
- x = F2R (Float beta (Ztrunc (scaled_mantissa x)) (canonic_exp x)).
+ x = F2R (Float beta (Ztrunc (scaled_mantissa x)) (cexp x)).
(** Basic facts *)
Theorem generic_format_0 :
@@ -91,26 +88,39 @@ Theorem generic_format_0 :
Proof.
unfold generic_format, scaled_mantissa.
rewrite Rmult_0_l.
-change (Ztrunc 0) with (Ztrunc (Z2R 0)).
-now rewrite Ztrunc_Z2R, F2R_0.
+now rewrite Ztrunc_IZR, F2R_0.
Qed.
-Theorem canonic_exp_opp :
+Theorem cexp_opp :
forall x,
- canonic_exp (-x) = canonic_exp x.
+ cexp (-x) = cexp x.
Proof.
intros x.
-unfold canonic_exp.
-now rewrite ln_beta_opp.
+unfold cexp.
+now rewrite mag_opp.
Qed.
-Theorem canonic_exp_abs :
+Theorem cexp_abs :
forall x,
- canonic_exp (Rabs x) = canonic_exp x.
+ cexp (Rabs x) = cexp x.
Proof.
intros x.
-unfold canonic_exp.
-now rewrite ln_beta_abs.
+unfold cexp.
+now rewrite mag_abs.
+Qed.
+
+Theorem canonical_generic_format :
+ forall x,
+ generic_format x ->
+ exists f : float beta,
+ x = F2R f /\ canonical f.
+Proof.
+intros x Hx.
+rewrite Hx.
+eexists.
+apply (conj eq_refl).
+unfold canonical.
+now rewrite <- Hx.
Qed.
Theorem generic_format_bpow :
@@ -118,11 +128,11 @@ Theorem generic_format_bpow :
generic_format (bpow e).
Proof.
intros e H.
-unfold generic_format, scaled_mantissa, canonic_exp.
-rewrite ln_beta_bpow.
+unfold generic_format, scaled_mantissa, cexp.
+rewrite mag_bpow.
rewrite <- bpow_plus.
-rewrite <- (Z2R_Zpower beta (e + - fexp (e + 1))).
-rewrite Ztrunc_Z2R.
+rewrite <- (IZR_Zpower beta (e + - fexp (e + 1))).
+rewrite Ztrunc_IZR.
rewrite <- F2R_bpow.
rewrite F2R_change_exp with (1 := H).
now rewrite Zmult_1_l.
@@ -140,110 +150,107 @@ now apply valid_exp_.
rewrite <- H.
apply valid_exp.
rewrite H.
-apply Zle_refl.
+apply Z.le_refl.
Qed.
Theorem generic_format_F2R :
forall m e,
- ( m <> 0 -> canonic_exp (F2R (Float beta m e)) <= e )%Z ->
+ ( m <> 0 -> cexp (F2R (Float beta m e)) <= e )%Z ->
generic_format (F2R (Float beta m e)).
Proof.
intros m e.
-destruct (Z_eq_dec m 0) as [Zm|Zm].
+destruct (Z.eq_dec m 0) as [Zm|Zm].
intros _.
rewrite Zm, F2R_0.
apply generic_format_0.
unfold generic_format, scaled_mantissa.
-set (e' := canonic_exp (F2R (Float beta m e))).
+set (e' := cexp (F2R (Float beta m e))).
intros He.
specialize (He Zm).
unfold F2R at 3. simpl.
rewrite F2R_change_exp with (1 := He).
-apply F2R_eq_compat.
-rewrite Rmult_assoc, <- bpow_plus, <- Z2R_Zpower, <- Z2R_mult.
-now rewrite Ztrunc_Z2R.
+apply F2R_eq.
+rewrite Rmult_assoc, <- bpow_plus, <- IZR_Zpower, <- mult_IZR.
+now rewrite Ztrunc_IZR.
now apply Zle_left.
Qed.
-Lemma generic_format_F2R': forall (x:R) (f:float beta),
- F2R f = x -> ((x <> 0)%R ->
- (canonic_exp x <= Fexp f)%Z) ->
- generic_format x.
+Lemma generic_format_F2R' :
+ forall (x : R) (f : float beta),
+ F2R f = x ->
+ (x <> 0%R -> (cexp x <= Fexp f)%Z) ->
+ generic_format x.
Proof.
intros x f H1 H2.
rewrite <- H1; destruct f as (m,e).
-apply generic_format_F2R.
+apply generic_format_F2R.
simpl in *; intros H3.
rewrite H1; apply H2.
intros Y; apply H3.
-apply F2R_eq_0_reg with beta e.
+apply eq_0_F2R with beta e.
now rewrite H1.
Qed.
-
-Theorem canonic_opp :
+Theorem canonical_opp :
forall m e,
- canonic (Float beta m e) ->
- canonic (Float beta (-m) e).
+ canonical (Float beta m e) ->
+ canonical (Float beta (-m) e).
Proof.
intros m e H.
-unfold canonic.
-now rewrite F2R_Zopp, canonic_exp_opp.
+unfold canonical.
+now rewrite F2R_Zopp, cexp_opp.
Qed.
-Theorem canonic_abs :
+Theorem canonical_abs :
forall m e,
- canonic (Float beta m e) ->
- canonic (Float beta (Zabs m) e).
+ canonical (Float beta m e) ->
+ canonical (Float beta (Z.abs m) e).
Proof.
intros m e H.
-unfold canonic.
-now rewrite F2R_Zabs, canonic_exp_abs.
+unfold canonical.
+now rewrite F2R_Zabs, cexp_abs.
Qed.
-Theorem canonic_0: canonic (Float beta 0 (fexp (ln_beta beta 0%R))).
+Theorem canonical_0 :
+ canonical (Float beta 0 (fexp (mag beta 0%R))).
Proof.
-unfold canonic; simpl; unfold canonic_exp.
-replace (F2R {| Fnum := 0; Fexp := fexp (ln_beta beta 0) |}) with 0%R.
-reflexivity.
-unfold F2R; simpl; ring.
+unfold canonical; simpl ; unfold cexp.
+now rewrite F2R_0.
Qed.
-
-
-Theorem canonic_unicity :
+Theorem canonical_unique :
forall f1 f2,
- canonic f1 ->
- canonic f2 ->
+ canonical f1 ->
+ canonical f2 ->
F2R f1 = F2R f2 ->
f1 = f2.
Proof.
intros (m1, e1) (m2, e2).
-unfold canonic. simpl.
+unfold canonical. simpl.
intros H1 H2 H.
rewrite H in H1.
rewrite <- H2 in H1. clear H2.
rewrite H1 in H |- *.
apply (f_equal (fun m => Float beta m e2)).
-apply F2R_eq_reg with (1 := H).
+apply eq_F2R with (1 := H).
Qed.
Theorem scaled_mantissa_generic :
forall x,
generic_format x ->
- scaled_mantissa x = Z2R (Ztrunc (scaled_mantissa x)).
+ scaled_mantissa x = IZR (Ztrunc (scaled_mantissa x)).
Proof.
intros x Hx.
unfold scaled_mantissa.
pattern x at 1 3 ; rewrite Hx.
unfold F2R. simpl.
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
-now rewrite Ztrunc_Z2R.
+now rewrite Ztrunc_IZR.
Qed.
Theorem scaled_mantissa_mult_bpow :
forall x,
- (scaled_mantissa x * bpow (canonic_exp x))%R = x.
+ (scaled_mantissa x * bpow (cexp x))%R = x.
Proof.
intros x.
unfold scaled_mantissa.
@@ -263,7 +270,7 @@ Theorem scaled_mantissa_opp :
Proof.
intros x.
unfold scaled_mantissa.
-rewrite canonic_exp_opp.
+rewrite cexp_opp.
now rewrite Ropp_mult_distr_l_reverse.
Qed.
@@ -273,7 +280,7 @@ Theorem scaled_mantissa_abs :
Proof.
intros x.
unfold scaled_mantissa.
-rewrite canonic_exp_abs, Rabs_mult.
+rewrite cexp_abs, Rabs_mult.
apply f_equal.
apply sym_eq.
apply Rabs_pos_eq.
@@ -285,7 +292,7 @@ Theorem generic_format_opp :
Proof.
intros x Hx.
unfold generic_format.
-rewrite scaled_mantissa_opp, canonic_exp_opp.
+rewrite scaled_mantissa_opp, cexp_opp.
rewrite Ztrunc_opp.
rewrite F2R_Zopp.
now apply f_equal.
@@ -296,7 +303,7 @@ Theorem generic_format_abs :
Proof.
intros x Hx.
unfold generic_format.
-rewrite scaled_mantissa_abs, canonic_exp_abs.
+rewrite scaled_mantissa_abs, cexp_abs.
rewrite Ztrunc_abs.
rewrite F2R_Zabs.
now apply f_equal.
@@ -308,7 +315,7 @@ Proof.
intros x.
unfold generic_format, Rabs.
case Rcase_abs ; intros _.
-rewrite scaled_mantissa_opp, canonic_exp_opp, Ztrunc_opp.
+rewrite scaled_mantissa_opp, cexp_opp, Ztrunc_opp.
intros H.
rewrite <- (Ropp_involutive x) at 1.
rewrite H, F2R_Zopp.
@@ -316,23 +323,23 @@ apply Ropp_involutive.
easy.
Qed.
-Theorem canonic_exp_fexp :
+Theorem cexp_fexp :
forall x ex,
(bpow (ex - 1) <= Rabs x < bpow ex)%R ->
- canonic_exp x = fexp ex.
+ cexp x = fexp ex.
Proof.
intros x ex Hx.
-unfold canonic_exp.
-now rewrite ln_beta_unique with (1 := Hx).
+unfold cexp.
+now rewrite mag_unique with (1 := Hx).
Qed.
-Theorem canonic_exp_fexp_pos :
+Theorem cexp_fexp_pos :
forall x ex,
(bpow (ex - 1) <= x < bpow ex)%R ->
- canonic_exp x = fexp ex.
+ cexp x = fexp ex.
Proof.
intros x ex Hx.
-apply canonic_exp_fexp.
+apply cexp_fexp.
rewrite Rabs_pos_eq.
exact Hx.
apply Rle_trans with (2 := proj1 Hx).
@@ -360,7 +367,7 @@ apply Rlt_le_trans with (1 := proj2 Hx).
now apply bpow_le.
Qed.
-Theorem scaled_mantissa_small :
+Theorem scaled_mantissa_lt_1 :
forall x ex,
(Rabs x < bpow ex)%R ->
(ex <= fexp ex)%Z ->
@@ -369,62 +376,62 @@ Proof.
intros x ex Ex He.
destruct (Req_dec x 0) as [Zx|Zx].
rewrite Zx, scaled_mantissa_0, Rabs_R0.
-now apply (Z2R_lt 0 1).
+now apply IZR_lt.
rewrite <- scaled_mantissa_abs.
unfold scaled_mantissa.
-rewrite canonic_exp_abs.
-unfold canonic_exp.
-destruct (ln_beta beta x) as (ex', Ex').
+rewrite cexp_abs.
+unfold cexp.
+destruct (mag beta x) as (ex', Ex').
simpl.
specialize (Ex' Zx).
apply (mantissa_small_pos _ _ Ex').
assert (ex' <= fexp ex)%Z.
-apply Zle_trans with (2 := He).
+apply Z.le_trans with (2 := He).
apply bpow_lt_bpow with beta.
now apply Rle_lt_trans with (2 := Ex).
now rewrite (proj2 (proj2 (valid_exp _) He)).
Qed.
-Theorem abs_scaled_mantissa_lt_bpow :
+Theorem scaled_mantissa_lt_bpow :
forall x,
- (Rabs (scaled_mantissa x) < bpow (ln_beta beta x - canonic_exp x))%R.
+ (Rabs (scaled_mantissa x) < bpow (mag beta x - cexp x))%R.
Proof.
intros x.
destruct (Req_dec x 0) as [Zx|Zx].
rewrite Zx, scaled_mantissa_0, Rabs_R0.
apply bpow_gt_0.
-apply Rlt_le_trans with (1 := bpow_ln_beta_gt beta _).
+apply Rlt_le_trans with (1 := bpow_mag_gt beta _).
apply bpow_le.
unfold scaled_mantissa.
-rewrite ln_beta_mult_bpow with (1 := Zx).
-apply Zle_refl.
+rewrite mag_mult_bpow with (1 := Zx).
+apply Z.le_refl.
Qed.
-Theorem ln_beta_generic_gt :
+Theorem mag_generic_gt :
forall x, (x <> 0)%R ->
generic_format x ->
- (canonic_exp x < ln_beta beta x)%Z.
+ (cexp x < mag beta x)%Z.
Proof.
intros x Zx Gx.
apply Znot_ge_lt.
-unfold canonic_exp.
-destruct (ln_beta beta x) as (ex,Ex) ; simpl.
+unfold cexp.
+destruct (mag beta x) as (ex,Ex) ; simpl.
specialize (Ex Zx).
intros H.
-apply Zge_le in H.
-generalize (scaled_mantissa_small x ex (proj2 Ex) H).
+apply Z.ge_le in H.
+generalize (scaled_mantissa_lt_1 x ex (proj2 Ex) H).
contradict Zx.
rewrite Gx.
replace (Ztrunc (scaled_mantissa x)) with Z0.
apply F2R_0.
-cut (Zabs (Ztrunc (scaled_mantissa x)) < 1)%Z.
+cut (Z.abs (Ztrunc (scaled_mantissa x)) < 1)%Z.
clear ; zify ; omega.
-apply lt_Z2R.
-rewrite Z2R_abs.
+apply lt_IZR.
+rewrite abs_IZR.
now rewrite <- scaled_mantissa_generic.
Qed.
-Theorem mantissa_DN_small_pos :
+Lemma mantissa_DN_small_pos :
forall x ex,
(bpow (ex - 1) <= x < bpow ex)%R ->
(ex <= fexp ex)%Z ->
@@ -436,7 +443,7 @@ assert (H := mantissa_small_pos x ex Hx He).
split ; try apply Rlt_le ; apply H.
Qed.
-Theorem mantissa_UP_small_pos :
+Lemma mantissa_UP_small_pos :
forall x ex,
(bpow (ex - 1) <= x < bpow ex)%R ->
(ex <= fexp ex)%Z ->
@@ -451,7 +458,7 @@ Qed.
(** Generic facts about any format *)
Theorem generic_format_discrete :
forall x m,
- let e := canonic_exp x in
+ let e := cexp x in
(F2R (Float beta m e) < x < F2R (Float beta (m + 1) e))%R ->
~ generic_format x.
Proof.
@@ -459,27 +466,27 @@ intros x m e (Hx,Hx2) Hf.
apply Rlt_not_le with (1 := Hx2). clear Hx2.
rewrite Hf.
fold e.
-apply F2R_le_compat.
+apply F2R_le.
apply Zlt_le_succ.
-apply lt_Z2R.
+apply lt_IZR.
rewrite <- scaled_mantissa_generic with (1 := Hf).
apply Rmult_lt_reg_r with (bpow e).
apply bpow_gt_0.
now rewrite scaled_mantissa_mult_bpow.
Qed.
-Theorem generic_format_canonic :
- forall f, canonic f ->
+Theorem generic_format_canonical :
+ forall f, canonical f ->
generic_format (F2R f).
Proof.
intros (m, e) Hf.
-unfold canonic in Hf. simpl in Hf.
+unfold canonical in Hf. simpl in Hf.
unfold generic_format, scaled_mantissa.
rewrite <- Hf.
-apply F2R_eq_compat.
+apply F2R_eq.
unfold F2R. simpl.
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
-now rewrite Ztrunc_Z2R.
+now rewrite Ztrunc_IZR.
Qed.
Theorem generic_format_ge_bpow :
@@ -492,10 +499,10 @@ Theorem generic_format_ge_bpow :
Proof.
intros emin Emin x Hx Fx.
rewrite Fx.
-apply Rle_trans with (bpow (fexp (ln_beta beta x))).
+apply Rle_trans with (bpow (fexp (mag beta x))).
now apply bpow_le.
apply bpow_le_F2R.
-apply F2R_gt_0_reg with beta (canonic_exp x).
+apply gt_0_F2R with beta (cexp x).
now rewrite <- Fx.
Qed.
@@ -504,13 +511,13 @@ Theorem abs_lt_bpow_prec:
(forall e, (e - prec <= fexp e)%Z) ->
(* OK with FLX, FLT and FTZ *)
forall x,
- (Rabs x < bpow (prec + canonic_exp x))%R.
+ (Rabs x < bpow (prec + cexp x))%R.
intros prec Hp x.
case (Req_dec x 0); intros Hxz.
rewrite Hxz, Rabs_R0.
apply bpow_gt_0.
-unfold canonic_exp.
-destruct (ln_beta beta x) as (ex,Ex) ; simpl.
+unfold cexp.
+destruct (mag beta x) as (ex,Ex) ; simpl.
specialize (Ex Hxz).
apply Rlt_le_trans with (1 := proj2 Ex).
apply bpow_le.
@@ -526,8 +533,8 @@ Proof.
intros e He.
apply Znot_gt_le.
contradict He.
-unfold generic_format, scaled_mantissa, canonic_exp, F2R. simpl.
-rewrite ln_beta_bpow, <- bpow_plus.
+unfold generic_format, scaled_mantissa, cexp, F2R. simpl.
+rewrite mag_bpow, <- bpow_plus.
apply Rgt_not_eq.
rewrite Ztrunc_floor.
2: apply bpow_ge_0.
@@ -559,7 +566,7 @@ Variable rnd : R -> Z.
Class Valid_rnd := {
Zrnd_le : forall x y, (x <= y)%R -> (rnd x <= rnd y)%Z ;
- Zrnd_Z2R : forall n, rnd (Z2R n) = n
+ Zrnd_IZR : forall n, rnd (IZR n) = n
}.
Context { valid_rnd : Valid_rnd }.
@@ -571,20 +578,20 @@ intros x.
destruct (Zle_or_lt (rnd x) (Zfloor x)) as [Hx|Hx].
left.
apply Zle_antisym with (1 := Hx).
-rewrite <- (Zrnd_Z2R (Zfloor x)).
+rewrite <- (Zrnd_IZR (Zfloor x)).
apply Zrnd_le.
apply Zfloor_lb.
right.
apply Zle_antisym.
-rewrite <- (Zrnd_Z2R (Zceil x)).
+rewrite <- (Zrnd_IZR (Zceil x)).
apply Zrnd_le.
apply Zceil_ub.
rewrite Zceil_floor_neq.
omega.
intros H.
rewrite <- H in Hx.
-rewrite Zfloor_Z2R, Zrnd_Z2R in Hx.
-apply Zlt_irrefl with (1 := Hx).
+rewrite Zfloor_IZR, Zrnd_IZR in Hx.
+apply Z.lt_irrefl with (1 := Hx).
Qed.
Theorem Zrnd_ZR_or_AW :
@@ -602,7 +609,7 @@ Qed.
(** the most useful one: R -> F *)
Definition round x :=
- F2R (Float beta (rnd (scaled_mantissa x)) (canonic_exp x)).
+ F2R (Float beta (rnd (scaled_mantissa x)) (cexp x)).
Theorem round_bounded_large_pos :
forall x ex,
@@ -612,7 +619,7 @@ Theorem round_bounded_large_pos :
Proof.
intros x ex He Hx.
unfold round, scaled_mantissa.
-rewrite (canonic_exp_fexp_pos _ _ Hx).
+rewrite (cexp_fexp_pos _ _ Hx).
unfold F2R. simpl.
destruct (Zrnd_DN_or_UP (x * bpow (- fexp ex))) as [Hr|Hr] ; rewrite Hr.
(* DN *)
@@ -621,11 +628,11 @@ replace (ex - 1)%Z with (ex - 1 + - fexp ex + fexp ex)%Z by ring.
rewrite bpow_plus.
apply Rmult_le_compat_r.
apply bpow_ge_0.
-assert (Hf: Z2R (Zpower beta (ex - 1 - fexp ex)) = bpow (ex - 1 + - fexp ex)).
-apply Z2R_Zpower.
+assert (Hf: IZR (Zpower beta (ex - 1 - fexp ex)) = bpow (ex - 1 + - fexp ex)).
+apply IZR_Zpower.
omega.
rewrite <- Hf.
-apply Z2R_le.
+apply IZR_le.
apply Zfloor_lub.
rewrite Hf.
rewrite bpow_plus.
@@ -648,11 +655,11 @@ pattern ex at 3 ; replace ex with (ex - fexp ex + fexp ex)%Z by ring.
rewrite bpow_plus.
apply Rmult_le_compat_r.
apply bpow_ge_0.
-assert (Hf: Z2R (Zpower beta (ex - fexp ex)) = bpow (ex - fexp ex)).
-apply Z2R_Zpower.
+assert (Hf: IZR (Zpower beta (ex - fexp ex)) = bpow (ex - fexp ex)).
+apply IZR_Zpower.
omega.
rewrite <- Hf.
-apply Z2R_le.
+apply IZR_le.
apply Zceil_glb.
rewrite Hf.
unfold Zminus.
@@ -671,13 +678,13 @@ Theorem round_bounded_small_pos :
Proof.
intros x ex He Hx.
unfold round, scaled_mantissa.
-rewrite (canonic_exp_fexp_pos _ _ Hx).
+rewrite (cexp_fexp_pos _ _ Hx).
unfold F2R. simpl.
destruct (Zrnd_DN_or_UP (x * bpow (-fexp ex))) as [Hr|Hr] ; rewrite Hr.
(* DN *)
left.
apply Rmult_eq_0_compat_r.
-apply (@f_equal _ _ Z2R _ Z0).
+apply IZR_eq.
apply Zfloor_imp.
refine (let H := _ in conj (Rlt_le _ _ (proj1 H)) (proj2 H)).
now apply mantissa_small_pos.
@@ -685,18 +692,18 @@ now apply mantissa_small_pos.
right.
pattern (bpow (fexp ex)) at 2 ; rewrite <- Rmult_1_l.
apply (f_equal (fun m => (m * bpow (fexp ex))%R)).
-apply (@f_equal _ _ Z2R _ 1%Z).
+apply IZR_eq.
apply Zceil_imp.
refine (let H := _ in conj (proj1 H) (Rlt_le _ _ (proj2 H))).
now apply mantissa_small_pos.
Qed.
-Theorem round_le_pos :
+Lemma round_le_pos :
forall x y, (0 < x)%R -> (x <= y)%R -> (round x <= round y)%R.
Proof.
intros x y Hx Hxy.
-destruct (ln_beta beta x) as [ex Hex].
-destruct (ln_beta beta y) as [ey Hey].
+destruct (mag beta x) as [ex Hex].
+destruct (mag beta y) as [ey Hey].
specialize (Hex (Rgt_not_eq _ _ Hx)).
specialize (Hey (Rgt_not_eq _ _ (Rlt_le_trans _ _ _ Hx Hxy))).
rewrite Rabs_pos_eq in Hex.
@@ -709,18 +716,18 @@ assert (He: (ex <= ey)%Z).
now apply Rle_lt_trans with y.
assert (Heq: fexp ex = fexp ey -> (round x <= round y)%R).
intros H.
- unfold round, scaled_mantissa, canonic_exp.
- rewrite ln_beta_unique_pos with (1 := Hex).
- rewrite ln_beta_unique_pos with (1 := Hey).
+ unfold round, scaled_mantissa, cexp.
+ rewrite mag_unique_pos with (1 := Hex).
+ rewrite mag_unique_pos with (1 := Hey).
rewrite H.
- apply F2R_le_compat.
+ apply F2R_le.
apply Zrnd_le.
apply Rmult_le_compat_r with (2 := Hxy).
apply bpow_ge_0.
destruct (Zle_or_lt ey (fexp ey)) as [Hy1|Hy1].
apply Heq.
apply valid_exp with (1 := Hy1).
- now apply Zle_trans with ey.
+ now apply Z.le_trans with ey.
destruct (Zle_lt_or_eq _ _ He) as [He'|He'].
2: now apply Heq, f_equal.
apply Rle_trans with (bpow (ey - 1)).
@@ -746,7 +753,7 @@ Proof.
intros x Hx.
unfold round.
rewrite scaled_mantissa_generic with (1 := Hx).
-rewrite Zrnd_Z2R.
+rewrite Zrnd_IZR.
now apply sym_eq.
Qed.
@@ -755,8 +762,7 @@ Theorem round_0 :
Proof.
unfold round, scaled_mantissa.
rewrite Rmult_0_l.
-change 0%R with (Z2R 0).
-rewrite Zrnd_Z2R.
+rewrite Zrnd_IZR.
apply F2R_0.
Qed.
@@ -774,13 +780,13 @@ apply bpow_gt_0.
apply (round_bounded_large_pos); assumption.
Qed.
-Theorem generic_format_round_pos :
+Lemma generic_format_round_pos :
forall x,
(0 < x)%R ->
generic_format (round x).
Proof.
intros x Hx0.
-destruct (ln_beta beta x) as (ex, Hex).
+destruct (mag beta x) as (ex, Hex).
specialize (Hex (Rgt_not_eq _ _ Hx0)).
rewrite Rabs_pos_eq in Hex. 2: now apply Rlt_le.
destruct (Zle_or_lt ex (fexp ex)) as [He|He].
@@ -798,8 +804,8 @@ apply generic_format_bpow.
now apply valid_exp.
apply generic_format_F2R.
intros _.
-rewrite (canonic_exp_fexp_pos (F2R _) _ (conj Hr1 Hr)).
-rewrite (canonic_exp_fexp_pos _ _ Hex).
+rewrite (cexp_fexp_pos (F2R _) _ (conj Hr1 Hr)).
+rewrite (cexp_fexp_pos _ _ Hex).
now apply Zeq_le.
Qed.
@@ -821,7 +827,7 @@ Section Zround_opp.
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
-Definition Zrnd_opp x := Zopp (rnd (-x)).
+Definition Zrnd_opp x := Z.opp (rnd (-x)).
Global Instance valid_rnd_opp : Valid_rnd Zrnd_opp.
Proof with auto with typeclass_instances.
@@ -830,14 +836,14 @@ split.
intros x y Hxy.
unfold Zrnd_opp.
apply Zopp_le_cancel.
-rewrite 2!Zopp_involutive.
+rewrite 2!Z.opp_involutive.
apply Zrnd_le...
now apply Ropp_le_contravar.
(* *)
intros n.
unfold Zrnd_opp.
-rewrite <- Z2R_opp, Zrnd_Z2R...
-apply Zopp_involutive.
+rewrite <- opp_IZR, Zrnd_IZR...
+apply Z.opp_involutive.
Qed.
Theorem round_opp :
@@ -846,10 +852,10 @@ Theorem round_opp :
Proof.
intros x.
unfold round.
-rewrite <- F2R_Zopp, canonic_exp_opp, scaled_mantissa_opp.
-apply F2R_eq_compat.
+rewrite <- F2R_Zopp, cexp_opp, scaled_mantissa_opp.
+apply F2R_eq.
apply sym_eq.
-exact (Zopp_involutive _).
+exact (Z.opp_involutive _).
Qed.
End Zround_opp.
@@ -860,28 +866,28 @@ Global Instance valid_rnd_DN : Valid_rnd Zfloor.
Proof.
split.
apply Zfloor_le.
-apply Zfloor_Z2R.
+apply Zfloor_IZR.
Qed.
Global Instance valid_rnd_UP : Valid_rnd Zceil.
Proof.
split.
apply Zceil_le.
-apply Zceil_Z2R.
+apply Zceil_IZR.
Qed.
Global Instance valid_rnd_ZR : Valid_rnd Ztrunc.
Proof.
split.
apply Ztrunc_le.
-apply Ztrunc_Z2R.
+apply Ztrunc_IZR.
Qed.
Global Instance valid_rnd_AW : Valid_rnd Zaway.
Proof.
split.
apply Zaway_le.
-apply Zaway_Z2R.
+apply Zaway_IZR.
Qed.
Section monotone.
@@ -923,7 +929,7 @@ destruct (Rlt_or_le y 0) as [Hy|Hy].
(* . y < 0 *)
rewrite <- (Ropp_involutive x), <- (Ropp_involutive y).
rewrite (scaled_mantissa_opp (-x)), (scaled_mantissa_opp (-y)).
-rewrite (canonic_exp_opp (-x)), (canonic_exp_opp (-y)).
+rewrite (cexp_opp (-x)), (cexp_opp (-y)).
apply Ropp_le_cancel.
rewrite <- 2!F2R_Zopp.
apply (round_le_pos (Zrnd_opp rnd) (-y) (-x)).
@@ -932,16 +938,16 @@ now apply Ropp_lt_contravar.
now apply Ropp_le_contravar.
(* . 0 <= y *)
apply Rle_trans with 0%R.
-apply F2R_le_0_compat. simpl.
-rewrite <- (Zrnd_Z2R rnd 0).
+apply F2R_le_0. simpl.
+rewrite <- (Zrnd_IZR rnd 0).
apply Zrnd_le...
simpl.
-rewrite <- (Rmult_0_l (bpow (- fexp (ln_beta beta x)))).
+rewrite <- (Rmult_0_l (bpow (- fexp (mag beta x)))).
apply Rmult_le_compat_r.
apply bpow_ge_0.
now apply Rlt_le.
-apply F2R_ge_0_compat. simpl.
-rewrite <- (Zrnd_Z2R rnd 0).
+apply F2R_ge_0. simpl.
+rewrite <- (Zrnd_IZR rnd 0).
apply Zrnd_le...
apply Rmult_le_pos.
exact Hy.
@@ -949,9 +955,9 @@ apply bpow_ge_0.
(* x = 0 *)
rewrite Hx.
rewrite round_0...
-apply F2R_ge_0_compat.
+apply F2R_ge_0.
simpl.
-rewrite <- (Zrnd_Z2R rnd 0).
+rewrite <- (Zrnd_IZR rnd 0).
apply Zrnd_le...
apply Rmult_le_pos.
now rewrite <- Hx.
@@ -1071,8 +1077,8 @@ unfold round.
rewrite scaled_mantissa_opp.
rewrite <- F2R_Zopp.
unfold Zceil.
-rewrite Zopp_involutive.
-now rewrite canonic_exp_opp.
+rewrite Z.opp_involutive.
+now rewrite cexp_opp.
Qed.
Theorem round_UP_opp :
@@ -1085,7 +1091,7 @@ rewrite scaled_mantissa_opp.
rewrite <- F2R_Zopp.
unfold Zceil.
rewrite Ropp_involutive.
-now rewrite canonic_exp_opp.
+now rewrite cexp_opp.
Qed.
Theorem round_ZR_opp :
@@ -1094,7 +1100,7 @@ Theorem round_ZR_opp :
Proof.
intros x.
unfold round.
-rewrite scaled_mantissa_opp, canonic_exp_opp, Ztrunc_opp.
+rewrite scaled_mantissa_opp, cexp_opp, Ztrunc_opp.
apply F2R_Zopp.
Qed.
@@ -1123,7 +1129,7 @@ Theorem round_AW_opp :
Proof.
intros x.
unfold round.
-rewrite scaled_mantissa_opp, canonic_exp_opp, Zaway_opp.
+rewrite scaled_mantissa_opp, cexp_opp, Zaway_opp.
apply F2R_Zopp.
Qed.
@@ -1146,7 +1152,7 @@ apply round_le...
now apply Rge_le.
Qed.
-Theorem round_ZR_pos :
+Theorem round_ZR_DN :
forall x,
(0 <= x)%R ->
round Ztrunc x = round Zfloor x.
@@ -1156,13 +1162,13 @@ unfold round, Ztrunc.
case Rlt_bool_spec.
intros H.
elim Rlt_not_le with (1 := H).
-rewrite <- (Rmult_0_l (bpow (- canonic_exp x))).
+rewrite <- (Rmult_0_l (bpow (- cexp x))).
apply Rmult_le_compat_r with (2 := Hx).
apply bpow_ge_0.
easy.
Qed.
-Theorem round_ZR_neg :
+Theorem round_ZR_UP :
forall x,
(x <= 0)%R ->
round Ztrunc x = round Zceil x.
@@ -1173,15 +1179,14 @@ case Rlt_bool_spec.
easy.
intros [H|H].
elim Rlt_not_le with (1 := H).
-rewrite <- (Rmult_0_l (bpow (- canonic_exp x))).
+rewrite <- (Rmult_0_l (bpow (- cexp x))).
apply Rmult_le_compat_r with (2 := Hx).
apply bpow_ge_0.
rewrite <- H.
-change 0%R with (Z2R 0).
-now rewrite Zfloor_Z2R, Zceil_Z2R.
+now rewrite Zfloor_IZR, Zceil_IZR.
Qed.
-Theorem round_AW_pos :
+Theorem round_AW_UP :
forall x,
(0 <= x)%R ->
round Zaway x = round Zceil x.
@@ -1191,13 +1196,13 @@ unfold round, Zaway.
case Rlt_bool_spec.
intros H.
elim Rlt_not_le with (1 := H).
-rewrite <- (Rmult_0_l (bpow (- canonic_exp x))).
+rewrite <- (Rmult_0_l (bpow (- cexp x))).
apply Rmult_le_compat_r with (2 := Hx).
apply bpow_ge_0.
easy.
Qed.
-Theorem round_AW_neg :
+Theorem round_AW_DN :
forall x,
(x <= 0)%R ->
round Zaway x = round Zfloor x.
@@ -1208,12 +1213,11 @@ case Rlt_bool_spec.
easy.
intros [H|H].
elim Rlt_not_le with (1 := H).
-rewrite <- (Rmult_0_l (bpow (- canonic_exp x))).
+rewrite <- (Rmult_0_l (bpow (- cexp x))).
apply Rmult_le_compat_r with (2 := Hx).
apply bpow_ge_0.
rewrite <- H.
-change 0%R with (Z2R 0).
-now rewrite Zfloor_Z2R, Zceil_Z2R.
+now rewrite Zfloor_IZR, Zceil_IZR.
Qed.
Theorem generic_format_round :
@@ -1275,7 +1279,7 @@ Proof.
intros x.
rewrite <- (Ropp_involutive x).
rewrite round_UP_opp.
-apply Rnd_DN_UP_pt_sym.
+apply Rnd_UP_pt_opp.
apply generic_format_opp.
apply round_DN_pt.
Qed.
@@ -1286,22 +1290,22 @@ Theorem round_ZR_pt :
Proof.
intros x.
split ; intros Hx.
-rewrite round_ZR_pos with (1 := Hx).
+rewrite round_ZR_DN with (1 := Hx).
apply round_DN_pt.
-rewrite round_ZR_neg with (1 := Hx).
+rewrite round_ZR_UP with (1 := Hx).
apply round_UP_pt.
Qed.
-Theorem round_DN_small_pos :
+Lemma round_DN_small_pos :
forall x ex,
(bpow (ex - 1) <= x < bpow ex)%R ->
(ex <= fexp ex)%Z ->
round Zfloor x = 0%R.
Proof.
intros x ex Hx He.
-rewrite <- (F2R_0 beta (canonic_exp x)).
+rewrite <- (F2R_0 beta (cexp x)).
rewrite <- mantissa_DN_small_pos with (1 := Hx) (2 := He).
-now rewrite <- canonic_exp_fexp_pos with (1 := Hx).
+now rewrite <- cexp_fexp_pos with (1 := Hx).
Qed.
@@ -1329,7 +1333,7 @@ contradict Fx.
apply generic_format_round...
Qed.
-Theorem round_UP_small_pos :
+Lemma round_UP_small_pos :
forall x ex,
(bpow (ex - 1) <= x < bpow ex)%R ->
(ex <= fexp ex)%Z ->
@@ -1338,7 +1342,7 @@ Proof.
intros x ex Hx He.
rewrite <- F2R_bpow.
rewrite <- mantissa_UP_small_pos with (1 := Hx) (2 := He).
-now rewrite <- canonic_exp_fexp_pos with (1 := Hx).
+now rewrite <- cexp_fexp_pos with (1 := Hx).
Qed.
Theorem generic_format_EM :
@@ -1361,14 +1365,14 @@ Section round_large.
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
-Theorem round_large_pos_ge_pow :
+Lemma round_large_pos_ge_bpow :
forall x e,
(0 < round rnd x)%R ->
(bpow e <= x)%R ->
(bpow e <= round rnd x)%R.
Proof.
intros x e Hd Hex.
-destruct (ln_beta beta x) as (ex, He).
+destruct (mag beta x) as (ex, He).
assert (Hx: (0 < x)%R).
apply Rlt_le_trans with (2 := Hex).
apply bpow_gt_0.
@@ -1391,95 +1395,95 @@ Qed.
End round_large.
-Theorem ln_beta_round_ZR :
+Theorem mag_round_ZR :
forall x,
(round Ztrunc x <> 0)%R ->
- (ln_beta beta (round Ztrunc x) = ln_beta beta x :> Z).
+ (mag beta (round Ztrunc x) = mag beta x :> Z).
Proof with auto with typeclass_instances.
intros x Zr.
destruct (Req_dec x 0) as [Zx|Zx].
rewrite Zx, round_0...
-apply ln_beta_unique.
-destruct (ln_beta beta x) as (ex, Ex) ; simpl.
+apply mag_unique.
+destruct (mag beta x) as (ex, Ex) ; simpl.
specialize (Ex Zx).
rewrite <- round_ZR_abs.
split.
-apply round_large_pos_ge_pow...
+apply round_large_pos_ge_bpow...
rewrite round_ZR_abs.
now apply Rabs_pos_lt.
apply Ex.
apply Rle_lt_trans with (2 := proj2 Ex).
-rewrite round_ZR_pos.
+rewrite round_ZR_DN.
apply round_DN_pt.
apply Rabs_pos.
Qed.
-Theorem ln_beta_round :
+Theorem mag_round :
forall rnd {Hrnd : Valid_rnd rnd} x,
(round rnd x <> 0)%R ->
- (ln_beta beta (round rnd x) = ln_beta beta x :> Z) \/
- Rabs (round rnd x) = bpow (Zmax (ln_beta beta x) (fexp (ln_beta beta x))).
+ (mag beta (round rnd x) = mag beta x :> Z) \/
+ Rabs (round rnd x) = bpow (Z.max (mag beta x) (fexp (mag beta x))).
Proof with auto with typeclass_instances.
intros rnd Hrnd x.
destruct (round_ZR_or_AW rnd x) as [Hr|Hr] ; rewrite Hr ; clear Hr rnd Hrnd.
left.
-now apply ln_beta_round_ZR.
+now apply mag_round_ZR.
intros Zr.
destruct (Req_dec x 0) as [Zx|Zx].
rewrite Zx, round_0...
-destruct (ln_beta beta x) as (ex, Ex) ; simpl.
+destruct (mag beta x) as (ex, Ex) ; simpl.
specialize (Ex Zx).
-rewrite <- ln_beta_abs.
+rewrite <- mag_abs.
rewrite <- round_AW_abs.
destruct (Zle_or_lt ex (fexp ex)) as [He|He].
right.
-rewrite Zmax_r with (1 := He).
-rewrite round_AW_pos with (1 := Rabs_pos _).
+rewrite Z.max_r with (1 := He).
+rewrite round_AW_UP with (1 := Rabs_pos _).
now apply round_UP_small_pos.
destruct (round_bounded_large_pos Zaway _ ex He Ex) as (H1,[H2|H2]).
left.
-apply ln_beta_unique.
+apply mag_unique.
rewrite <- round_AW_abs, Rabs_Rabsolu.
now split.
right.
-now rewrite Zmax_l with (1 := Zlt_le_weak _ _ He).
+now rewrite Z.max_l with (1 := Zlt_le_weak _ _ He).
Qed.
-Theorem ln_beta_DN :
+Theorem mag_DN :
forall x,
(0 < round Zfloor x)%R ->
- (ln_beta beta (round Zfloor x) = ln_beta beta x :> Z).
+ (mag beta (round Zfloor x) = mag beta x :> Z).
Proof.
intros x Hd.
assert (0 < x)%R.
apply Rlt_le_trans with (1 := Hd).
apply round_DN_pt.
revert Hd.
-rewrite <- round_ZR_pos.
+rewrite <- round_ZR_DN.
intros Hd.
-apply ln_beta_round_ZR.
+apply mag_round_ZR.
now apply Rgt_not_eq.
now apply Rlt_le.
Qed.
-Theorem canonic_exp_DN :
+Theorem cexp_DN :
forall x,
(0 < round Zfloor x)%R ->
- canonic_exp (round Zfloor x) = canonic_exp x.
+ cexp (round Zfloor x) = cexp x.
Proof.
intros x Hd.
apply (f_equal fexp).
-now apply ln_beta_DN.
+now apply mag_DN.
Qed.
Theorem scaled_mantissa_DN :
forall x,
(0 < round Zfloor x)%R ->
- scaled_mantissa (round Zfloor x) = Z2R (Zfloor (scaled_mantissa x)).
+ scaled_mantissa (round Zfloor x) = IZR (Zfloor (scaled_mantissa x)).
Proof.
intros x Hd.
unfold scaled_mantissa.
-rewrite canonic_exp_DN with (1 := Hd).
+rewrite cexp_DN with (1 := Hd).
unfold round, F2R. simpl.
now rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
Qed.
@@ -1492,10 +1496,10 @@ Proof.
intros x f Hxf.
destruct (Rnd_N_pt_DN_or_UP _ _ _ Hxf).
left.
-apply Rnd_DN_pt_unicity with (1 := H).
+apply Rnd_DN_pt_unique with (1 := H).
apply round_DN_pt.
right.
-apply Rnd_UP_pt_unicity with (1 := H).
+apply Rnd_UP_pt_unique with (1 := H).
apply round_UP_pt.
Qed.
@@ -1516,20 +1520,20 @@ intros e x He Hx.
pattern x at 2 ; rewrite Hx.
unfold F2R at 2. simpl.
rewrite Rmult_assoc, <- bpow_plus.
-assert (H: Z2R (Zpower beta (canonic_exp x + - fexp e)) = bpow (canonic_exp x + - fexp e)).
-apply Z2R_Zpower.
-unfold canonic_exp.
-set (ex := ln_beta beta x).
+assert (H: IZR (Zpower beta (cexp x + - fexp e)) = bpow (cexp x + - fexp e)).
+apply IZR_Zpower.
+unfold cexp.
+set (ex := mag beta x).
generalize (exp_not_FTZ ex).
generalize (proj2 (proj2 (valid_exp _) He) (fexp ex + 1)%Z).
omega.
rewrite <- H.
-rewrite <- Z2R_mult, Ztrunc_Z2R.
+rewrite <- mult_IZR, Ztrunc_IZR.
unfold F2R. simpl.
-rewrite Z2R_mult.
+rewrite mult_IZR.
rewrite H.
rewrite Rmult_assoc, <- bpow_plus.
-now ring_simplify (canonic_exp x + - fexp e + fexp e)%Z.
+now ring_simplify (cexp x + - fexp e + fexp e)%Z.
Qed.
End not_FTZ.
@@ -1550,60 +1554,60 @@ now apply Zlt_le_succ.
now apply valid_exp.
Qed.
-Lemma canonic_exp_le_bpow :
+Lemma cexp_le_bpow :
forall (x : R) (e : Z),
x <> 0%R ->
(Rabs x < bpow e)%R ->
- (canonic_exp x <= fexp e)%Z.
+ (cexp x <= fexp e)%Z.
Proof.
intros x e Zx Hx.
apply monotone_exp.
-now apply ln_beta_le_bpow.
+now apply mag_le_bpow.
Qed.
-Lemma canonic_exp_ge_bpow :
+Lemma cexp_ge_bpow :
forall (x : R) (e : Z),
(bpow (e - 1) <= Rabs x)%R ->
- (fexp e <= canonic_exp x)%Z.
+ (fexp e <= cexp x)%Z.
Proof.
intros x e Hx.
apply monotone_exp.
rewrite (Zsucc_pred e).
apply Zlt_le_succ.
-now apply ln_beta_gt_bpow.
+now apply mag_gt_bpow.
Qed.
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
-Theorem ln_beta_round_ge :
+Theorem mag_round_ge :
forall x,
round rnd x <> 0%R ->
- (ln_beta beta x <= ln_beta beta (round rnd x))%Z.
+ (mag beta x <= mag beta (round rnd x))%Z.
Proof with auto with typeclass_instances.
intros x.
destruct (round_ZR_or_AW rnd x) as [H|H] ; rewrite H ; clear H ; intros Zr.
-rewrite ln_beta_round_ZR with (1 := Zr).
-apply Zle_refl.
-apply ln_beta_le_abs.
+rewrite mag_round_ZR with (1 := Zr).
+apply Z.le_refl.
+apply mag_le_abs.
contradict Zr.
rewrite Zr.
apply round_0...
rewrite <- round_AW_abs.
-rewrite round_AW_pos.
+rewrite round_AW_UP.
apply round_UP_pt.
apply Rabs_pos.
Qed.
-Theorem canonic_exp_round_ge :
+Theorem cexp_round_ge :
forall x,
round rnd x <> 0%R ->
- (canonic_exp x <= canonic_exp (round rnd x))%Z.
+ (cexp x <= cexp (round rnd x))%Z.
Proof with auto with typeclass_instances.
intros x Zr.
-unfold canonic_exp.
+unfold cexp.
apply monotone_exp.
-now apply ln_beta_round_ge.
+now apply mag_round_ge.
Qed.
End monotone_exp.
@@ -1614,7 +1618,7 @@ Section Znearest.
Variable choice : Z -> bool.
Definition Znearest x :=
- match Rcompare (x - Z2R (Zfloor x)) (/2) with
+ match Rcompare (x - IZR (Zfloor x)) (/2) with
| Lt => Zfloor x
| Eq => if choice (Zfloor x) then Zceil x else Zfloor x
| Gt => Zceil x
@@ -1640,8 +1644,8 @@ Theorem Znearest_ge_floor :
Proof.
intros x.
destruct (Znearest_DN_or_UP x) as [Hx|Hx] ; rewrite Hx.
-apply Zle_refl.
-apply le_Z2R.
+apply Z.le_refl.
+apply le_IZR.
apply Rle_trans with x.
apply Zfloor_lb.
apply Zceil_ub.
@@ -1653,11 +1657,11 @@ Theorem Znearest_le_ceil :
Proof.
intros x.
destruct (Znearest_DN_or_UP x) as [Hx|Hx] ; rewrite Hx.
-apply le_Z2R.
+apply le_IZR.
apply Rle_trans with x.
apply Zfloor_lb.
apply Zceil_ub.
-apply Zle_refl.
+apply Z.le_refl.
Qed.
Global Instance valid_rnd_N : Valid_rnd Znearest.
@@ -1665,22 +1669,22 @@ Proof.
split.
(* *)
intros x y Hxy.
-destruct (Rle_or_lt (Z2R (Zceil x)) y) as [H|H].
-apply Zle_trans with (1 := Znearest_le_ceil x).
-apply Zle_trans with (2 := Znearest_ge_floor y).
+destruct (Rle_or_lt (IZR (Zceil x)) y) as [H|H].
+apply Z.le_trans with (1 := Znearest_le_ceil x).
+apply Z.le_trans with (2 := Znearest_ge_floor y).
now apply Zfloor_lub.
(* . *)
assert (Hf: Zfloor y = Zfloor x).
apply Zfloor_imp.
split.
apply Rle_trans with (2 := Zfloor_lb y).
-apply Z2R_le.
+apply IZR_le.
now apply Zfloor_le.
apply Rlt_le_trans with (1 := H).
-apply Z2R_le.
+apply IZR_le.
apply Zceil_glb.
apply Rlt_le.
-rewrite Z2R_plus.
+rewrite plus_IZR.
apply Zfloor_ub.
(* . *)
unfold Znearest at 1.
@@ -1696,15 +1700,15 @@ elim Rlt_not_le with (1 := Hy).
rewrite <- Hx.
now apply Rplus_le_compat_r.
replace y with x.
-apply Zle_refl.
-apply Rplus_eq_reg_l with (- Z2R (Zfloor x))%R.
-rewrite 2!(Rplus_comm (- (Z2R (Zfloor x)))).
-change (x - Z2R (Zfloor x) = y - Z2R (Zfloor x))%R.
+apply Z.le_refl.
+apply Rplus_eq_reg_l with (- IZR (Zfloor x))%R.
+rewrite 2!(Rplus_comm (- (IZR (Zfloor x)))).
+change (x - IZR (Zfloor x) = y - IZR (Zfloor x))%R.
now rewrite Hy.
-apply Zle_trans with (Zceil x).
+apply Z.le_trans with (Zceil x).
case choice.
-apply Zle_refl.
-apply le_Z2R.
+apply Z.le_refl.
+apply le_IZR.
apply Rle_trans with x.
apply Zfloor_lb.
apply Zceil_ub.
@@ -1719,79 +1723,19 @@ now apply Rplus_le_compat_r.
(* *)
intros n.
unfold Znearest.
-rewrite Zfloor_Z2R.
+rewrite Zfloor_IZR.
rewrite Rcompare_Lt.
easy.
unfold Rminus.
rewrite Rplus_opp_r.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
-Qed.
-
-Theorem Rcompare_floor_ceil_mid :
- forall x,
- Z2R (Zfloor x) <> x ->
- Rcompare (x - Z2R (Zfloor x)) (/ 2) = Rcompare (x - Z2R (Zfloor x)) (Z2R (Zceil x) - x).
-Proof.
-intros x Hx.
-rewrite Zceil_floor_neq with (1 := Hx).
-rewrite Z2R_plus. simpl.
-destruct (Rcompare_spec (x - Z2R (Zfloor x)) (/ 2)) as [H1|H1|H1] ; apply sym_eq.
-(* . *)
-apply Rcompare_Lt.
-apply Rplus_lt_reg_l with (x - Z2R (Zfloor x))%R.
-replace (x - Z2R (Zfloor x) + (x - Z2R (Zfloor x)))%R with ((x - Z2R (Zfloor x)) * 2)%R by ring.
-replace (x - Z2R (Zfloor x) + (Z2R (Zfloor x) + 1 - x))%R with (/2 * 2)%R by field.
-apply Rmult_lt_compat_r with (2 := H1).
-now apply (Z2R_lt 0 2).
-(* . *)
-apply Rcompare_Eq.
-replace (Z2R (Zfloor x) + 1 - x)%R with (1 - (x - Z2R (Zfloor x)))%R by ring.
-rewrite H1.
-field.
-(* . *)
-apply Rcompare_Gt.
-apply Rplus_lt_reg_l with (x - Z2R (Zfloor x))%R.
-replace (x - Z2R (Zfloor x) + (x - Z2R (Zfloor x)))%R with ((x - Z2R (Zfloor x)) * 2)%R by ring.
-replace (x - Z2R (Zfloor x) + (Z2R (Zfloor x) + 1 - x))%R with (/2 * 2)%R by field.
-apply Rmult_lt_compat_r with (2 := H1).
-now apply (Z2R_lt 0 2).
-Qed.
-
-Theorem Rcompare_ceil_floor_mid :
- forall x,
- Z2R (Zfloor x) <> x ->
- Rcompare (Z2R (Zceil x) - x) (/ 2) = Rcompare (Z2R (Zceil x) - x) (x - Z2R (Zfloor x)).
-Proof.
-intros x Hx.
-rewrite Zceil_floor_neq with (1 := Hx).
-rewrite Z2R_plus. simpl.
-destruct (Rcompare_spec (Z2R (Zfloor x) + 1 - x) (/ 2)) as [H1|H1|H1] ; apply sym_eq.
-(* . *)
-apply Rcompare_Lt.
-apply Rplus_lt_reg_l with (Z2R (Zfloor x) + 1 - x)%R.
-replace (Z2R (Zfloor x) + 1 - x + (Z2R (Zfloor x) + 1 - x))%R with ((Z2R (Zfloor x) + 1 - x) * 2)%R by ring.
-replace (Z2R (Zfloor x) + 1 - x + (x - Z2R (Zfloor x)))%R with (/2 * 2)%R by field.
-apply Rmult_lt_compat_r with (2 := H1).
-now apply (Z2R_lt 0 2).
-(* . *)
-apply Rcompare_Eq.
-replace (x - Z2R (Zfloor x))%R with (1 - (Z2R (Zfloor x) + 1 - x))%R by ring.
-rewrite H1.
-field.
-(* . *)
-apply Rcompare_Gt.
-apply Rplus_lt_reg_l with (Z2R (Zfloor x) + 1 - x)%R.
-replace (Z2R (Zfloor x) + 1 - x + (Z2R (Zfloor x) + 1 - x))%R with ((Z2R (Zfloor x) + 1 - x) * 2)%R by ring.
-replace (Z2R (Zfloor x) + 1 - x + (x - Z2R (Zfloor x)))%R with (/2 * 2)%R by field.
-apply Rmult_lt_compat_r with (2 := H1).
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
Qed.
Theorem Znearest_N_strict :
forall x,
- (x - Z2R (Zfloor x) <> /2)%R ->
- (Rabs (x - Z2R (Znearest x)) < /2)%R.
+ (x - IZR (Zfloor x) <> /2)%R ->
+ (Rabs (x - IZR (Znearest x)) < /2)%R.
Proof.
intros x Hx.
unfold Znearest.
@@ -1804,72 +1748,70 @@ now elim Hx.
rewrite Rabs_left1.
rewrite Ropp_minus_distr.
rewrite Zceil_floor_neq.
-rewrite Z2R_plus.
-simpl.
+rewrite plus_IZR.
apply Ropp_lt_cancel.
apply Rplus_lt_reg_l with 1%R.
replace (1 + -/2)%R with (/2)%R by field.
-now replace (1 + - (Z2R (Zfloor x) + 1 - x))%R with (x - Z2R (Zfloor x))%R by ring.
+now replace (1 + - (IZR (Zfloor x) + 1 - x))%R with (x - IZR (Zfloor x))%R by ring.
apply Rlt_not_eq.
-apply Rplus_lt_reg_l with (- Z2R (Zfloor x))%R.
+apply Rplus_lt_reg_l with (- IZR (Zfloor x))%R.
apply Rlt_trans with (/2)%R.
rewrite Rplus_opp_l.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
now rewrite <- (Rplus_comm x).
apply Rle_minus.
apply Zceil_ub.
Qed.
-Theorem Znearest_N :
+Theorem Znearest_half :
forall x,
- (Rabs (x - Z2R (Znearest x)) <= /2)%R.
+ (Rabs (x - IZR (Znearest x)) <= /2)%R.
Proof.
intros x.
-destruct (Req_dec (x - Z2R (Zfloor x)) (/2)) as [Hx|Hx].
+destruct (Req_dec (x - IZR (Zfloor x)) (/2)) as [Hx|Hx].
assert (K: (Rabs (/2) <= /2)%R).
apply Req_le.
apply Rabs_pos_eq.
apply Rlt_le.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
destruct (Znearest_DN_or_UP x) as [H|H] ; rewrite H ; clear H.
now rewrite Hx.
rewrite Zceil_floor_neq.
-rewrite Z2R_plus.
-simpl.
-replace (x - (Z2R (Zfloor x) + 1))%R with (x - Z2R (Zfloor x) - 1)%R by ring.
+rewrite plus_IZR.
+replace (x - (IZR (Zfloor x) + 1))%R with (x - IZR (Zfloor x) - 1)%R by ring.
rewrite Hx.
rewrite Rabs_minus_sym.
now replace (1 - /2)%R with (/2)%R by field.
apply Rlt_not_eq.
-apply Rplus_lt_reg_l with (- Z2R (Zfloor x))%R.
+apply Rplus_lt_reg_l with (- IZR (Zfloor x))%R.
rewrite Rplus_opp_l, Rplus_comm.
-fold (x - Z2R (Zfloor x))%R.
+fold (x - IZR (Zfloor x))%R.
rewrite Hx.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
apply Rlt_le.
now apply Znearest_N_strict.
Qed.
Theorem Znearest_imp :
forall x n,
- (Rabs (x - Z2R n) < /2)%R ->
+ (Rabs (x - IZR n) < /2)%R ->
Znearest x = n.
Proof.
intros x n Hd.
-cut (Zabs (Znearest x - n) < 1)%Z.
+cut (Z.abs (Znearest x - n) < 1)%Z.
clear ; zify ; omega.
-apply lt_Z2R.
-rewrite Z2R_abs, Z2R_minus.
-replace (Z2R (Znearest x) - Z2R n)%R with (- (x - Z2R (Znearest x)) + (x - Z2R n))%R by ring.
+apply lt_IZR.
+rewrite abs_IZR, minus_IZR.
+replace (IZR (Znearest x) - IZR n)%R with (- (x - IZR (Znearest x)) + (x - IZR n))%R by ring.
apply Rle_lt_trans with (1 := Rabs_triang _ _).
simpl.
replace 1%R with (/2 + /2)%R by field.
apply Rplus_le_lt_compat with (2 := Hd).
rewrite Rabs_Ropp.
-apply Znearest_N.
+apply Znearest_half.
Qed.
Theorem round_N_pt :
@@ -1880,7 +1822,7 @@ intros x.
set (d := round Zfloor x).
set (u := round Zceil x).
set (mx := scaled_mantissa x).
-set (bx := bpow (canonic_exp x)).
+set (bx := bpow (cexp x)).
(* . *)
assert (H: (Rabs (round Znearest x - x) <= Rmin (x - d) (u - x))%R).
pattern x at -1 ; rewrite <- scaled_mantissa_mult_bpow.
@@ -1892,7 +1834,7 @@ rewrite <- Rmult_min_distr_r. 2: apply bpow_ge_0.
apply Rmult_le_compat_r.
apply bpow_ge_0.
unfold Znearest.
-destruct (Req_dec (Z2R (Zfloor mx)) mx) as [Hm|Hm].
+destruct (Req_dec (IZR (Zfloor mx)) mx) as [Hm|Hm].
(* .. *)
rewrite Hm.
unfold Rminus at 2.
@@ -1903,16 +1845,16 @@ unfold Rminus at -3.
rewrite Rplus_opp_r.
rewrite Rabs_R0.
unfold Rmin.
-destruct (Rle_dec 0 (Z2R (Zceil mx) - mx)) as [H|H].
+destruct (Rle_dec 0 (IZR (Zceil mx) - mx)) as [H|H].
apply Rle_refl.
apply Rle_0_minus.
apply Zceil_ub.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
(* .. *)
-rewrite Rcompare_floor_ceil_mid with (1 := Hm).
+rewrite Rcompare_floor_ceil_middle with (1 := Hm).
rewrite Rmin_compare.
-assert (H: (Rabs (mx - Z2R (Zfloor mx)) <= mx - Z2R (Zfloor mx))%R).
+assert (H: (Rabs (mx - IZR (Zfloor mx)) <= mx - IZR (Zfloor mx))%R).
rewrite Rabs_pos_eq.
apply Rle_refl.
apply Rle_0_minus.
@@ -1928,7 +1870,7 @@ apply Rle_refl.
apply Rle_0_minus.
apply Zceil_ub.
(* . *)
-apply Rnd_DN_UP_pt_N with d u.
+apply Rnd_N_pt_DN_UP with d u.
apply generic_format_round.
auto with typeclass_instances.
now apply round_DN_pt.
@@ -1947,63 +1889,63 @@ Proof.
intros x.
pattern x at 1 4 ; rewrite <- scaled_mantissa_mult_bpow.
unfold round, Znearest, F2R. simpl.
-destruct (Req_dec (Z2R (Zfloor (scaled_mantissa x))) (scaled_mantissa x)) as [Fx|Fx].
+destruct (Req_dec (IZR (Zfloor (scaled_mantissa x))) (scaled_mantissa x)) as [Fx|Fx].
(* *)
intros _.
rewrite <- Fx.
-rewrite Zceil_Z2R, Zfloor_Z2R.
+rewrite Zceil_IZR, Zfloor_IZR.
set (m := Zfloor (scaled_mantissa x)).
-now case (Rcompare (Z2R m - Z2R m) (/ 2)) ; case (choice m).
+now case (Rcompare (IZR m - IZR m) (/ 2)) ; case (choice m).
(* *)
intros H.
-rewrite Rcompare_floor_ceil_mid with (1 := Fx).
+rewrite Rcompare_floor_ceil_middle with (1 := Fx).
rewrite Rcompare_Eq.
now case choice.
-apply Rmult_eq_reg_r with (bpow (canonic_exp x)).
+apply Rmult_eq_reg_r with (bpow (cexp x)).
now rewrite 2!Rmult_minus_distr_r.
apply Rgt_not_eq.
apply bpow_gt_0.
Qed.
-Lemma round_N_really_small_pos :
+Lemma round_N_small_pos :
forall x,
forall ex,
- (Fcore_Raux.bpow beta (ex - 1) <= x < Fcore_Raux.bpow beta ex)%R ->
+ (Raux.bpow beta (ex - 1) <= x < Raux.bpow beta ex)%R ->
(ex < fexp ex)%Z ->
(round Znearest x = 0)%R.
Proof.
intros x ex Hex Hf.
-unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
-apply (Rmult_eq_reg_r (bpow (- fexp (ln_beta beta x))));
+unfold round, F2R, scaled_mantissa, cexp; simpl.
+apply (Rmult_eq_reg_r (bpow (- fexp (mag beta x))));
[|now apply Rgt_not_eq; apply bpow_gt_0].
rewrite Rmult_0_l, Rmult_assoc, <- bpow_plus.
replace (_ + - _)%Z with 0%Z by ring; simpl; rewrite Rmult_1_r.
-change 0%R with (Z2R 0); apply f_equal.
+apply IZR_eq.
apply Znearest_imp.
-simpl; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
+unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
assert (H : (x >= 0)%R).
{ apply Rle_ge; apply Rle_trans with (bpow (ex - 1)); [|exact (proj1 Hex)].
now apply bpow_ge_0. }
-assert (H' : (x * bpow (- fexp (ln_beta beta x)) >= 0)%R).
+assert (H' : (x * bpow (- fexp (mag beta x)) >= 0)%R).
{ apply Rle_ge; apply Rmult_le_pos.
- now apply Rge_le.
- now apply bpow_ge_0. }
rewrite Rabs_right; [|exact H'].
-apply (Rmult_lt_reg_r (bpow (fexp (ln_beta beta x)))); [now apply bpow_gt_0|].
+apply (Rmult_lt_reg_r (bpow (fexp (mag beta x)))); [now apply bpow_gt_0|].
rewrite Rmult_assoc, <- bpow_plus.
replace (- _ + _)%Z with 0%Z by ring; simpl; rewrite Rmult_1_r.
apply (Rlt_le_trans _ _ _ (proj2 Hex)).
-apply Rle_trans with (bpow (fexp (ln_beta beta x) - 1)).
+apply Rle_trans with (bpow (fexp (mag beta x) - 1)).
- apply bpow_le.
- rewrite (ln_beta_unique beta x ex); [omega|].
+ rewrite (mag_unique beta x ex); [omega|].
now rewrite Rabs_right.
- unfold Zminus; rewrite bpow_plus.
rewrite Rmult_comm.
apply Rmult_le_compat_r; [now apply bpow_ge_0|].
- unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ unfold Raux.bpow, Z.pow_pos; simpl.
rewrite Zmult_1_r.
apply Rinv_le; [exact Rlt_0_2|].
- change 2%R with (Z2R 2); apply Z2R_le.
+ apply IZR_le.
destruct beta as (beta_val,beta_prop).
now apply Zle_bool_imp_le.
Qed.
@@ -2024,7 +1966,7 @@ set (f := round (Znearest (Zle_bool 0)) x).
intros Rxf.
destruct (Req_dec (x - round Zfloor x) (round Zceil x - x)) as [Hm|Hm].
(* *)
-apply Rnd_NA_N_pt.
+apply Rnd_NA_pt_N.
exact generic_format_0.
exact Rxf.
destruct (Rle_or_lt 0 x) as [Hx|Hx].
@@ -2038,7 +1980,7 @@ apply (round_UP_pt x).
apply Zfloor_lub.
apply Rmult_le_pos with (1 := Hx).
apply bpow_ge_0.
-apply Rnd_N_pt_pos with (2 := Hx) (3 := Rxf).
+apply Rnd_N_pt_ge_0 with (2 := Hx) (3 := Rxf).
exact generic_format_0.
(* . *)
rewrite Rabs_left with (1 := Hx).
@@ -2048,21 +1990,21 @@ unfold f.
rewrite round_N_middle with (1 := Hm).
rewrite Zle_bool_false.
apply (round_DN_pt x).
-apply lt_Z2R.
+apply lt_IZR.
apply Rle_lt_trans with (scaled_mantissa x).
apply Zfloor_lb.
simpl.
-rewrite <- (Rmult_0_l (bpow (- canonic_exp x))).
+rewrite <- (Rmult_0_l (bpow (- cexp x))).
apply Rmult_lt_compat_r with (2 := Hx).
apply bpow_gt_0.
-apply Rnd_N_pt_neg with (3 := Rxf).
+apply Rnd_N_pt_le_0 with (3 := Rxf).
exact generic_format_0.
now apply Rlt_le.
(* *)
split.
apply Rxf.
intros g Rxg.
-rewrite Rnd_N_pt_unicity with (3 := Hm) (4 := Rxf) (5 := Rxg).
+rewrite Rnd_N_pt_unique with (3 := Hm) (4 := Rxf) (5 := Rxg).
apply Rle_refl.
apply round_DN_pt.
apply round_UP_pt.
@@ -2077,25 +2019,25 @@ Theorem Znearest_opp :
Znearest choice (- x) = (- Znearest (fun t => negb (choice (- (t + 1))%Z)) x)%Z.
Proof with auto with typeclass_instances.
intros choice x.
-destruct (Req_dec (Z2R (Zfloor x)) x) as [Hx|Hx].
+destruct (Req_dec (IZR (Zfloor x)) x) as [Hx|Hx].
rewrite <- Hx.
-rewrite <- Z2R_opp.
-rewrite 2!Zrnd_Z2R...
+rewrite <- opp_IZR.
+rewrite 2!Zrnd_IZR...
unfold Znearest.
-replace (- x - Z2R (Zfloor (-x)))%R with (Z2R (Zceil x) - x)%R.
-rewrite Rcompare_ceil_floor_mid with (1 := Hx).
-rewrite Rcompare_floor_ceil_mid with (1 := Hx).
+replace (- x - IZR (Zfloor (-x)))%R with (IZR (Zceil x) - x)%R.
+rewrite Rcompare_ceil_floor_middle with (1 := Hx).
+rewrite Rcompare_floor_ceil_middle with (1 := Hx).
rewrite Rcompare_sym.
rewrite <- Zceil_floor_neq with (1 := Hx).
unfold Zceil.
rewrite Ropp_involutive.
case Rcompare ; simpl ; trivial.
-rewrite Zopp_involutive.
+rewrite Z.opp_involutive.
case (choice (Zfloor (- x))) ; simpl ; trivial.
-now rewrite Zopp_involutive.
-now rewrite Zopp_involutive.
+now rewrite Z.opp_involutive.
+now rewrite Z.opp_involutive.
unfold Zceil.
-rewrite Z2R_opp.
+rewrite opp_IZR.
apply Rplus_comm.
Qed.
@@ -2106,15 +2048,30 @@ Theorem round_N_opp :
Proof.
intros choice x.
unfold round, F2R. simpl.
-rewrite canonic_exp_opp.
+rewrite cexp_opp.
rewrite scaled_mantissa_opp.
rewrite Znearest_opp.
-rewrite Z2R_opp.
+rewrite opp_IZR.
now rewrite Ropp_mult_distr_l_reverse.
Qed.
End rndN_opp.
+Lemma round_N_small :
+ forall choice,
+ forall x,
+ forall ex,
+ (Raux.bpow beta (ex - 1) <= Rabs x < Raux.bpow beta ex)%R ->
+ (ex < fexp ex)%Z ->
+ (round (Znearest choice) x = 0)%R.
+Proof.
+intros choice x ex Hx Hex.
+destruct (Rle_or_lt 0 x) as [Px|Nx].
+{ now revert Hex; apply round_N_small_pos; revert Hx; rewrite Rabs_pos_eq. }
+rewrite <-(Ropp_involutive x), round_N_opp, <-Ropp_0; f_equal.
+now revert Hex; apply round_N_small_pos; revert Hx; rewrite Rabs_left.
+Qed.
+
End Format.
(** Inclusion of a format into an extended format *)
@@ -2125,9 +2082,9 @@ Variables fexp1 fexp2 : Z -> Z.
Context { valid_exp1 : Valid_exp fexp1 }.
Context { valid_exp2 : Valid_exp fexp2 }.
-Theorem generic_inclusion_ln_beta :
+Theorem generic_inclusion_mag :
forall x,
- ( x <> R0 -> (fexp2 (ln_beta beta x) <= fexp1 (ln_beta beta x))%Z ) ->
+ ( x <> 0%R -> (fexp2 (mag beta x) <= fexp1 (mag beta x))%Z ) ->
generic_format fexp1 x ->
generic_format fexp2 x.
Proof.
@@ -2139,7 +2096,7 @@ rewrite <- Fx.
apply He.
contradict Zx.
rewrite Zx, scaled_mantissa_0.
-apply (Ztrunc_Z2R 0).
+apply Ztrunc_IZR.
Qed.
Theorem generic_inclusion_lt_ge :
@@ -2151,12 +2108,12 @@ Theorem generic_inclusion_lt_ge :
generic_format fexp2 x.
Proof.
intros e1 e2 He x (Hx1,Hx2).
-apply generic_inclusion_ln_beta.
+apply generic_inclusion_mag.
intros Zx.
apply He.
split.
-now apply ln_beta_gt_bpow.
-now apply ln_beta_le_bpow.
+now apply mag_gt_bpow.
+now apply mag_le_bpow.
Qed.
Theorem generic_inclusion :
@@ -2168,13 +2125,13 @@ Theorem generic_inclusion :
generic_format fexp2 x.
Proof with auto with typeclass_instances.
intros e He x (Hx1,[Hx2|Hx2]).
-apply generic_inclusion_ln_beta.
-now rewrite ln_beta_unique with (1 := conj Hx1 Hx2).
+apply generic_inclusion_mag.
+now rewrite mag_unique with (1 := conj Hx1 Hx2).
intros Fx.
apply generic_format_abs_inv.
rewrite Hx2.
apply generic_format_bpow'...
-apply Zle_trans with (1 := He).
+apply Z.le_trans with (1 := He).
apply generic_format_bpow_inv...
rewrite <- Hx2.
now apply generic_format_abs.
@@ -2191,18 +2148,18 @@ Theorem generic_inclusion_le_ge :
Proof.
intros e1 e2 He' He x (Hx1,[Hx2|Hx2]).
(* *)
-apply generic_inclusion_ln_beta.
+apply generic_inclusion_mag.
intros Zx.
apply He.
split.
-now apply ln_beta_gt_bpow.
-now apply ln_beta_le_bpow.
+now apply mag_gt_bpow.
+now apply mag_le_bpow.
(* *)
apply generic_inclusion with (e := e2).
apply He.
split.
apply He'.
-apply Zle_refl.
+apply Z.le_refl.
rewrite Hx2.
split.
apply bpow_le.
@@ -2219,13 +2176,13 @@ Theorem generic_inclusion_le :
generic_format fexp2 x.
Proof.
intros e2 He x [Hx|Hx].
-apply generic_inclusion_ln_beta.
+apply generic_inclusion_mag.
intros Zx.
apply He.
-now apply ln_beta_le_bpow.
+now apply mag_le_bpow.
apply generic_inclusion with (e := e2).
apply He.
-apply Zle_refl.
+apply Z.le_refl.
rewrite Hx.
split.
apply bpow_le.
@@ -2242,10 +2199,10 @@ Theorem generic_inclusion_ge :
generic_format fexp2 x.
Proof.
intros e1 He x Hx.
-apply generic_inclusion_ln_beta.
+apply generic_inclusion_mag.
intros Zx.
apply He.
-now apply ln_beta_gt_bpow.
+now apply mag_gt_bpow.
Qed.
Variable rnd : R -> Z.
@@ -2263,9 +2220,9 @@ revert rnd valid_rnd x Gx.
refine (round_abs_abs _ (fun x y => generic_format fexp1 x -> generic_format fexp1 y) _).
intros rnd valid_rnd x [Hx|Hx] Gx.
(* x > 0 *)
-generalize (ln_beta_generic_gt _ x (Rgt_not_eq _ _ Hx) Gx).
-unfold canonic_exp.
-destruct (ln_beta beta x) as (ex,Ex) ; simpl.
+generalize (mag_generic_gt _ x (Rgt_not_eq _ _ Hx) Gx).
+unfold cexp.
+destruct (mag beta x) as (ex,Ex) ; simpl.
specialize (Ex (Rgt_not_eq _ _ Hx)).
intros He'.
rewrite Rabs_pos_eq in Ex by now apply Rlt_le.
@@ -2279,25 +2236,25 @@ apply generic_format_bpow'...
apply Zlt_le_weak.
apply valid_exp_large with ex...
(* - x large for fexp2 *)
-destruct (Zle_or_lt (canonic_exp fexp2 x) (canonic_exp fexp1 x)) as [He''|He''].
+destruct (Zle_or_lt (cexp fexp2 x) (cexp fexp1 x)) as [He''|He''].
(* - - round fexp2 x is representable for fexp1 *)
rewrite round_generic...
rewrite Gx.
apply generic_format_F2R.
fold (round fexp1 Ztrunc x).
intros Zx.
-unfold canonic_exp at 1.
-rewrite ln_beta_round_ZR...
+unfold cexp at 1.
+rewrite mag_round_ZR...
contradict Zx.
-apply F2R_eq_0_reg with (1 := Zx).
+apply eq_0_F2R with (1 := Zx).
(* - - round fexp2 x has too many digits for fexp1 *)
destruct (round_bounded_large_pos fexp2 rnd x ex He Ex) as (Hr1,[Hr2|Hr2]).
apply generic_format_F2R.
intros Zx.
fold (round fexp2 rnd x).
-unfold canonic_exp at 1.
-rewrite ln_beta_unique_pos with (1 := conj Hr1 Hr2).
-rewrite <- ln_beta_unique_pos with (1 := Ex).
+unfold cexp at 1.
+rewrite mag_unique_pos with (1 := conj Hr1 Hr2).
+rewrite <- mag_unique_pos with (1 := Ex).
now apply Zlt_le_weak.
rewrite Hr2.
apply generic_format_bpow'...
@@ -2327,7 +2284,7 @@ apply Ropp_eq_compat.
apply round_ext.
clear x; intro x.
unfold Znearest.
-case_eq (Rcompare (x - Z2R (Zfloor x)) (/ 2)); intro C;
+case_eq (Rcompare (x - IZR (Zfloor x)) (/ 2)); intro C;
[|reflexivity|reflexivity].
apply Rcompare_Eq_inv in C.
assert (H : negb (0 <=? - (Zfloor x + 1))%Z = (0 <=? Zfloor x)%Z);
diff --git a/flocq/Core/Fcore_Raux.v b/flocq/Core/Raux.v
index 77235e63..8273a55b 100644
--- a/flocq/Core/Fcore_Raux.v
+++ b/flocq/Core/Raux.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2009-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,9 +18,9 @@ COPYING file for more details.
*)
(** * Missing definitions/lemmas *)
-Require Export Reals.
-Require Export ZArith.
-Require Export Fcore_Zaux.
+Require Import Psatz.
+Require Export Reals ZArith.
+Require Export Zaux.
Section Rmissing.
@@ -58,12 +58,13 @@ Theorem Rabs_minus_le:
(Rabs (x-y) <= x)%R.
Proof.
intros x y Hx Hy.
-unfold Rabs; case (Rcase_abs (x - y)); intros H.
-apply Rplus_le_reg_l with x; ring_simplify; assumption.
-apply Rplus_le_reg_l with (-x)%R; ring_simplify.
-auto with real.
+apply Rabs_le.
+lra.
Qed.
+Theorem Rabs_eq_R0 x : (Rabs x = 0 -> x = 0)%R.
+Proof. split_Rabs; lra. Qed.
+
Theorem Rplus_eq_reg_r :
forall r r1 r2 : R,
(r1 + r = r2 + r)%R -> (r1 = r2)%R.
@@ -73,53 +74,6 @@ apply Rplus_eq_reg_l with r.
now rewrite 2!(Rplus_comm r).
Qed.
-Theorem Rplus_lt_reg_l :
- forall r r1 r2 : R,
- (r + r1 < r + r2)%R -> (r1 < r2)%R.
-Proof.
-intros.
-solve [ apply Rplus_lt_reg_l with (1 := H) |
- apply Rplus_lt_reg_r with (1 := H) ].
-Qed.
-
-Theorem Rplus_lt_reg_r :
- forall r r1 r2 : R,
- (r1 + r < r2 + r)%R -> (r1 < r2)%R.
-Proof.
-intros.
-apply Rplus_lt_reg_l with r.
-now rewrite 2!(Rplus_comm r).
-Qed.
-
-Theorem Rplus_le_reg_r :
- forall r r1 r2 : R,
- (r1 + r <= r2 + r)%R -> (r1 <= r2)%R.
-Proof.
-intros.
-apply Rplus_le_reg_l with r.
-now rewrite 2!(Rplus_comm r).
-Qed.
-
-Theorem Rmult_lt_reg_r :
- forall r r1 r2 : R, (0 < r)%R ->
- (r1 * r < r2 * r)%R -> (r1 < r2)%R.
-Proof.
-intros.
-apply Rmult_lt_reg_l with r.
-exact H.
-now rewrite 2!(Rmult_comm r).
-Qed.
-
-Theorem Rmult_le_reg_r :
- forall r r1 r2 : R, (0 < r)%R ->
- (r1 * r <= r2 * r)%R -> (r1 <= r2)%R.
-Proof.
-intros.
-apply Rmult_le_reg_l with r.
-exact H.
-now rewrite 2!(Rmult_comm r).
-Qed.
-
Theorem Rmult_lt_compat :
forall r1 r2 r3 r4,
(0 <= r1)%R -> (0 <= r3)%R -> (r1 < r2)%R -> (r3 < r4)%R ->
@@ -135,16 +89,6 @@ apply Rle_lt_trans with (r1 * r4)%R.
+ exact H12.
Qed.
-Theorem Rmult_eq_reg_r :
- forall r r1 r2 : R, (r1 * r)%R = (r2 * r)%R ->
- r <> 0%R -> r1 = r2.
-Proof.
-intros r r1 r2 H1 H2.
-apply Rmult_eq_reg_l with r.
-now rewrite 2!(Rmult_comm r).
-exact H2.
-Qed.
-
Theorem Rmult_minus_distr_r :
forall r r1 r2 : R,
((r1 - r2) * r = r1 * r - r2 * r)%R.
@@ -154,13 +98,18 @@ rewrite <- 3!(Rmult_comm r).
apply Rmult_minus_distr_l.
Qed.
-Lemma Rmult_neq_reg_r: forall r1 r2 r3:R, (r2 * r1 <> r3 * r1)%R -> r2 <> r3.
+Lemma Rmult_neq_reg_r :
+ forall r1 r2 r3 : R, (r2 * r1 <> r3 * r1)%R -> r2 <> r3.
+Proof.
intros r1 r2 r3 H1 H2.
apply H1; rewrite H2; ring.
Qed.
-Lemma Rmult_neq_compat_r: forall r1 r2 r3:R, (r1 <> 0)%R -> (r2 <> r3)%R
- -> (r2 *r1 <> r3*r1)%R.
+Lemma Rmult_neq_compat_r :
+ forall r1 r2 r3 : R,
+ (r1 <> 0)%R -> (r2 <> r3)%R ->
+ (r2 * r1 <> r3 * r1)%R.
+Proof.
intros r1 r2 r3 H H1 H2.
now apply H1, Rmult_eq_reg_r with r1.
Qed.
@@ -227,7 +176,6 @@ rewrite Rmax_right; trivial.
now apply Ropp_le_contravar.
Qed.
-
Theorem exp_le :
forall x y : R,
(x <= y)%R -> (exp x <= exp y)%R.
@@ -288,6 +236,14 @@ destruct (Req_dec x 0) as [Zx|Nzx].
now apply Nzx, Rle_antisym; [|apply Rge_le].
Qed.
+Lemma Rsqr_le_abs_0_alt :
+ forall x y,
+ (x² <= y² -> x <= Rabs y)%R.
+Proof.
+intros x y H.
+apply (Rle_trans _ (Rabs x)); [apply Rle_abs|apply (Rsqr_le_abs_0 _ _ H)].
+Qed.
+
Theorem Rabs_le :
forall x y,
(-y <= x <= y)%R -> (Rabs x <= y)%R.
@@ -387,187 +343,35 @@ Qed.
End Rmissing.
-Section Z2R.
+Section IZR.
-(** Z2R function (Z -> R) *)
-Fixpoint P2R (p : positive) :=
- match p with
- | xH => 1%R
- | xO xH => 2%R
- | xO t => (2 * P2R t)%R
- | xI xH => 3%R
- | xI t => (1 + 2 * P2R t)%R
- end.
-
-Definition Z2R n :=
- match n with
- | Zpos p => P2R p
- | Zneg p => Ropp (P2R p)
- | Z0 => 0%R
- end.
-
-Theorem P2R_INR :
- forall n, P2R n = INR (nat_of_P n).
-Proof.
-induction n ; simpl ; try (
- rewrite IHn ;
- rewrite <- (mult_INR 2) ;
- rewrite <- (nat_of_P_mult_morphism 2) ;
- change (2 * n)%positive with (xO n)).
-(* xI *)
-rewrite (Rplus_comm 1).
-change (nat_of_P (xO n)) with (Pmult_nat n 2).
-case n ; intros ; simpl ; try apply refl_equal.
-case (Pmult_nat p 4) ; intros ; try apply refl_equal.
-rewrite Rplus_0_l.
-apply refl_equal.
-apply Rplus_comm.
-(* xO *)
-case n ; intros ; apply refl_equal.
-(* xH *)
-apply refl_equal.
-Qed.
-
-Theorem Z2R_IZR :
- forall n, Z2R n = IZR n.
-Proof.
-intro.
-case n ; intros ; unfold Z2R.
-apply refl_equal.
-rewrite <- positive_nat_Z, <- INR_IZR_INZ.
-apply P2R_INR.
-change (IZR (Zneg p)) with (Ropp (IZR (Zpos p))).
-apply Ropp_eq_compat.
-rewrite <- positive_nat_Z, <- INR_IZR_INZ.
-apply P2R_INR.
-Qed.
-
-Theorem Z2R_opp :
- forall n, Z2R (-n) = (- Z2R n)%R.
-Proof.
-intros.
-repeat rewrite Z2R_IZR.
-apply Ropp_Ropp_IZR.
-Qed.
-
-Theorem Z2R_plus :
- forall m n, (Z2R (m + n) = Z2R m + Z2R n)%R.
-Proof.
-intros.
-repeat rewrite Z2R_IZR.
-apply plus_IZR.
-Qed.
-
-Theorem minus_IZR :
- forall n m : Z,
- IZR (n - m) = (IZR n - IZR m)%R.
-Proof.
-intros.
-unfold Zminus.
-rewrite plus_IZR.
-rewrite Ropp_Ropp_IZR.
-apply refl_equal.
-Qed.
-
-Theorem Z2R_minus :
- forall m n, (Z2R (m - n) = Z2R m - Z2R n)%R.
-Proof.
-intros.
-repeat rewrite Z2R_IZR.
-apply minus_IZR.
-Qed.
-
-Theorem Z2R_mult :
- forall m n, (Z2R (m * n) = Z2R m * Z2R n)%R.
-Proof.
-intros.
-repeat rewrite Z2R_IZR.
-apply mult_IZR.
-Qed.
-
-Theorem le_Z2R :
- forall m n, (Z2R m <= Z2R n)%R -> (m <= n)%Z.
-Proof.
-intros m n.
-repeat rewrite Z2R_IZR.
-apply le_IZR.
-Qed.
-
-Theorem Z2R_le :
- forall m n, (m <= n)%Z -> (Z2R m <= Z2R n)%R.
-Proof.
-intros m n.
-repeat rewrite Z2R_IZR.
-apply IZR_le.
-Qed.
-
-Theorem lt_Z2R :
- forall m n, (Z2R m < Z2R n)%R -> (m < n)%Z.
-Proof.
-intros m n.
-repeat rewrite Z2R_IZR.
-apply lt_IZR.
-Qed.
-
-Theorem Z2R_lt :
- forall m n, (m < n)%Z -> (Z2R m < Z2R n)%R.
-Proof.
-intros m n.
-repeat rewrite Z2R_IZR.
-apply IZR_lt.
-Qed.
-
-Theorem Z2R_le_lt :
- forall m n p, (m <= n < p)%Z -> (Z2R m <= Z2R n < Z2R p)%R.
+Theorem IZR_le_lt :
+ forall m n p, (m <= n < p)%Z -> (IZR m <= IZR n < IZR p)%R.
Proof.
intros m n p (H1, H2).
split.
-now apply Z2R_le.
-now apply Z2R_lt.
+now apply IZR_le.
+now apply IZR_lt.
Qed.
-Theorem le_lt_Z2R :
- forall m n p, (Z2R m <= Z2R n < Z2R p)%R -> (m <= n < p)%Z.
+Theorem le_lt_IZR :
+ forall m n p, (IZR m <= IZR n < IZR p)%R -> (m <= n < p)%Z.
Proof.
intros m n p (H1, H2).
split.
-now apply le_Z2R.
-now apply lt_Z2R.
-Qed.
-
-Theorem eq_Z2R :
- forall m n, (Z2R m = Z2R n)%R -> (m = n)%Z.
-Proof.
-intros m n H.
-apply eq_IZR.
-now rewrite <- 2!Z2R_IZR.
+now apply le_IZR.
+now apply lt_IZR.
Qed.
-Theorem neq_Z2R :
- forall m n, (Z2R m <> Z2R n)%R -> (m <> n)%Z.
+Theorem neq_IZR :
+ forall m n, (IZR m <> IZR n)%R -> (m <> n)%Z.
Proof.
intros m n H H'.
apply H.
now apply f_equal.
Qed.
-Theorem Z2R_neq :
- forall m n, (m <> n)%Z -> (Z2R m <> Z2R n)%R.
-Proof.
-intros m n.
-repeat rewrite Z2R_IZR.
-apply IZR_neq.
-Qed.
-
-Theorem Z2R_abs :
- forall z, Z2R (Zabs z) = Rabs (Z2R z).
-Proof.
-intros.
-repeat rewrite Z2R_IZR.
-now rewrite Rabs_Zabs.
-Qed.
-
-End Z2R.
+End IZR.
(** Decidable comparison on reals *)
Section Rcompare.
@@ -691,17 +495,17 @@ contradict H.
now apply Rcompare_Gt.
Qed.
-Theorem Rcompare_Z2R :
- forall x y, Rcompare (Z2R x) (Z2R y) = Zcompare x y.
+Theorem Rcompare_IZR :
+ forall x y, Rcompare (IZR x) (IZR y) = Z.compare x y.
Proof.
intros x y.
case Rcompare_spec ; intros H ; apply sym_eq.
apply Zcompare_Lt.
-now apply lt_Z2R.
+now apply lt_IZR.
apply Zcompare_Eq.
-now apply eq_Z2R.
+now apply eq_IZR.
apply Zcompare_Gt.
-now apply lt_Z2R.
+now apply lt_IZR.
Qed.
Theorem Rcompare_sym :
@@ -715,6 +519,16 @@ now apply Rcompare_Eq.
now apply Rcompare_Lt.
Qed.
+Lemma Rcompare_opp :
+ forall x y,
+ Rcompare (- x) (- y) = Rcompare y x.
+Proof.
+intros x y.
+destruct (Rcompare_spec y x);
+ destruct (Rcompare_spec (- x) (- y));
+ try reflexivity; exfalso; lra.
+Qed.
+
Theorem Rcompare_plus_r :
forall z x y,
Rcompare (x + z) (y + z) = Rcompare x y.
@@ -773,7 +587,7 @@ rewrite <- (Rcompare_mult_r (/2) (x - d)).
field_simplify (x + (- x / 2 - d / 2))%R.
now field_simplify ((d + u) / 2 + (- x / 2 - d / 2))%R.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
Qed.
Theorem Rcompare_half_l :
@@ -784,8 +598,8 @@ rewrite <- (Rcompare_mult_r 2%R).
unfold Rdiv.
rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
now rewrite Rmult_comm.
-now apply (Z2R_neq 2 0).
-now apply (Z2R_lt 0 2).
+now apply IZR_neq.
+now apply IZR_lt.
Qed.
Theorem Rcompare_half_r :
@@ -796,23 +610,23 @@ rewrite <- (Rcompare_mult_r 2%R).
unfold Rdiv.
rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
now rewrite Rmult_comm.
-now apply (Z2R_neq 2 0).
-now apply (Z2R_lt 0 2).
+now apply IZR_neq.
+now apply IZR_lt.
Qed.
Theorem Rcompare_sqr :
forall x y,
- (0 <= x)%R -> (0 <= y)%R ->
- Rcompare (x * x) (y * y) = Rcompare x y.
+ Rcompare (x * x) (y * y) = Rcompare (Rabs x) (Rabs y).
Proof.
-intros x y Hx Hy.
-destruct (Rcompare_spec x y) as [H|H|H].
+intros x y.
+destruct (Rcompare_spec (Rabs x) (Rabs y)) as [H|H|H].
apply Rcompare_Lt.
-now apply Rsqr_incrst_1.
-rewrite H.
+now apply Rsqr_lt_abs_1.
+change (Rcompare (Rsqr x) (Rsqr y) = Eq).
+rewrite Rsqr_abs, H, (Rsqr_abs y).
now apply Rcompare_Eq.
apply Rcompare_Gt.
-now apply Rsqr_incrst_1.
+now apply Rsqr_lt_abs_1.
Qed.
Theorem Rmin_compare :
@@ -941,6 +755,14 @@ rewrite <- negb_Rlt_bool.
now rewrite Rle_bool_true.
Qed.
+Lemma Rlt_bool_opp :
+ forall x y,
+ Rlt_bool (- x) (- y) = Rlt_bool y x.
+Proof.
+intros x y.
+now unfold Rlt_bool; rewrite Rcompare_opp.
+Qed.
+
End Rlt_bool.
Section Req_bool.
@@ -997,13 +819,12 @@ Definition Zfloor (x : R) := (up x - 1)%Z.
Theorem Zfloor_lb :
forall x : R,
- (Z2R (Zfloor x) <= x)%R.
+ (IZR (Zfloor x) <= x)%R.
Proof.
intros x.
unfold Zfloor.
-rewrite Z2R_minus.
+rewrite minus_IZR.
simpl.
-rewrite Z2R_IZR.
apply Rplus_le_reg_r with (1 - x)%R.
ring_simplify.
exact (proj2 (archimed x)).
@@ -1011,55 +832,54 @@ Qed.
Theorem Zfloor_ub :
forall x : R,
- (x < Z2R (Zfloor x) + 1)%R.
+ (x < IZR (Zfloor x) + 1)%R.
Proof.
intros x.
unfold Zfloor.
-rewrite Z2R_minus.
+rewrite minus_IZR.
unfold Rminus.
rewrite Rplus_assoc.
rewrite Rplus_opp_l, Rplus_0_r.
-rewrite Z2R_IZR.
exact (proj1 (archimed x)).
Qed.
Theorem Zfloor_lub :
forall n x,
- (Z2R n <= x)%R ->
+ (IZR n <= x)%R ->
(n <= Zfloor x)%Z.
Proof.
intros n x Hnx.
apply Zlt_succ_le.
-apply lt_Z2R.
+apply lt_IZR.
apply Rle_lt_trans with (1 := Hnx).
-unfold Zsucc.
-rewrite Z2R_plus.
+unfold Z.succ.
+rewrite plus_IZR.
apply Zfloor_ub.
Qed.
Theorem Zfloor_imp :
forall n x,
- (Z2R n <= x < Z2R (n + 1))%R ->
+ (IZR n <= x < IZR (n + 1))%R ->
Zfloor x = n.
Proof.
intros n x Hnx.
apply Zle_antisym.
apply Zlt_succ_le.
-apply lt_Z2R.
+apply lt_IZR.
apply Rle_lt_trans with (2 := proj2 Hnx).
apply Zfloor_lb.
now apply Zfloor_lub.
Qed.
-Theorem Zfloor_Z2R :
+Theorem Zfloor_IZR :
forall n,
- Zfloor (Z2R n) = n.
+ Zfloor (IZR n) = n.
Proof.
intros n.
apply Zfloor_imp.
split.
apply Rle_refl.
-apply Z2R_lt.
+apply IZR_lt.
apply Zlt_succ.
Qed.
@@ -1077,11 +897,11 @@ Definition Zceil (x : R) := (- Zfloor (- x))%Z.
Theorem Zceil_ub :
forall x : R,
- (x <= Z2R (Zceil x))%R.
+ (x <= IZR (Zceil x))%R.
Proof.
intros x.
unfold Zceil.
-rewrite Z2R_opp.
+rewrite opp_IZR.
apply Ropp_le_cancel.
rewrite Ropp_involutive.
apply Zfloor_lb.
@@ -1089,45 +909,45 @@ Qed.
Theorem Zceil_glb :
forall n x,
- (x <= Z2R n)%R ->
+ (x <= IZR n)%R ->
(Zceil x <= n)%Z.
Proof.
intros n x Hnx.
unfold Zceil.
apply Zopp_le_cancel.
-rewrite Zopp_involutive.
+rewrite Z.opp_involutive.
apply Zfloor_lub.
-rewrite Z2R_opp.
+rewrite opp_IZR.
now apply Ropp_le_contravar.
Qed.
Theorem Zceil_imp :
forall n x,
- (Z2R (n - 1) < x <= Z2R n)%R ->
+ (IZR (n - 1) < x <= IZR n)%R ->
Zceil x = n.
Proof.
intros n x Hnx.
unfold Zceil.
-rewrite <- (Zopp_involutive n).
+rewrite <- (Z.opp_involutive n).
apply f_equal.
apply Zfloor_imp.
split.
-rewrite Z2R_opp.
+rewrite opp_IZR.
now apply Ropp_le_contravar.
-rewrite <- (Zopp_involutive 1).
+rewrite <- (Z.opp_involutive 1).
rewrite <- Zopp_plus_distr.
-rewrite Z2R_opp.
+rewrite opp_IZR.
now apply Ropp_lt_contravar.
Qed.
-Theorem Zceil_Z2R :
+Theorem Zceil_IZR :
forall n,
- Zceil (Z2R n) = n.
+ Zceil (IZR n) = n.
Proof.
intros n.
unfold Zceil.
-rewrite <- Z2R_opp, Zfloor_Z2R.
-apply Zopp_involutive.
+rewrite <- opp_IZR, Zfloor_IZR.
+apply Z.opp_involutive.
Qed.
Theorem Zceil_le :
@@ -1142,7 +962,7 @@ Qed.
Theorem Zceil_floor_neq :
forall x : R,
- (Z2R (Zfloor x) <> x)%R ->
+ (IZR (Zfloor x) <> x)%R ->
(Zceil x = Zfloor x + 1)%Z.
Proof.
intros x Hx.
@@ -1156,21 +976,21 @@ apply Rle_antisym.
apply Zfloor_lb.
exact H.
apply Rlt_le.
-rewrite Z2R_plus.
+rewrite plus_IZR.
apply Zfloor_ub.
Qed.
Definition Ztrunc x := if Rlt_bool x 0 then Zceil x else Zfloor x.
-Theorem Ztrunc_Z2R :
+Theorem Ztrunc_IZR :
forall n,
- Ztrunc (Z2R n) = n.
+ Ztrunc (IZR n) = n.
Proof.
intros n.
unfold Ztrunc.
case Rlt_bool_spec ; intro H.
-apply Zceil_Z2R.
-apply Zfloor_Z2R.
+apply Zceil_IZR.
+apply Zfloor_IZR.
Qed.
Theorem Ztrunc_floor :
@@ -1196,9 +1016,8 @@ unfold Ztrunc.
case Rlt_bool_spec ; intro H.
apply refl_equal.
rewrite (Rle_antisym _ _ Hx H).
-change 0%R with (Z2R 0).
-rewrite Zceil_Z2R.
-apply Zfloor_Z2R.
+rewrite Zceil_IZR.
+apply Zfloor_IZR.
Qed.
Theorem Ztrunc_le :
@@ -1211,7 +1030,7 @@ case Rlt_bool_spec ; intro Hx.
unfold Ztrunc.
case Rlt_bool_spec ; intro Hy.
now apply Zceil_le.
-apply Zle_trans with 0%Z.
+apply Z.le_trans with 0%Z.
apply Zceil_glb.
now apply Rlt_le.
now apply Zfloor_lub.
@@ -1222,14 +1041,14 @@ Qed.
Theorem Ztrunc_opp :
forall x,
- Ztrunc (- x) = Zopp (Ztrunc x).
+ Ztrunc (- x) = Z.opp (Ztrunc x).
Proof.
intros x.
unfold Ztrunc at 2.
case Rlt_bool_spec ; intros Hx.
rewrite Ztrunc_floor.
apply sym_eq.
-apply Zopp_involutive.
+apply Z.opp_involutive.
rewrite <- Ropp_0.
apply Ropp_le_contravar.
now apply Rlt_le.
@@ -1242,7 +1061,7 @@ Qed.
Theorem Ztrunc_abs :
forall x,
- Ztrunc (Rabs x) = Zabs (Ztrunc x).
+ Ztrunc (Rabs x) = Z.abs (Ztrunc x).
Proof.
intros x.
rewrite Ztrunc_floor. 2: apply Rabs_pos.
@@ -1251,19 +1070,19 @@ case Rlt_bool_spec ; intro H.
rewrite Rabs_left with (1 := H).
rewrite Zabs_non_eq.
apply sym_eq.
-apply Zopp_involutive.
+apply Z.opp_involutive.
apply Zceil_glb.
now apply Rlt_le.
rewrite Rabs_pos_eq with (1 := H).
apply sym_eq.
-apply Zabs_eq.
+apply Z.abs_eq.
now apply Zfloor_lub.
Qed.
Theorem Ztrunc_lub :
forall n x,
- (Z2R n <= Rabs x)%R ->
- (n <= Zabs (Ztrunc x))%Z.
+ (IZR n <= Rabs x)%R ->
+ (n <= Z.abs (Ztrunc x))%Z.
Proof.
intros n x H.
rewrite <- Ztrunc_abs.
@@ -1273,15 +1092,15 @@ Qed.
Definition Zaway x := if Rlt_bool x 0 then Zfloor x else Zceil x.
-Theorem Zaway_Z2R :
+Theorem Zaway_IZR :
forall n,
- Zaway (Z2R n) = n.
+ Zaway (IZR n) = n.
Proof.
intros n.
unfold Zaway.
case Rlt_bool_spec ; intro H.
-apply Zfloor_Z2R.
-apply Zceil_Z2R.
+apply Zfloor_IZR.
+apply Zceil_IZR.
Qed.
Theorem Zaway_ceil :
@@ -1307,9 +1126,8 @@ unfold Zaway.
case Rlt_bool_spec ; intro H.
apply refl_equal.
rewrite (Rle_antisym _ _ Hx H).
-change 0%R with (Z2R 0).
-rewrite Zfloor_Z2R.
-apply Zceil_Z2R.
+rewrite Zfloor_IZR.
+apply Zceil_IZR.
Qed.
Theorem Zaway_le :
@@ -1322,7 +1140,7 @@ case Rlt_bool_spec ; intro Hx.
unfold Zaway.
case Rlt_bool_spec ; intro Hy.
now apply Zfloor_le.
-apply le_Z2R.
+apply le_IZR.
apply Rle_trans with 0%R.
apply Rlt_le.
apply Rle_lt_trans with (2 := Hx).
@@ -1336,7 +1154,7 @@ Qed.
Theorem Zaway_opp :
forall x,
- Zaway (- x) = Zopp (Zaway x).
+ Zaway (- x) = Z.opp (Zaway x).
Proof.
intros x.
unfold Zaway at 2.
@@ -1348,14 +1166,14 @@ apply Rlt_le.
now apply Ropp_0_gt_lt_contravar.
rewrite Zaway_floor.
apply sym_eq.
-apply Zopp_involutive.
+apply Z.opp_involutive.
rewrite <- Ropp_0.
now apply Ropp_le_contravar.
Qed.
Theorem Zaway_abs :
forall x,
- Zaway (Rabs x) = Zabs (Zaway x).
+ Zaway (Rabs x) = Z.abs (Zaway x).
Proof.
intros x.
rewrite Zaway_ceil. 2: apply Rabs_pos.
@@ -1365,66 +1183,126 @@ rewrite Rabs_left with (1 := H).
rewrite Zabs_non_eq.
apply (f_equal (fun v => - Zfloor v)%Z).
apply Ropp_involutive.
-apply le_Z2R.
+apply le_IZR.
apply Rlt_le.
apply Rle_lt_trans with (2 := H).
apply Zfloor_lb.
rewrite Rabs_pos_eq with (1 := H).
apply sym_eq.
-apply Zabs_eq.
-apply le_Z2R.
+apply Z.abs_eq.
+apply le_IZR.
apply Rle_trans with (1 := H).
apply Zceil_ub.
Qed.
End Floor_Ceil.
+Theorem Rcompare_floor_ceil_middle :
+ forall x,
+ IZR (Zfloor x) <> x ->
+ Rcompare (x - IZR (Zfloor x)) (/ 2) = Rcompare (x - IZR (Zfloor x)) (IZR (Zceil x) - x).
+Proof.
+intros x Hx.
+rewrite Zceil_floor_neq with (1 := Hx).
+rewrite plus_IZR.
+destruct (Rcompare_spec (x - IZR (Zfloor x)) (/ 2)) as [H1|H1|H1] ; apply sym_eq.
+(* . *)
+apply Rcompare_Lt.
+apply Rplus_lt_reg_l with (x - IZR (Zfloor x))%R.
+replace (x - IZR (Zfloor x) + (x - IZR (Zfloor x)))%R with ((x - IZR (Zfloor x)) * 2)%R by ring.
+replace (x - IZR (Zfloor x) + (IZR (Zfloor x) + 1 - x))%R with (/2 * 2)%R by field.
+apply Rmult_lt_compat_r with (2 := H1).
+now apply IZR_lt.
+(* . *)
+apply Rcompare_Eq.
+replace (IZR (Zfloor x) + 1 - x)%R with (1 - (x - IZR (Zfloor x)))%R by ring.
+rewrite H1.
+field.
+(* . *)
+apply Rcompare_Gt.
+apply Rplus_lt_reg_l with (x - IZR (Zfloor x))%R.
+replace (x - IZR (Zfloor x) + (x - IZR (Zfloor x)))%R with ((x - IZR (Zfloor x)) * 2)%R by ring.
+replace (x - IZR (Zfloor x) + (IZR (Zfloor x) + 1 - x))%R with (/2 * 2)%R by field.
+apply Rmult_lt_compat_r with (2 := H1).
+now apply IZR_lt.
+Qed.
+
+Theorem Rcompare_ceil_floor_middle :
+ forall x,
+ IZR (Zfloor x) <> x ->
+ Rcompare (IZR (Zceil x) - x) (/ 2) = Rcompare (IZR (Zceil x) - x) (x - IZR (Zfloor x)).
+Proof.
+intros x Hx.
+rewrite Zceil_floor_neq with (1 := Hx).
+rewrite plus_IZR.
+destruct (Rcompare_spec (IZR (Zfloor x) + 1 - x) (/ 2)) as [H1|H1|H1] ; apply sym_eq.
+(* . *)
+apply Rcompare_Lt.
+apply Rplus_lt_reg_l with (IZR (Zfloor x) + 1 - x)%R.
+replace (IZR (Zfloor x) + 1 - x + (IZR (Zfloor x) + 1 - x))%R with ((IZR (Zfloor x) + 1 - x) * 2)%R by ring.
+replace (IZR (Zfloor x) + 1 - x + (x - IZR (Zfloor x)))%R with (/2 * 2)%R by field.
+apply Rmult_lt_compat_r with (2 := H1).
+now apply IZR_lt.
+(* . *)
+apply Rcompare_Eq.
+replace (x - IZR (Zfloor x))%R with (1 - (IZR (Zfloor x) + 1 - x))%R by ring.
+rewrite H1.
+field.
+(* . *)
+apply Rcompare_Gt.
+apply Rplus_lt_reg_l with (IZR (Zfloor x) + 1 - x)%R.
+replace (IZR (Zfloor x) + 1 - x + (IZR (Zfloor x) + 1 - x))%R with ((IZR (Zfloor x) + 1 - x) * 2)%R by ring.
+replace (IZR (Zfloor x) + 1 - x + (x - IZR (Zfloor x)))%R with (/2 * 2)%R by field.
+apply Rmult_lt_compat_r with (2 := H1).
+now apply IZR_lt.
+Qed.
+
Section Zdiv_Rdiv.
Theorem Zfloor_div :
forall x y,
y <> Z0 ->
- Zfloor (Z2R x / Z2R y) = (x / y)%Z.
+ Zfloor (IZR x / IZR y) = (x / y)%Z.
Proof.
intros x y Zy.
generalize (Z_div_mod_eq_full x y Zy).
intros Hx.
rewrite Hx at 1.
-assert (Zy': Z2R y <> R0).
+assert (Zy': IZR y <> 0%R).
contradict Zy.
-now apply eq_Z2R.
+now apply eq_IZR.
unfold Rdiv.
-rewrite Z2R_plus, Rmult_plus_distr_r, Z2R_mult.
-replace (Z2R y * Z2R (x / y) * / Z2R y)%R with (Z2R (x / y)) by now field.
+rewrite plus_IZR, Rmult_plus_distr_r, mult_IZR.
+replace (IZR y * IZR (x / y) * / IZR y)%R with (IZR (x / y)) by now field.
apply Zfloor_imp.
-rewrite Z2R_plus.
-assert (0 <= Z2R (x mod y) * / Z2R y < 1)%R.
+rewrite plus_IZR.
+assert (0 <= IZR (x mod y) * / IZR y < 1)%R.
(* *)
-assert (forall x' y', (0 < y')%Z -> 0 <= Z2R (x' mod y') * / Z2R y' < 1)%R.
+assert (forall x' y', (0 < y')%Z -> 0 <= IZR (x' mod y') * / IZR y' < 1)%R.
(* . *)
clear.
intros x y Hy.
split.
apply Rmult_le_pos.
-apply (Z2R_le 0).
+apply IZR_le.
refine (proj1 (Z_mod_lt _ _ _)).
-now apply Zlt_gt.
+now apply Z.lt_gt.
apply Rlt_le.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0).
-apply Rmult_lt_reg_r with (Z2R y).
-now apply (Z2R_lt 0).
+now apply IZR_lt.
+apply Rmult_lt_reg_r with (IZR y).
+now apply IZR_lt.
rewrite Rmult_1_l, Rmult_assoc, Rinv_l, Rmult_1_r.
-apply Z2R_lt.
+apply IZR_lt.
eapply Z_mod_lt.
-now apply Zlt_gt.
+now apply Z.lt_gt.
apply Rgt_not_eq.
-now apply (Z2R_lt 0).
+now apply IZR_lt.
(* . *)
destruct (Z_lt_le_dec y 0) as [Hy|Hy].
rewrite <- Rmult_opp_opp.
rewrite Ropp_inv_permute with (1 := Zy').
-rewrite <- 2!Z2R_opp.
+rewrite <- 2!opp_IZR.
rewrite <- Zmod_opp_opp.
apply H.
clear -Hy. omega.
@@ -1432,7 +1310,7 @@ apply H.
clear -Zy Hy. omega.
(* *)
split.
-pattern (Z2R (x / y)) at 1 ; rewrite <- Rplus_0_r.
+pattern (IZR (x / y)) at 1 ; rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
apply H.
apply Rplus_lt_compat_l.
@@ -1445,11 +1323,11 @@ Section pow.
Variable r : radix.
-Theorem radix_pos : (0 < Z2R r)%R.
+Theorem radix_pos : (0 < IZR r)%R.
Proof.
destruct r as (v, Hr). simpl.
-apply (Z2R_lt 0).
-apply Zlt_le_trans with 2%Z.
+apply IZR_lt.
+apply Z.lt_le_trans with 2%Z.
easy.
now apply Zle_bool_imp_le.
Qed.
@@ -1457,14 +1335,14 @@ Qed.
(** Well-used function called bpow for computing the power function #&beta;#^e *)
Definition bpow e :=
match e with
- | Zpos p => Z2R (Zpower_pos r p)
- | Zneg p => Rinv (Z2R (Zpower_pos r p))
+ | Zpos p => IZR (Zpower_pos r p)
+ | Zneg p => Rinv (IZR (Zpower_pos r p))
| Z0 => 1%R
end.
-Theorem Z2R_Zpower_pos :
+Theorem IZR_Zpower_pos :
forall n m,
- Z2R (Zpower_pos n m) = powerRZ (Z2R n) (Zpos m).
+ IZR (Zpower_pos n m) = powerRZ (IZR n) (Zpos m).
Proof.
intros.
rewrite Zpower_pos_nat.
@@ -1473,19 +1351,19 @@ induction (nat_of_P m).
apply refl_equal.
unfold Zpower_nat.
simpl.
-rewrite Z2R_mult.
+rewrite mult_IZR.
apply Rmult_eq_compat_l.
exact IHn0.
Qed.
Theorem bpow_powerRZ :
forall e,
- bpow e = powerRZ (Z2R r) e.
+ bpow e = powerRZ (IZR r) e.
Proof.
destruct e ; unfold bpow.
reflexivity.
-now rewrite Z2R_Zpower_pos.
-now rewrite Z2R_Zpower_pos.
+now rewrite IZR_Zpower_pos.
+now rewrite IZR_Zpower_pos.
Qed.
Theorem bpow_ge_0 :
@@ -1517,14 +1395,14 @@ apply radix_pos.
Qed.
Theorem bpow_1 :
- bpow 1 = Z2R r.
+ bpow 1 = IZR r.
Proof.
unfold bpow, Zpower_pos. simpl.
now rewrite Zmult_1_r.
Qed.
-Theorem bpow_plus1 :
- forall e : Z, (bpow (e + 1) = Z2R r * bpow e)%R.
+Theorem bpow_plus_1 :
+ forall e : Z, (bpow (e + 1) = IZR r * bpow e)%R.
Proof.
intros.
rewrite <- bpow_1.
@@ -1544,9 +1422,9 @@ apply Rgt_not_eq.
apply (bpow_gt_0 (Zpos p)).
Qed.
-Theorem Z2R_Zpower_nat :
+Theorem IZR_Zpower_nat :
forall e : nat,
- Z2R (Zpower_nat r e) = bpow (Z_of_nat e).
+ IZR (Zpower_nat r e) = bpow (Z_of_nat e).
Proof.
intros [|e].
split.
@@ -1555,10 +1433,10 @@ rewrite <- Zpower_pos_nat.
now rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P.
Qed.
-Theorem Z2R_Zpower :
+Theorem IZR_Zpower :
forall e : Z,
(0 <= e)%Z ->
- Z2R (Zpower r e) = bpow e.
+ IZR (Zpower r e) = bpow e.
Proof.
intros [|e|e] H.
split.
@@ -1579,8 +1457,8 @@ apply bpow_gt_0.
assert (0 < e2 - e1)%Z by omega.
destruct (e2 - e1)%Z ; try discriminate H0.
clear.
-rewrite <- Z2R_Zpower by easy.
-apply (Z2R_lt 1).
+rewrite <- IZR_Zpower by easy.
+apply IZR_lt.
now apply Zpower_gt_1.
Qed.
@@ -1589,7 +1467,7 @@ Theorem lt_bpow :
(bpow e1 < bpow e2)%R -> (e1 < e2)%Z.
Proof.
intros e1 e2 H.
-apply Zgt_lt.
+apply Z.gt_lt.
apply Znot_le_gt.
intros H'.
apply Rlt_not_le with (1 := H).
@@ -1608,7 +1486,7 @@ intros e1 e2 H.
apply Rnot_lt_le.
intros H'.
apply Zle_not_gt with (1 := H).
-apply Zlt_gt.
+apply Z.lt_gt.
now apply lt_bpow.
Qed.
@@ -1621,7 +1499,7 @@ apply Znot_gt_le.
intros H'.
apply Rle_not_lt with (1 := H).
apply bpow_lt.
-now apply Zgt_lt.
+now apply Z.gt_lt.
Qed.
Theorem bpow_inj :
@@ -1638,15 +1516,15 @@ Qed.
Theorem bpow_exp :
forall e : Z,
- bpow e = exp (Z2R e * ln (Z2R r)).
+ bpow e = exp (IZR e * ln (IZR r)).
Proof.
(* positive case *)
-assert (forall e, bpow (Zpos e) = exp (Z2R (Zpos e) * ln (Z2R r))).
+assert (forall e, bpow (Zpos e) = exp (IZR (Zpos e) * ln (IZR r))).
intros e.
unfold bpow.
rewrite Zpower_pos_nat.
-unfold Z2R at 2.
-rewrite P2R_INR.
+rewrite <- positive_nat_Z.
+rewrite <- INR_IZR_INZ.
induction (nat_of_P e).
rewrite Rmult_0_l.
now rewrite exp_0.
@@ -1657,7 +1535,7 @@ rewrite exp_plus.
rewrite Rmult_1_l.
rewrite exp_ln.
rewrite <- IHn.
-rewrite <- Z2R_mult.
+rewrite <- mult_IZR.
now rewrite Zmult_comm.
apply radix_pos.
(* general case *)
@@ -1666,31 +1544,50 @@ rewrite Rmult_0_l.
now rewrite exp_0.
apply H.
unfold bpow.
-change (Z2R (Zpower_pos r e)) with (bpow (Zpos e)).
+change (IZR (Zpower_pos r e)) with (bpow (Zpos e)).
rewrite H.
rewrite <- exp_Ropp.
rewrite <- Ropp_mult_distr_l_reverse.
-now rewrite <- Z2R_opp.
+now rewrite <- opp_IZR.
+Qed.
+
+Lemma sqrt_bpow :
+ forall e,
+ sqrt (bpow (2 * e)) = bpow e.
+Proof.
+intro e.
+change 2%Z with (1 + 1)%Z; rewrite Z.mul_add_distr_r, Z.mul_1_l, bpow_plus.
+apply sqrt_square, bpow_ge_0.
Qed.
-(** Another well-used function for having the logarithm of a real number x to the base #&beta;# *)
-Record ln_beta_prop x := {
- ln_beta_val :> Z ;
- _ : (x <> 0)%R -> (bpow (ln_beta_val - 1)%Z <= Rabs x < bpow ln_beta_val)%R
+Lemma sqrt_bpow_ge :
+ forall e,
+ (bpow (e / 2) <= sqrt (bpow e))%R.
+Proof.
+intro e.
+rewrite <- (sqrt_square (bpow _)); [|now apply bpow_ge_0].
+apply sqrt_le_1_alt; rewrite <- bpow_plus; apply bpow_le.
+now replace (_ + _)%Z with (2 * (e / 2))%Z by ring; apply Z_mult_div_ge.
+Qed.
+
+(** Another well-used function for having the magnitude of a real number x to the base #&beta;# *)
+Record mag_prop x := {
+ mag_val :> Z ;
+ _ : (x <> 0)%R -> (bpow (mag_val - 1)%Z <= Rabs x < bpow mag_val)%R
}.
-Definition ln_beta :
- forall x : R, ln_beta_prop x.
+Definition mag :
+ forall x : R, mag_prop x.
Proof.
intros x.
-set (fact := ln (Z2R r)).
+set (fact := ln (IZR r)).
(* . *)
assert (0 < fact)%R.
apply exp_lt_inv.
rewrite exp_0.
unfold fact.
rewrite exp_ln.
-apply (Z2R_lt 1).
+apply IZR_lt.
apply radix_gt_1.
apply radix_pos.
(* . *)
@@ -1703,19 +1600,19 @@ rewrite 2!bpow_exp.
fold fact.
pattern x at 2 3 ; replace x with (exp (ln x * / fact * fact)).
split.
-rewrite Z2R_minus.
+rewrite minus_IZR.
apply exp_le.
apply Rmult_le_compat_r.
now apply Rlt_le.
unfold Rminus.
-rewrite Z2R_plus.
+rewrite plus_IZR.
rewrite Rplus_assoc.
rewrite Rplus_opp_r, Rplus_0_r.
apply Zfloor_lb.
apply exp_increasing.
apply Rmult_lt_compat_r.
exact H.
-rewrite Z2R_plus.
+rewrite plus_IZR.
apply Zfloor_ub.
rewrite Rmult_assoc.
rewrite Rinv_l.
@@ -1748,55 +1645,55 @@ apply Zle_antisym ;
assumption.
Qed.
-Theorem ln_beta_unique :
+Theorem mag_unique :
forall (x : R) (e : Z),
(bpow (e - 1) <= Rabs x < bpow e)%R ->
- ln_beta x = e :> Z.
+ mag x = e :> Z.
Proof.
intros x e1 He.
destruct (Req_dec x 0) as [Hx|Hx].
elim Rle_not_lt with (1 := proj1 He).
rewrite Hx, Rabs_R0.
apply bpow_gt_0.
-destruct (ln_beta x) as (e2, Hx2).
+destruct (mag x) as (e2, Hx2).
simpl.
apply bpow_unique with (2 := He).
now apply Hx2.
Qed.
-Theorem ln_beta_opp :
+Theorem mag_opp :
forall x,
- ln_beta (-x) = ln_beta x :> Z.
+ mag (-x) = mag x :> Z.
Proof.
intros x.
destruct (Req_dec x 0) as [Hx|Hx].
now rewrite Hx, Ropp_0.
-destruct (ln_beta x) as (e, He).
+destruct (mag x) as (e, He).
simpl.
specialize (He Hx).
-apply ln_beta_unique.
+apply mag_unique.
now rewrite Rabs_Ropp.
Qed.
-Theorem ln_beta_abs :
+Theorem mag_abs :
forall x,
- ln_beta (Rabs x) = ln_beta x :> Z.
+ mag (Rabs x) = mag x :> Z.
Proof.
intros x.
unfold Rabs.
case Rcase_abs ; intros _.
-apply ln_beta_opp.
+apply mag_opp.
apply refl_equal.
Qed.
-Theorem ln_beta_unique_pos :
+Theorem mag_unique_pos :
forall (x : R) (e : Z),
(bpow (e - 1) <= x < bpow e)%R ->
- ln_beta x = e :> Z.
+ mag x = e :> Z.
Proof.
intros x e1 He1.
-rewrite <- ln_beta_abs.
-apply ln_beta_unique.
+rewrite <- mag_abs.
+apply mag_unique.
rewrite 2!Rabs_pos_eq.
exact He1.
apply Rle_trans with (2 := proj1 He1).
@@ -1804,14 +1701,14 @@ apply bpow_ge_0.
apply Rabs_pos.
Qed.
-Theorem ln_beta_le_abs :
+Theorem mag_le_abs :
forall x y,
(x <> 0)%R -> (Rabs x <= Rabs y)%R ->
- (ln_beta x <= ln_beta y)%Z.
+ (mag x <= mag y)%Z.
Proof.
intros x y H0x Hxy.
-destruct (ln_beta x) as (ex, Hx).
-destruct (ln_beta y) as (ey, Hy).
+destruct (mag x) as (ex, Hx).
+destruct (mag y) as (ey, Hy).
simpl.
apply bpow_lt_bpow.
specialize (Hx H0x).
@@ -1825,13 +1722,13 @@ rewrite Hy', Rabs_R0.
apply Rle_refl.
Qed.
-Theorem ln_beta_le :
+Theorem mag_le :
forall x y,
(0 < x)%R -> (x <= y)%R ->
- (ln_beta x <= ln_beta y)%Z.
+ (mag x <= mag y)%Z.
Proof.
intros x y H0x Hxy.
-apply ln_beta_le_abs.
+apply mag_le_abs.
now apply Rgt_not_eq.
rewrite 2!Rabs_pos_eq.
exact Hxy.
@@ -1840,17 +1737,17 @@ now apply Rlt_le.
now apply Rlt_le.
Qed.
-Lemma ln_beta_lt_pos :
+Lemma lt_mag :
forall x y,
(0 < y)%R ->
- (ln_beta x < ln_beta y)%Z -> (x < y)%R.
+ (mag x < mag y)%Z -> (x < y)%R.
Proof.
intros x y Py.
case (Rle_or_lt x 0); intros Px.
intros H.
now apply Rle_lt_trans with 0%R.
-destruct (ln_beta x) as (ex, Hex).
-destruct (ln_beta y) as (ey, Hey).
+destruct (mag x) as (ex, Hex).
+destruct (mag y) as (ey, Hey).
simpl.
intro H.
destruct Hex as (_,Hex); [now apply Rgt_not_eq|].
@@ -1862,11 +1759,11 @@ apply Rle_trans with (bpow (ey - 1)); [|exact Hey].
now apply bpow_le; omega.
Qed.
-Theorem ln_beta_bpow :
- forall e, (ln_beta (bpow e) = e + 1 :> Z)%Z.
+Theorem mag_bpow :
+ forall e, (mag (bpow e) = e + 1 :> Z)%Z.
Proof.
intros e.
-apply ln_beta_unique.
+apply mag_unique.
rewrite Rabs_right.
replace (e + 1 - 1)%Z with e by ring.
split.
@@ -1877,14 +1774,14 @@ apply Rle_ge.
apply bpow_ge_0.
Qed.
-Theorem ln_beta_mult_bpow :
+Theorem mag_mult_bpow :
forall x e, x <> 0%R ->
- (ln_beta (x * bpow e) = ln_beta x + e :>Z)%Z.
+ (mag (x * bpow e) = mag x + e :>Z)%Z.
Proof.
intros x e Zx.
-destruct (ln_beta x) as (ex, Ex) ; simpl.
+destruct (mag x) as (ex, Ex) ; simpl.
specialize (Ex Zx).
-apply ln_beta_unique.
+apply mag_unique.
rewrite Rabs_mult.
rewrite (Rabs_pos_eq (bpow e)) by apply bpow_ge_0.
split.
@@ -1899,26 +1796,26 @@ apply bpow_gt_0.
apply Ex.
Qed.
-Theorem ln_beta_le_bpow :
+Theorem mag_le_bpow :
forall x e,
x <> 0%R ->
(Rabs x < bpow e)%R ->
- (ln_beta x <= e)%Z.
+ (mag x <= e)%Z.
Proof.
intros x e Zx Hx.
-destruct (ln_beta x) as (ex, Ex) ; simpl.
+destruct (mag x) as (ex, Ex) ; simpl.
specialize (Ex Zx).
apply bpow_lt_bpow.
now apply Rle_lt_trans with (Rabs x).
Qed.
-Theorem ln_beta_gt_bpow :
+Theorem mag_gt_bpow :
forall x e,
(bpow e <= Rabs x)%R ->
- (e < ln_beta x)%Z.
+ (e < mag x)%Z.
Proof.
intros x e Hx.
-destruct (ln_beta x) as (ex, Ex) ; simpl.
+destruct (mag x) as (ex, Ex) ; simpl.
apply lt_bpow.
apply Rle_lt_trans with (1 := Hx).
apply Ex.
@@ -1928,92 +1825,92 @@ rewrite Zx, Rabs_R0.
apply bpow_gt_0.
Qed.
-Theorem ln_beta_ge_bpow :
+Theorem mag_ge_bpow :
forall x e,
(bpow (e - 1) <= Rabs x)%R ->
- (e <= ln_beta x)%Z.
+ (e <= mag x)%Z.
Proof.
intros x e H.
destruct (Rlt_or_le (Rabs x) (bpow e)) as [Hxe|Hxe].
- (* Rabs x w bpow e *)
- assert (ln_beta x = e :> Z) as Hln.
- now apply ln_beta_unique; split.
+ assert (mag x = e :> Z) as Hln.
+ now apply mag_unique; split.
rewrite Hln.
now apply Z.le_refl.
- (* bpow e <= Rabs x *)
apply Zlt_le_weak.
- now apply ln_beta_gt_bpow.
+ now apply mag_gt_bpow.
Qed.
-Theorem bpow_ln_beta_gt :
+Theorem bpow_mag_gt :
forall x,
- (Rabs x < bpow (ln_beta x))%R.
+ (Rabs x < bpow (mag x))%R.
Proof.
intros x.
destruct (Req_dec x 0) as [Zx|Zx].
rewrite Zx, Rabs_R0.
apply bpow_gt_0.
-destruct (ln_beta x) as (ex, Ex) ; simpl.
+destruct (mag x) as (ex, Ex) ; simpl.
now apply Ex.
Qed.
-Theorem bpow_ln_beta_le :
+Theorem bpow_mag_le :
forall x, (x <> 0)%R ->
- (bpow (ln_beta x-1) <= Rabs x)%R.
+ (bpow (mag x-1) <= Rabs x)%R.
Proof.
intros x Hx.
-destruct (ln_beta x) as (ex, Ex) ; simpl.
+destruct (mag x) as (ex, Ex) ; simpl.
now apply Ex.
Qed.
-Theorem ln_beta_le_Zpower :
+Theorem mag_le_Zpower :
forall m e,
m <> Z0 ->
- (Zabs m < Zpower r e)%Z->
- (ln_beta (Z2R m) <= e)%Z.
+ (Z.abs m < Zpower r e)%Z->
+ (mag (IZR m) <= e)%Z.
Proof.
intros m e Zm Hm.
-apply ln_beta_le_bpow.
-exact (Z2R_neq m 0 Zm).
+apply mag_le_bpow.
+now apply IZR_neq.
destruct (Zle_or_lt 0 e).
-rewrite <- Z2R_abs, <- Z2R_Zpower with (1 := H).
-now apply Z2R_lt.
+rewrite <- abs_IZR, <- IZR_Zpower with (1 := H).
+now apply IZR_lt.
elim Zm.
-cut (Zabs m < 0)%Z.
+cut (Z.abs m < 0)%Z.
now case m.
clear -Hm H.
now destruct e.
Qed.
-Theorem ln_beta_gt_Zpower :
+Theorem mag_gt_Zpower :
forall m e,
m <> Z0 ->
- (Zpower r e <= Zabs m)%Z ->
- (e < ln_beta (Z2R m))%Z.
+ (Zpower r e <= Z.abs m)%Z ->
+ (e < mag (IZR m))%Z.
Proof.
intros m e Zm Hm.
-apply ln_beta_gt_bpow.
-rewrite <- Z2R_abs.
+apply mag_gt_bpow.
+rewrite <- abs_IZR.
destruct (Zle_or_lt 0 e).
-rewrite <- Z2R_Zpower with (1 := H).
-now apply Z2R_le.
+rewrite <- IZR_Zpower with (1 := H).
+now apply IZR_le.
apply Rle_trans with (bpow 0).
apply bpow_le.
now apply Zlt_le_weak.
-apply (Z2R_le 1).
+apply IZR_le.
clear -Zm.
zify ; omega.
Qed.
-Lemma ln_beta_mult :
+Lemma mag_mult :
forall x y,
(x <> 0)%R -> (y <> 0)%R ->
- (ln_beta x + ln_beta y - 1 <= ln_beta (x * y) <= ln_beta x + ln_beta y)%Z.
+ (mag x + mag y - 1 <= mag (x * y) <= mag x + mag y)%Z.
Proof.
intros x y Hx Hy.
-destruct (ln_beta x) as (ex, Hx2).
-destruct (ln_beta y) as (ey, Hy2).
+destruct (mag x) as (ex, Hx2).
+destruct (mag y) as (ey, Hy2).
simpl.
destruct (Hx2 Hx) as (Hx21,Hx22); clear Hx2.
destruct (Hy2 Hy) as (Hy21,Hy22); clear Hy2.
@@ -2029,26 +1926,26 @@ assert (Hxy2 : (Rabs (x * y) < bpow (ex + ey))%R).
now apply Rle_trans with (bpow (ex - 1)); try apply bpow_ge_0.
now apply Rle_trans with (bpow (ey - 1)); try apply bpow_ge_0. }
split.
-- now apply ln_beta_ge_bpow.
-- apply ln_beta_le_bpow.
+- now apply mag_ge_bpow.
+- apply mag_le_bpow.
+ now apply Rmult_integral_contrapositive_currified.
+ assumption.
Qed.
-Lemma ln_beta_plus :
+Lemma mag_plus :
forall x y,
(0 < y)%R -> (y <= x)%R ->
- (ln_beta x <= ln_beta (x + y) <= ln_beta x + 1)%Z.
+ (mag x <= mag (x + y) <= mag x + 1)%Z.
Proof.
assert (Hr : (2 <= r)%Z).
{ destruct r as (beta_val,beta_prop).
now apply Zle_bool_imp_le. }
intros x y Hy Hxy.
assert (Hx : (0 < x)%R) by apply (Rlt_le_trans _ _ _ Hy Hxy).
-destruct (ln_beta x) as (ex,Hex); simpl.
+destruct (mag x) as (ex,Hex); simpl.
destruct Hex as (Hex0,Hex1); [now apply Rgt_not_eq|].
assert (Haxy : (Rabs (x + y) < bpow (ex + 1))%R).
-{ rewrite bpow_plus1.
+{ rewrite bpow_plus_1.
apply Rlt_le_trans with (2 * bpow ex)%R.
- rewrite Rabs_pos_eq.
apply Rle_lt_trans with (2 * Rabs x)%R.
@@ -2062,7 +1959,7 @@ assert (Haxy : (Rabs (x + y) < bpow (ex + 1))%R).
now apply Rlt_le, Rplus_lt_compat.
- apply Rmult_le_compat_r.
now apply bpow_ge_0.
- now apply (Z2R_le 2). }
+ now apply IZR_le. }
assert (Haxy2 : (bpow (ex - 1) <= Rabs (x + y))%R).
{ apply (Rle_trans _ _ _ Hex0).
rewrite Rabs_right; [|now apply Rgt_ge].
@@ -2071,20 +1968,20 @@ assert (Haxy2 : (bpow (ex - 1) <= Rabs (x + y))%R).
apply Rplus_le_compat_l.
now apply Rlt_le. }
split.
-- now apply ln_beta_ge_bpow.
-- apply ln_beta_le_bpow.
+- now apply mag_ge_bpow.
+- apply mag_le_bpow.
+ now apply tech_Rplus; [apply Rlt_le|].
+ exact Haxy.
Qed.
-Lemma ln_beta_minus :
+Lemma mag_minus :
forall x y,
(0 < y)%R -> (y < x)%R ->
- (ln_beta (x - y) <= ln_beta x)%Z.
+ (mag (x - y) <= mag x)%Z.
Proof.
intros x y Py Hxy.
assert (Px : (0 < x)%R) by apply (Rlt_trans _ _ _ Py Hxy).
-apply ln_beta_le.
+apply mag_le.
- now apply Rlt_Rminus.
- rewrite <- (Rplus_0_r x) at 2.
apply Rplus_le_compat_l.
@@ -2092,19 +1989,19 @@ apply ln_beta_le.
now apply Ropp_le_contravar; apply Rlt_le.
Qed.
-Lemma ln_beta_minus_lb :
+Lemma mag_minus_lb :
forall x y,
(0 < x)%R -> (0 < y)%R ->
- (ln_beta y <= ln_beta x - 2)%Z ->
- (ln_beta x - 1 <= ln_beta (x - y))%Z.
+ (mag y <= mag x - 2)%Z ->
+ (mag x - 1 <= mag (x - y))%Z.
Proof.
assert (Hbeta : (2 <= r)%Z).
{ destruct r as (beta_val,beta_prop).
now apply Zle_bool_imp_le. }
intros x y Px Py Hln.
-assert (Oxy : (y < x)%R); [apply ln_beta_lt_pos;[assumption|omega]|].
-destruct (ln_beta x) as (ex,Hex).
-destruct (ln_beta y) as (ey,Hey).
+assert (Oxy : (y < x)%R); [apply lt_mag;[assumption|omega]|].
+destruct (mag x) as (ex,Hex).
+destruct (mag y) as (ey,Hey).
simpl in Hln |- *.
destruct Hex as (Hex,_); [now apply Rgt_not_eq|].
destruct Hey as (_,Hey); [now apply Rgt_not_eq|].
@@ -2112,9 +2009,9 @@ assert (Hbx : (bpow (ex - 2) + bpow (ex - 2) <= x)%R).
{ ring_simplify.
apply Rle_trans with (bpow (ex - 1)).
- replace (ex - 1)%Z with (ex - 2 + 1)%Z by ring.
- rewrite bpow_plus1.
+ rewrite bpow_plus_1.
apply Rmult_le_compat_r; [now apply bpow_ge_0|].
- now change 2%R with (Z2R 2); apply Z2R_le.
+ now apply IZR_le.
- now rewrite Rabs_right in Hex; [|apply Rle_ge; apply Rlt_le]. }
assert (Hby : (y < bpow (ex - 2))%R).
{ apply Rlt_le_trans with (bpow ey).
@@ -2126,98 +2023,95 @@ assert (Hbxy : (bpow (ex - 2) <= x - y)%R).
replace (bpow (ex - 2))%R with (bpow (ex - 2) + bpow (ex - 2)
- bpow (ex - 2))%R by ring.
now apply Rplus_le_compat. }
-apply ln_beta_ge_bpow.
+apply mag_ge_bpow.
replace (ex - 1 - 1)%Z with (ex - 2)%Z by ring.
now apply Rabs_ge; right.
Qed.
-Lemma ln_beta_div :
+Lemma mag_div :
forall x y : R,
- (0 < x)%R -> (0 < y)%R ->
- (ln_beta x - ln_beta y <= ln_beta (x / y) <= ln_beta x - ln_beta y + 1)%Z.
+ x <> 0%R -> y <> 0%R ->
+ (mag x - mag y <= mag (x / y) <= mag x - mag y + 1)%Z.
Proof.
intros x y Px Py.
-destruct (ln_beta x) as (ex,Hex).
-destruct (ln_beta y) as (ey,Hey).
+destruct (mag x) as (ex,Hex).
+destruct (mag y) as (ey,Hey).
simpl.
unfold Rdiv.
-rewrite Rabs_right in Hex; [|now apply Rle_ge; apply Rlt_le].
-rewrite Rabs_right in Hey; [|now apply Rle_ge; apply Rlt_le].
-assert (Heiy : (bpow (- ey) < / y <= bpow (- ey + 1))%R).
-{ split.
+assert (Heiy : (bpow (- ey) < Rabs (/ y) <= bpow (- ey + 1))%R).
+{ rewrite Rabs_Rinv by easy.
+ split.
- rewrite bpow_opp.
apply Rinv_lt_contravar.
- + apply Rmult_lt_0_compat; [exact Py|].
+ + apply Rmult_lt_0_compat.
+ now apply Rabs_pos_lt.
now apply bpow_gt_0.
- + apply Hey.
- now apply Rgt_not_eq.
+ + now apply Hey.
- replace (_ + _)%Z with (- (ey - 1))%Z by ring.
rewrite bpow_opp.
apply Rinv_le; [now apply bpow_gt_0|].
- apply Hey.
- now apply Rgt_not_eq. }
+ now apply Hey. }
split.
-- apply ln_beta_ge_bpow.
- apply Rabs_ge; right.
+- apply mag_ge_bpow.
replace (_ - _)%Z with (ex - 1 - ey)%Z by ring.
unfold Zminus at 1; rewrite bpow_plus.
+ rewrite Rabs_mult.
apply Rmult_le_compat.
+ now apply bpow_ge_0.
+ now apply bpow_ge_0.
- + apply Hex.
- now apply Rgt_not_eq.
- + apply Rlt_le; apply Heiy.
-- assert (Pxy : (0 < x * / y)%R).
- { apply Rmult_lt_0_compat; [exact Px|].
- now apply Rinv_0_lt_compat. }
- apply ln_beta_le_bpow.
- + now apply Rgt_not_eq.
- + rewrite Rabs_right; [|now apply Rle_ge; apply Rlt_le].
- replace (_ + 1)%Z with (ex + (- ey + 1))%Z by ring.
+ + now apply Hex.
+ + now apply Rlt_le; apply Heiy.
+- apply mag_le_bpow.
+ + apply Rmult_integral_contrapositive_currified.
+ exact Px.
+ now apply Rinv_neq_0_compat.
+ + replace (_ + 1)%Z with (ex + (- ey + 1))%Z by ring.
rewrite bpow_plus.
- apply Rlt_le_trans with (bpow ex * / y)%R.
- * apply Rmult_lt_compat_r; [now apply Rinv_0_lt_compat|].
- apply Hex.
- now apply Rgt_not_eq.
+ apply Rlt_le_trans with (bpow ex * Rabs (/ y))%R.
+ * rewrite Rabs_mult.
+ apply Rmult_lt_compat_r.
+ apply Rabs_pos_lt.
+ now apply Rinv_neq_0_compat.
+ now apply Hex.
* apply Rmult_le_compat_l; [now apply bpow_ge_0|].
apply Heiy.
Qed.
-Lemma ln_beta_sqrt :
+Lemma mag_sqrt :
forall x,
(0 < x)%R ->
- (2 * ln_beta (sqrt x) - 1 <= ln_beta x <= 2 * ln_beta (sqrt x))%Z.
+ mag (sqrt x) = Z.div2 (mag x + 1) :> Z.
Proof.
intros x Px.
-assert (H : (bpow (2 * ln_beta (sqrt x) - 1 - 1) <= Rabs x
- < bpow (2 * ln_beta (sqrt x)))%R).
-{ split.
- - apply Rge_le; rewrite <- (sqrt_def x) at 1;
- [|now apply Rlt_le]; apply Rle_ge.
- rewrite Rabs_mult.
- replace (_ - _)%Z with (ln_beta (sqrt x) - 1
- + (ln_beta (sqrt x) - 1))%Z by ring.
- rewrite bpow_plus.
- assert (H : (bpow (ln_beta (sqrt x) - 1) <= Rabs (sqrt x))%R).
- { destruct (ln_beta (sqrt x)) as (esx,Hesx); simpl.
- apply Hesx.
- apply Rgt_not_eq; apply Rlt_gt.
- now apply sqrt_lt_R0. }
- now apply Rmult_le_compat; [now apply bpow_ge_0|now apply bpow_ge_0| |].
- - rewrite <- (sqrt_def x) at 1; [|now apply Rlt_le].
- rewrite Rabs_mult.
- change 2%Z with (1 + 1)%Z; rewrite Zmult_plus_distr_l;
- rewrite Zmult_1_l.
- rewrite bpow_plus.
- assert (H : (Rabs (sqrt x) < bpow (ln_beta (sqrt x)))%R).
- { destruct (ln_beta (sqrt x)) as (esx,Hesx); simpl.
- apply Hesx.
- apply Rgt_not_eq; apply Rlt_gt.
- now apply sqrt_lt_R0. }
- now apply Rmult_lt_compat; [now apply Rabs_pos|now apply Rabs_pos| |]. }
+apply mag_unique.
+destruct mag as [e He].
+simpl.
+specialize (He (Rgt_not_eq _ _ Px)).
+rewrite Rabs_pos_eq in He by now apply Rlt_le.
split.
-- now apply ln_beta_ge_bpow.
-- now apply ln_beta_le_bpow; [now apply Rgt_not_eq|].
+- rewrite <- (Rabs_pos_eq (bpow _)) by apply bpow_ge_0.
+ apply Rsqr_le_abs_0.
+ rewrite Rsqr_sqrt by now apply Rlt_le.
+ apply Rle_trans with (2 := proj1 He).
+ unfold Rsqr ; rewrite <- bpow_plus.
+ apply bpow_le.
+ generalize (Zdiv2_odd_eqn (e + 1)).
+ destruct Z.odd ; intros ; omega.
+- rewrite <- (Rabs_pos_eq (bpow _)) by apply bpow_ge_0.
+ apply Rsqr_lt_abs_0.
+ rewrite Rsqr_sqrt by now apply Rlt_le.
+ apply Rlt_le_trans with (1 := proj2 He).
+ unfold Rsqr ; rewrite <- bpow_plus.
+ apply bpow_le.
+ generalize (Zdiv2_odd_eqn (e + 1)).
+ destruct Z.odd ; intros ; omega.
+Qed.
+
+Lemma mag_1 : mag 1 = 1%Z :> Z.
+Proof.
+apply mag_unique_pos; rewrite bpow_1; simpl; split; [now right|apply IZR_lt].
+assert (H := Zle_bool_imp_le _ _ (radix_prop r)); revert H.
+now apply Z.lt_le_trans.
Qed.
End pow.
@@ -2248,12 +2142,12 @@ Section cond_Ropp.
Definition cond_Ropp (b : bool) m := if b then Ropp m else m.
-Theorem Z2R_cond_Zopp :
+Theorem IZR_cond_Zopp :
forall b m,
- Z2R (cond_Zopp b m) = cond_Ropp b (Z2R m).
+ IZR (cond_Zopp b m) = cond_Ropp b (IZR m).
Proof.
intros [|] m.
-apply Z2R_opp.
+apply opp_IZR.
apply refl_equal.
Qed.
@@ -2286,22 +2180,6 @@ apply Ropp_involutive.
apply refl_equal.
Qed.
-Theorem cond_Ropp_even_function :
- forall {A : Type} (f : R -> A),
- (forall x, f (Ropp x) = f x) ->
- forall b x, f (cond_Ropp b x) = f x.
-Proof.
-now intros A f Hf [|] x ; simpl.
-Qed.
-
-Theorem cond_Ropp_odd_function :
- forall (f : R -> R),
- (forall x, f (Ropp x) = Ropp (f x)) ->
- forall b x, f (cond_Ropp b x) = cond_Ropp b (f x).
-Proof.
-now intros f Hf [|] x ; simpl.
-Qed.
-
Theorem cond_Ropp_inj :
forall b x y,
cond_Ropp b x = cond_Ropp b y -> x = y.
@@ -2391,7 +2269,7 @@ destruct (Rle_lt_dec l 0) as [Hl|Hl].
apply ub.
now apply HE.
left.
-set (N := Zabs_nat (up (/l) - 2)).
+set (N := Z.abs_nat (up (/l) - 2)).
exists N.
assert (HN: (INR N + 1 = IZR (up (/ l)) - 1)%R).
unfold N.
@@ -2399,7 +2277,7 @@ assert (HN: (INR N + 1 = IZR (up (/ l)) - 1)%R).
rewrite inj_Zabs_nat.
replace (IZR (up (/ l)) - 1)%R with (IZR (up (/ l) - 2) + 1)%R.
apply (f_equal (fun v => IZR v + 1)%R).
- apply Zabs_eq.
+ apply Z.abs_eq.
apply Zle_minus_le_0.
apply (Zlt_le_succ 1).
apply lt_IZR.
@@ -2484,10 +2362,10 @@ intros n; apply H.
destruct K as (n, Hn).
left; now exists (-Z.of_nat n)%Z.
right; intros n; case (Zle_or_lt 0 n); intros M.
-rewrite <- (Zabs_eq n); trivial.
+rewrite <- (Z.abs_eq n); trivial.
rewrite <- Zabs2Nat.id_abs.
apply J.
-rewrite <- (Zopp_involutive n).
+rewrite <- (Z.opp_involutive n).
rewrite <- (Z.abs_neq n).
rewrite <- Zabs2Nat.id_abs.
apply K.
diff --git a/flocq/Core/Fcore_rnd_ne.v b/flocq/Core/Round_NE.v
index 2d67e709..20b60ef5 100644
--- a/flocq/Core/Fcore_rnd_ne.v
+++ b/flocq/Core/Round_NE.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2009-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,14 +18,9 @@ COPYING file for more details.
*)
(** * Rounding to nearest, ties to even: existence, unicity... *)
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_rnd.
-Require Import Fcore_generic_fmt.
-Require Import Fcore_float_prop.
-Require Import Fcore_ulp.
+Require Import Raux Defs Round_pred Generic_fmt Float_prop Ulp.
-Notation ZnearestE := (Znearest (fun x => negb (Zeven x))).
+Notation ZnearestE := (Znearest (fun x => negb (Z.even x))).
Section Fcore_rnd_NE.
@@ -38,10 +33,10 @@ Variable fexp : Z -> Z.
Context { valid_exp : Valid_exp fexp }.
Notation format := (generic_format beta fexp).
-Notation canonic := (canonic beta fexp).
+Notation canonical := (canonical beta fexp).
Definition NE_prop (_ : R) f :=
- exists g : float beta, f = F2R g /\ canonic g /\ Zeven (Fnum g) = true.
+ exists g : float beta, f = F2R g /\ canonical g /\ Z.even (Fnum g) = true.
Definition Rnd_NE_pt :=
Rnd_NG_pt format NE_prop.
@@ -50,20 +45,20 @@ Definition DN_UP_parity_pos_prop :=
forall x xd xu,
(0 < x)%R ->
~ format x ->
- canonic xd ->
- canonic xu ->
+ canonical xd ->
+ canonical xu ->
F2R xd = round beta fexp Zfloor x ->
F2R xu = round beta fexp Zceil x ->
- Zeven (Fnum xu) = negb (Zeven (Fnum xd)).
+ Z.even (Fnum xu) = negb (Z.even (Fnum xd)).
Definition DN_UP_parity_prop :=
forall x xd xu,
~ format x ->
- canonic xd ->
- canonic xu ->
+ canonical xd ->
+ canonical xu ->
F2R xd = round beta fexp Zfloor x ->
F2R xu = round beta fexp Zceil x ->
- Zeven (Fnum xu) = negb (Zeven (Fnum xd)).
+ Z.even (Fnum xu) = negb (Z.even (Fnum xd)).
Lemma DN_UP_parity_aux :
DN_UP_parity_pos_prop ->
@@ -83,18 +78,18 @@ now rewrite Ropp_involutive, Ropp_0.
destruct xd as (md, ed).
destruct xu as (mu, eu).
simpl.
-rewrite <- (Bool.negb_involutive (Zeven mu)).
+rewrite <- (Bool.negb_involutive (Z.even mu)).
apply f_equal.
apply sym_eq.
-rewrite <- (Zeven_opp mu), <- (Zeven_opp md).
-change (Zeven (Fnum (Float beta (-md) ed)) = negb (Zeven (Fnum (Float beta (-mu) eu)))).
+rewrite <- (Z.even_opp mu), <- (Z.even_opp md).
+change (Z.even (Fnum (Float beta (-md) ed)) = negb (Z.even (Fnum (Float beta (-mu) eu)))).
apply (Hpos (-x)%R _ _ Hx').
intros H.
apply Hfx.
rewrite <- Ropp_involutive.
now apply generic_format_opp.
-now apply canonic_opp.
-now apply canonic_opp.
+now apply canonical_opp.
+now apply canonical_opp.
rewrite round_DN_opp, F2R_Zopp.
now apply f_equal.
rewrite round_UP_opp, F2R_Zopp.
@@ -102,7 +97,7 @@ now apply f_equal.
Qed.
Class Exists_NE :=
- exists_NE : Zeven beta = false \/ forall e,
+ exists_NE : Z.even beta = false \/ forall e,
((fexp e < e)%Z -> (fexp (e + 1) < e)%Z) /\ ((e <= fexp e)%Z -> fexp (fexp e + 1) = fexp e).
Context { exists_NE_ : Exists_NE }.
@@ -111,22 +106,22 @@ Theorem DN_UP_parity_generic_pos :
DN_UP_parity_pos_prop.
Proof with auto with typeclass_instances.
intros x xd xu H0x Hfx Hd Hu Hxd Hxu.
-destruct (ln_beta beta x) as (ex, Hexa).
+destruct (mag beta x) as (ex, Hexa).
specialize (Hexa (Rgt_not_eq _ _ H0x)).
generalize Hexa. intros Hex.
rewrite (Rabs_pos_eq _ (Rlt_le _ _ H0x)) in Hex.
destruct (Zle_or_lt ex (fexp ex)) as [Hxe|Hxe].
(* small x *)
assert (Hd3 : Fnum xd = Z0).
-apply F2R_eq_0_reg with beta (Fexp xd).
+apply eq_0_F2R with beta (Fexp xd).
change (F2R xd = R0).
rewrite Hxd.
apply round_DN_small_pos with (1 := Hex) (2 := Hxe).
assert (Hu3 : xu = Float beta (1 * Zpower beta (fexp ex - fexp (fexp ex + 1))) (fexp (fexp ex + 1))).
-apply canonic_unicity with (1 := Hu).
+apply canonical_unique with (1 := Hu).
apply (f_equal fexp).
rewrite <- F2R_change_exp.
-now rewrite F2R_bpow, ln_beta_bpow.
+now rewrite F2R_bpow, mag_bpow.
now apply valid_exp.
rewrite <- F2R_change_exp.
rewrite F2R_bpow.
@@ -172,10 +167,10 @@ rewrite Hxu.
apply round_bounded_large_pos...
(* - xu = bpow ex *)
assert (Hu3: xu = Float beta (1 * Zpower beta (ex - fexp (ex + 1))) (fexp (ex + 1))).
-apply canonic_unicity with (1 := Hu).
+apply canonical_unique with (1 := Hu).
apply (f_equal fexp).
rewrite <- F2R_change_exp.
-now rewrite F2R_bpow, ln_beta_bpow.
+now rewrite F2R_bpow, mag_bpow.
now apply valid_exp.
rewrite <- Hu2.
apply sym_eq.
@@ -185,15 +180,15 @@ exact Hxe2.
assert (Hd3: xd = Float beta (Zpower beta (ex - fexp ex) - 1) (fexp ex)).
assert (H: F2R xd = F2R (Float beta (Zpower beta (ex - fexp ex) - 1) (fexp ex))).
unfold F2R. simpl.
-rewrite Z2R_minus.
+rewrite minus_IZR.
unfold Rminus.
rewrite Rmult_plus_distr_r.
-rewrite Z2R_Zpower, <- bpow_plus.
+rewrite IZR_Zpower, <- bpow_plus.
ring_simplify (ex - fexp ex + fexp ex)%Z.
rewrite Hu2, Hud.
rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq].
-unfold canonic_exp.
-rewrite ln_beta_unique with beta x ex.
+unfold cexp.
+rewrite mag_unique with beta x ex.
unfold F2R.
simpl. ring.
rewrite Rabs_pos_eq.
@@ -201,25 +196,25 @@ exact Hex.
now apply Rlt_le.
apply Zle_minus_le_0.
now apply Zlt_le_weak.
-apply canonic_unicity with (1 := Hd) (3 := H).
+apply canonical_unique with (1 := Hd) (3 := H).
apply (f_equal fexp).
rewrite <- H.
apply sym_eq.
-now apply ln_beta_unique.
+now apply mag_unique.
rewrite Hd3, Hu3.
unfold Fnum.
-rewrite Zeven_mult. simpl.
+rewrite Z.even_mul. simpl.
unfold Zminus at 2.
-rewrite Zeven_plus.
+rewrite Z.even_add.
rewrite eqb_sym. simpl.
-fold (negb (Zeven (beta ^ (ex - fexp ex)))).
+fold (negb (Z.even (beta ^ (ex - fexp ex)))).
rewrite Bool.negb_involutive.
-rewrite (Zeven_Zpower beta (ex - fexp ex)). 2: omega.
+rewrite (Z.even_pow beta (ex - fexp ex)). 2: omega.
destruct exists_NE_.
rewrite H.
apply Zeven_Zpower_odd with (2 := H).
now apply Zle_minus_le_0.
-apply Zeven_Zpower.
+apply Z.even_pow.
specialize (H ex).
omega.
(* - xu < bpow ex *)
@@ -227,17 +222,17 @@ revert Hud.
rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq].
unfold F2R.
rewrite Hd, Hu.
-unfold canonic_exp.
-rewrite ln_beta_unique with beta (F2R xu) ex.
-rewrite ln_beta_unique with (1 := Hd4).
-rewrite ln_beta_unique with (1 := Hexa).
+unfold cexp.
+rewrite mag_unique with beta (F2R xu) ex.
+rewrite mag_unique with (1 := Hd4).
+rewrite mag_unique with (1 := Hexa).
intros H.
replace (Fnum xu) with (Fnum xd + 1)%Z.
-rewrite Zeven_plus.
+rewrite Z.even_add.
now apply eqb_sym.
apply sym_eq.
-apply eq_Z2R.
-rewrite Z2R_plus.
+apply eq_IZR.
+rewrite plus_IZR.
apply Rmult_eq_reg_r with (bpow (fexp ex)).
rewrite H.
simpl. ring.
@@ -270,38 +265,38 @@ now apply generic_format_satisfies_any.
intros x d u Hf Hd Hu.
generalize (proj1 Hd).
unfold generic_format.
-set (ed := canonic_exp beta fexp d).
+set (ed := cexp beta fexp d).
set (md := Ztrunc (scaled_mantissa beta fexp d)).
intros Hd1.
-case_eq (Zeven md) ; [ intros He | intros Ho ].
+case_eq (Z.even md) ; [ intros He | intros Ho ].
right.
exists (Float beta md ed).
-unfold Fcore_generic_fmt.canonic.
+unfold Generic_fmt.canonical.
rewrite <- Hd1.
now repeat split.
left.
generalize (proj1 Hu).
unfold generic_format.
-set (eu := canonic_exp beta fexp u).
+set (eu := cexp beta fexp u).
set (mu := Ztrunc (scaled_mantissa beta fexp u)).
intros Hu1.
rewrite Hu1.
eexists ; repeat split.
-unfold Fcore_generic_fmt.canonic.
+unfold Generic_fmt.canonical.
now rewrite <- Hu1.
rewrite (DN_UP_parity_generic x (Float beta md ed) (Float beta mu eu)).
simpl.
now rewrite Ho.
exact Hf.
-unfold Fcore_generic_fmt.canonic.
+unfold Generic_fmt.canonical.
now rewrite <- Hd1.
-unfold Fcore_generic_fmt.canonic.
+unfold Generic_fmt.canonical.
now rewrite <- Hu1.
rewrite <- Hd1.
-apply Rnd_DN_pt_unicity with (1 := Hd).
+apply Rnd_DN_pt_unique with (1 := Hd).
now apply round_DN_pt.
rewrite <- Hu1.
-apply Rnd_UP_pt_unicity with (1 := Hu).
+apply Rnd_UP_pt_unique with (1 := Hu).
now apply round_UP_pt.
Qed.
@@ -323,15 +318,16 @@ apply Hx.
apply sym_eq.
now apply Rnd_DN_pt_idempotent with (1 := Hd).
rewrite <- Hd1.
-apply Rnd_DN_pt_unicity with (1 := Hd).
+apply Rnd_DN_pt_unique with (1 := Hd).
now apply round_DN_pt.
rewrite <- Hu1.
-apply Rnd_UP_pt_unicity with (1 := Hu).
+apply Rnd_UP_pt_unique with (1 := Hu).
now apply round_UP_pt.
Qed.
Theorem Rnd_NE_pt_round :
round_pred Rnd_NE_pt.
+Proof.
split.
apply Rnd_NE_pt_total.
apply Rnd_NE_pt_monotone.
@@ -348,14 +344,14 @@ now apply round_N_pt.
unfold NE_prop.
set (mx := scaled_mantissa beta fexp x).
set (xr := round beta fexp ZnearestE x).
-destruct (Req_dec (mx - Z2R (Zfloor mx)) (/2)) as [Hm|Hm].
+destruct (Req_dec (mx - IZR (Zfloor mx)) (/2)) as [Hm|Hm].
(* midpoint *)
left.
-exists (Float beta (Ztrunc (scaled_mantissa beta fexp xr)) (canonic_exp beta fexp xr)).
+exists (Float beta (Ztrunc (scaled_mantissa beta fexp xr)) (cexp beta fexp xr)).
split.
apply round_N_pt...
split.
-unfold Fcore_generic_fmt.canonic. simpl.
+unfold Generic_fmt.canonical. simpl.
apply f_equal.
apply round_N_pt...
simpl.
@@ -363,23 +359,22 @@ unfold xr, round, Znearest.
fold mx.
rewrite Hm.
rewrite Rcompare_Eq. 2: apply refl_equal.
-case_eq (Zeven (Zfloor mx)) ; intros Hmx.
+case_eq (Z.even (Zfloor mx)) ; intros Hmx.
(* . even floor *)
-change (Zeven (Ztrunc (scaled_mantissa beta fexp (round beta fexp Zfloor x))) = true).
+change (Z.even (Ztrunc (scaled_mantissa beta fexp (round beta fexp Zfloor x))) = true).
destruct (Rle_or_lt (round beta fexp Zfloor x) 0) as [Hr|Hr].
rewrite (Rle_antisym _ _ Hr).
unfold scaled_mantissa.
rewrite Rmult_0_l.
-change 0%R with (Z2R 0).
-now rewrite (Ztrunc_Z2R 0).
+now rewrite Ztrunc_IZR.
rewrite <- (round_0 beta fexp Zfloor).
apply round_le...
now apply Rlt_le.
rewrite scaled_mantissa_DN...
-now rewrite Ztrunc_Z2R.
+now rewrite Ztrunc_IZR.
(* . odd floor *)
-change (Zeven (Ztrunc (scaled_mantissa beta fexp (round beta fexp Zceil x))) = true).
-destruct (ln_beta beta x) as (ex, Hex).
+change (Z.even (Ztrunc (scaled_mantissa beta fexp (round beta fexp Zceil x))) = true).
+destruct (mag beta x) as (ex, Hex).
specialize (Hex (Rgt_not_eq _ _ Hx)).
rewrite (Rabs_pos_eq _ (Rlt_le _ _ Hx)) in Hex.
destruct (Z_lt_le_dec (fexp ex) ex) as [He|He].
@@ -394,56 +389,56 @@ rewrite Rplus_opp_r in Hm.
elim (Rlt_irrefl 0).
rewrite Hm at 2.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
destruct (proj2 Hu) as [Hu'|Hu'].
(* ... u <> bpow *)
unfold scaled_mantissa.
-rewrite canonic_exp_fexp_pos with (1 := conj (proj1 Hu) Hu').
+rewrite cexp_fexp_pos with (1 := conj (proj1 Hu) Hu').
unfold round, F2R. simpl.
-rewrite canonic_exp_fexp_pos with (1 := Hex).
+rewrite cexp_fexp_pos with (1 := Hex).
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
-rewrite Ztrunc_Z2R.
+rewrite Ztrunc_IZR.
fold mx.
rewrite Hfc.
-now rewrite Zeven_plus, Hmx.
+now rewrite Z.even_add, Hmx.
(* ... u = bpow *)
rewrite Hu'.
-unfold scaled_mantissa, canonic_exp.
-rewrite ln_beta_bpow.
-rewrite <- bpow_plus, <- Z2R_Zpower.
-rewrite Ztrunc_Z2R.
-case_eq (Zeven beta) ; intros Hr.
+unfold scaled_mantissa, cexp.
+rewrite mag_bpow.
+rewrite <- bpow_plus, <- IZR_Zpower.
+rewrite Ztrunc_IZR.
+case_eq (Z.even beta) ; intros Hr.
destruct exists_NE_ as [Hs|Hs].
now rewrite Hs in Hr.
destruct (Hs ex) as (H,_).
-rewrite Zeven_Zpower.
+rewrite Z.even_pow.
exact Hr.
omega.
-assert (Zeven (Zfloor mx) = true). 2: now rewrite H in Hmx.
+assert (Z.even (Zfloor mx) = true). 2: now rewrite H in Hmx.
replace (Zfloor mx) with (Zceil mx + -1)%Z by omega.
-rewrite Zeven_plus.
+rewrite Z.even_add.
apply eqb_true.
unfold mx.
replace (Zceil (scaled_mantissa beta fexp x)) with (Zpower beta (ex - fexp ex)).
rewrite Zeven_Zpower_odd with (2 := Hr).
easy.
omega.
-apply eq_Z2R.
-rewrite Z2R_Zpower. 2: omega.
+apply eq_IZR.
+rewrite IZR_Zpower. 2: omega.
apply Rmult_eq_reg_r with (bpow (fexp ex)).
unfold Zminus.
rewrite bpow_plus.
rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l, Rmult_1_r.
-pattern (fexp ex) ; rewrite <- canonic_exp_fexp_pos with (1 := Hex).
+pattern (fexp ex) ; rewrite <- cexp_fexp_pos with (1 := Hex).
now apply sym_eq.
apply Rgt_not_eq.
apply bpow_gt_0.
generalize (proj1 (valid_exp ex) He).
omega.
(* .. small pos *)
-assert (Zeven (Zfloor mx) = true). 2: now rewrite H in Hmx.
+assert (Z.even (Zfloor mx) = true). 2: now rewrite H in Hmx.
unfold mx, scaled_mantissa.
-rewrite canonic_exp_fexp_pos with (1 := Hex).
+rewrite cexp_fexp_pos with (1 := Hex).
now rewrite mantissa_DN_small_pos.
(* not midpoint *)
right.
@@ -456,7 +451,7 @@ rewrite Hxg.
apply Hg.
set (d := round beta fexp Zfloor x).
set (u := round beta fexp Zceil x).
-apply Rnd_N_pt_unicity with (d := d) (u := u) (4 := Hg).
+apply Rnd_N_pt_unique with (d := d) (u := u) (4 := Hg).
now apply round_DN_pt.
now apply round_UP_pt.
2: now apply round_N_pt.
@@ -467,7 +462,7 @@ intros H.
apply Rmult_eq_reg_r in H.
apply Hm.
apply Rcompare_Eq_inv.
-rewrite Rcompare_floor_ceil_mid.
+rewrite Rcompare_floor_ceil_middle.
now apply Rcompare_Eq.
contradict Hxg.
apply sym_eq.
@@ -475,7 +470,7 @@ apply Rnd_N_pt_idempotent with (1 := Hg).
rewrite <- (scaled_mantissa_mult_bpow beta fexp x).
fold mx.
rewrite <- Hxg.
-change (Z2R (Zfloor mx) * bpow (canonic_exp beta fexp x))%R with d.
+change (IZR (Zfloor mx) * bpow (cexp beta fexp x))%R with d.
now eapply round_DN_pt.
apply Rgt_not_eq.
apply bpow_gt_0.
@@ -487,7 +482,7 @@ Theorem round_NE_opp :
Proof.
intros x.
unfold round. simpl.
-rewrite scaled_mantissa_opp, canonic_exp_opp.
+rewrite scaled_mantissa_opp, cexp_opp.
rewrite Znearest_opp.
rewrite <- F2R_Zopp.
apply (f_equal (fun v => F2R (Float beta (-v) _))).
@@ -496,8 +491,8 @@ unfold Znearest.
case Rcompare ; trivial.
apply (f_equal (fun (b : bool) => if b then Zceil m else Zfloor m)).
rewrite Bool.negb_involutive.
-rewrite Zeven_opp.
-rewrite Zeven_plus.
+rewrite Z.even_opp.
+rewrite Z.even_add.
now rewrite eqb_sym.
Qed.
@@ -526,7 +521,7 @@ Theorem round_NE_pt :
Proof with auto with typeclass_instances.
intros x.
destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
-apply Rnd_NG_pt_sym.
+apply Rnd_NG_pt_opp_inv.
apply generic_format_opp.
unfold NE_prop.
intros _ f ((mg,eg),(H1,(H2,H3))).
@@ -534,9 +529,9 @@ exists (Float beta (- mg) eg).
repeat split.
rewrite H1.
now rewrite F2R_Zopp.
-now apply canonic_opp.
+now apply canonical_opp.
simpl.
-now rewrite Zeven_opp.
+now rewrite Z.even_opp.
rewrite <- round_NE_opp.
apply round_NE_pt_pos.
now apply Ropp_0_gt_lt_contravar.
diff --git a/flocq/Core/Fcore_rnd.v b/flocq/Core/Round_pred.v
index e5091684..428a4bac 100644
--- a/flocq/Core/Fcore_rnd.v
+++ b/flocq/Core/Round_pred.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2009-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,13 +18,30 @@ COPYING file for more details.
*)
(** * Roundings: properties and/or functions *)
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
+Require Import Raux Defs.
Section RND_prop.
Open Scope R_scope.
+Definition Rnd_DN (F : R -> Prop) (rnd : R -> R) :=
+ forall x : R, Rnd_DN_pt F x (rnd x).
+
+Definition Rnd_UP (F : R -> Prop) (rnd : R -> R) :=
+ forall x : R, Rnd_UP_pt F x (rnd x).
+
+Definition Rnd_ZR (F : R -> Prop) (rnd : R -> R) :=
+ forall x : R, Rnd_ZR_pt F x (rnd x).
+
+Definition Rnd_N (F : R -> Prop) (rnd : R -> R) :=
+ forall x : R, Rnd_N_pt F x (rnd x).
+
+Definition Rnd_NG (F : R -> Prop) (P : R -> R -> Prop) (rnd : R -> R) :=
+ forall x : R, Rnd_NG_pt F P x (rnd x).
+
+Definition Rnd_NA (F : R -> Prop) (rnd : R -> R) :=
+ forall x : R, Rnd_NA_pt F x (rnd x).
+
Theorem round_val_of_pred :
forall rnd : R -> R -> Prop,
round_pred rnd ->
@@ -63,7 +80,7 @@ intros x.
now destruct round_val_of_pred as (f, H1).
Qed.
-Theorem round_unicity :
+Theorem round_unique :
forall rnd : R -> R -> Prop,
round_pred_monotone rnd ->
forall x f1 f2,
@@ -87,25 +104,25 @@ apply Hx1.
now apply Rle_trans with (2 := Hxy).
Qed.
-Theorem Rnd_DN_pt_unicity :
+Theorem Rnd_DN_pt_unique :
forall F : R -> Prop,
forall x f1 f2 : R,
Rnd_DN_pt F x f1 -> Rnd_DN_pt F x f2 ->
f1 = f2.
Proof.
intros F.
-apply round_unicity.
+apply round_unique.
apply Rnd_DN_pt_monotone.
Qed.
-Theorem Rnd_DN_unicity :
+Theorem Rnd_DN_unique :
forall F : R -> Prop,
forall rnd1 rnd2 : R -> R,
Rnd_DN F rnd1 -> Rnd_DN F rnd2 ->
forall x, rnd1 x = rnd2 x.
Proof.
intros F rnd1 rnd2 H1 H2 x.
-now eapply Rnd_DN_pt_unicity.
+now eapply Rnd_DN_pt_unique.
Qed.
Theorem Rnd_UP_pt_monotone :
@@ -118,28 +135,28 @@ apply Hy1.
now apply Rle_trans with (1 := Hxy).
Qed.
-Theorem Rnd_UP_pt_unicity :
+Theorem Rnd_UP_pt_unique :
forall F : R -> Prop,
forall x f1 f2 : R,
Rnd_UP_pt F x f1 -> Rnd_UP_pt F x f2 ->
f1 = f2.
Proof.
intros F.
-apply round_unicity.
+apply round_unique.
apply Rnd_UP_pt_monotone.
Qed.
-Theorem Rnd_UP_unicity :
+Theorem Rnd_UP_unique :
forall F : R -> Prop,
forall rnd1 rnd2 : R -> R,
Rnd_UP F rnd1 -> Rnd_UP F rnd2 ->
forall x, rnd1 x = rnd2 x.
Proof.
intros F rnd1 rnd2 H1 H2 x.
-now eapply Rnd_UP_pt_unicity.
+now eapply Rnd_UP_pt_unique.
Qed.
-Theorem Rnd_DN_UP_pt_sym :
+Theorem Rnd_UP_pt_opp :
forall F : R -> Prop,
( forall x, F x -> F (- x) ) ->
forall x f : R,
@@ -160,7 +177,7 @@ now apply HF.
now apply Ropp_le_cancel.
Qed.
-Theorem Rnd_UP_DN_pt_sym :
+Theorem Rnd_DN_pt_opp :
forall F : R -> Prop,
( forall x, F x -> F (- x) ) ->
forall x f : R,
@@ -181,7 +198,7 @@ now apply HF.
now apply Ropp_le_cancel.
Qed.
-Theorem Rnd_DN_UP_sym :
+Theorem Rnd_DN_opp :
forall F : R -> Prop,
( forall x, F x -> F (- x) ) ->
forall rnd1 rnd2 : R -> R,
@@ -191,10 +208,10 @@ Proof.
intros F HF rnd1 rnd2 H1 H2 x.
rewrite <- (Ropp_involutive (rnd1 (-x))).
apply f_equal.
-apply (Rnd_UP_unicity F (fun x => - rnd1 (-x))) ; trivial.
+apply (Rnd_UP_unique F (fun x => - rnd1 (-x))) ; trivial.
intros y.
pattern y at 1 ; rewrite <- Ropp_involutive.
-apply Rnd_DN_UP_pt_sym.
+apply Rnd_UP_pt_opp.
apply HF.
apply H1.
Qed.
@@ -303,18 +320,17 @@ apply Rle_refl.
(* . *)
destruct (Rle_or_lt 0 x).
(* positive *)
-rewrite Rabs_right.
-rewrite Rabs_right; auto with real.
+rewrite Rabs_pos_eq with (1 := H1).
+rewrite Rabs_pos_eq.
now apply (proj1 (H x)).
-apply Rle_ge.
now apply (proj1 (H x)).
(* negative *)
+apply Rlt_le in H1.
+rewrite Rabs_left1 with (1 := H1).
rewrite Rabs_left1.
-rewrite Rabs_left1 ; auto with real.
apply Ropp_le_contravar.
-apply (proj2 (H x)).
-auto with real.
-apply (proj2 (H x)) ; auto with real.
+now apply (proj2 (H x)).
+now apply (proj2 (H x)).
Qed.
Theorem Rnd_ZR_pt_monotone :
@@ -385,12 +401,12 @@ Proof.
intros F x fd fu f Hd Hu Hf.
destruct (Rnd_N_pt_DN_or_UP F x f Hf) as [H|H].
left.
-apply Rnd_DN_pt_unicity with (1 := H) (2 := Hd).
+apply Rnd_DN_pt_unique with (1 := H) (2 := Hd).
right.
-apply Rnd_UP_pt_unicity with (1 := H) (2 := Hu).
+apply Rnd_UP_pt_unique with (1 := H) (2 := Hu).
Qed.
-Theorem Rnd_N_pt_sym :
+Theorem Rnd_N_pt_opp_inv :
forall F : R -> Prop,
( forall x, F x -> F (- x) ) ->
forall x f : R,
@@ -449,7 +465,7 @@ apply Rminus_lt.
ring_simplify.
apply Rlt_minus.
apply Rmult_lt_compat_l.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
exact Hxy.
now apply Rlt_minus.
apply Rle_0_minus.
@@ -460,7 +476,7 @@ now apply Rlt_le.
now apply Rlt_minus.
Qed.
-Theorem Rnd_N_pt_unicity :
+Theorem Rnd_N_pt_unique :
forall F : R -> Prop,
forall x d u f1 f2 : R,
Rnd_DN_pt F x d ->
@@ -476,10 +492,10 @@ clear f1 f2. intros f1 f2 Hf1 Hf2 H12.
destruct (Rnd_N_pt_DN_or_UP F x f1 Hf1) as [Hd1|Hu1] ;
destruct (Rnd_N_pt_DN_or_UP F x f2 Hf2) as [Hd2|Hu2].
apply Rlt_not_eq with (1 := H12).
-now apply Rnd_DN_pt_unicity with (1 := Hd1).
+now apply Rnd_DN_pt_unique with (1 := Hd1).
apply Hdu.
-rewrite Rnd_DN_pt_unicity with (1 := Hd) (2 := Hd1).
-rewrite Rnd_UP_pt_unicity with (1 := Hu) (2 := Hu2).
+rewrite Rnd_DN_pt_unique with (1 := Hd) (2 := Hd1).
+rewrite Rnd_UP_pt_unique with (1 := Hu) (2 := Hu2).
rewrite <- (Rabs_pos_eq (x - f1)).
rewrite <- (Rabs_pos_eq (f2 - x)).
rewrite Rabs_minus_sym.
@@ -495,7 +511,7 @@ apply Rle_trans with x.
apply Hd2.
apply Hu1.
apply Rgt_not_eq with (1 := H12).
-now apply Rnd_UP_pt_unicity with (1 := Hu2).
+now apply Rnd_UP_pt_unique with (1 := Hu2).
intros Hf1 Hf2.
now apply Rle_antisym ; apply Rnot_lt_le ; refine (H _ _ _ _).
Qed.
@@ -547,7 +563,7 @@ rewrite 2!Rminus_0_r, Rabs_R0.
apply Rabs_pos.
Qed.
-Theorem Rnd_N_pt_pos :
+Theorem Rnd_N_pt_ge_0 :
forall F : R -> Prop, F 0 ->
forall x f, 0 <= x ->
Rnd_N_pt F x f ->
@@ -563,7 +579,7 @@ now rewrite Hx.
exact HF.
Qed.
-Theorem Rnd_N_pt_neg :
+Theorem Rnd_N_pt_le_0 :
forall F : R -> Prop, F 0 ->
forall x f, x <= 0 ->
Rnd_N_pt F x f ->
@@ -589,20 +605,20 @@ intros F HF0 HF x f Hxf.
unfold Rabs at 1.
destruct (Rcase_abs x) as [Hx|Hx].
rewrite Rabs_left1.
-apply Rnd_N_pt_sym.
+apply Rnd_N_pt_opp_inv.
exact HF.
now rewrite 2!Ropp_involutive.
-apply Rnd_N_pt_neg with (3 := Hxf).
+apply Rnd_N_pt_le_0 with (3 := Hxf).
exact HF0.
now apply Rlt_le.
rewrite Rabs_pos_eq.
exact Hxf.
-apply Rnd_N_pt_pos with (3 := Hxf).
+apply Rnd_N_pt_ge_0 with (3 := Hxf).
exact HF0.
now apply Rge_le.
Qed.
-Theorem Rnd_DN_UP_pt_N :
+Theorem Rnd_N_pt_DN_UP :
forall F : R -> Prop,
forall x d u f : R,
F f ->
@@ -635,7 +651,7 @@ apply Rle_trans with (2 := Hgu).
apply Hxu.
Qed.
-Theorem Rnd_DN_pt_N :
+Theorem Rnd_N_pt_DN :
forall F : R -> Prop,
forall x d u : R,
Rnd_DN_pt F x d ->
@@ -649,14 +665,14 @@ rewrite Rabs_minus_sym.
apply Rabs_pos_eq.
apply Rle_0_minus.
apply Hd.
-apply Rnd_DN_UP_pt_N with (2 := Hd) (3 := Hu).
+apply Rnd_N_pt_DN_UP with (2 := Hd) (3 := Hu).
apply Hd.
rewrite Hdx.
apply Rle_refl.
now rewrite Hdx.
Qed.
-Theorem Rnd_UP_pt_N :
+Theorem Rnd_N_pt_UP :
forall F : R -> Prop,
forall x d u : R,
Rnd_DN_pt F x d ->
@@ -669,22 +685,22 @@ assert (Hux: (Rabs (u - x) = u - x)%R).
apply Rabs_pos_eq.
apply Rle_0_minus.
apply Hu.
-apply Rnd_DN_UP_pt_N with (2 := Hd) (3 := Hu).
+apply Rnd_N_pt_DN_UP with (2 := Hd) (3 := Hu).
apply Hu.
now rewrite Hux.
rewrite Hux.
apply Rle_refl.
Qed.
-Definition Rnd_NG_pt_unicity_prop F P :=
+Definition Rnd_NG_pt_unique_prop F P :=
forall x d u,
Rnd_DN_pt F x d -> Rnd_N_pt F x d ->
Rnd_UP_pt F x u -> Rnd_N_pt F x u ->
P x d -> P x u -> d = u.
-Theorem Rnd_NG_pt_unicity :
+Theorem Rnd_NG_pt_unique :
forall (F : R -> Prop) (P : R -> R -> Prop),
- Rnd_NG_pt_unicity_prop F P ->
+ Rnd_NG_pt_unique_prop F P ->
forall x f1 f2 : R,
Rnd_NG_pt F P x f1 -> Rnd_NG_pt F P x f2 ->
f1 = f2.
@@ -694,11 +710,11 @@ destruct H1b as [H1b|H1b].
destruct H2b as [H2b|H2b].
destruct (Rnd_N_pt_DN_or_UP _ _ _ H1a) as [H1c|H1c] ;
destruct (Rnd_N_pt_DN_or_UP _ _ _ H2a) as [H2c|H2c].
-eapply Rnd_DN_pt_unicity ; eassumption.
+eapply Rnd_DN_pt_unique ; eassumption.
now apply (HP x f1 f2).
apply sym_eq.
now apply (HP x f2 f1 H2c H2a H1c H1a).
-eapply Rnd_UP_pt_unicity ; eassumption.
+eapply Rnd_UP_pt_unique ; eassumption.
now apply H2b.
apply sym_eq.
now apply H1b.
@@ -706,14 +722,14 @@ Qed.
Theorem Rnd_NG_pt_monotone :
forall (F : R -> Prop) (P : R -> R -> Prop),
- Rnd_NG_pt_unicity_prop F P ->
+ Rnd_NG_pt_unique_prop F P ->
round_pred_monotone (Rnd_NG_pt F P).
Proof.
intros F P HP x y f g (Hf,Hx) (Hg,Hy) [Hxy|Hxy].
now apply Rnd_N_pt_monotone with F x y.
apply Req_le.
rewrite <- Hxy in Hg, Hy.
-eapply Rnd_NG_pt_unicity ; try split ; eassumption.
+eapply Rnd_NG_pt_unique ; try split ; eassumption.
Qed.
Theorem Rnd_NG_pt_refl :
@@ -728,7 +744,7 @@ intros f2 Hf2.
now apply Rnd_N_pt_idempotent with F.
Qed.
-Theorem Rnd_NG_pt_sym :
+Theorem Rnd_NG_pt_opp_inv :
forall (F : R -> Prop) (P : R -> R -> Prop),
( forall x, F x -> F (-x) ) ->
( forall x f, P x f -> P (-x) (-f) ) ->
@@ -737,7 +753,7 @@ Theorem Rnd_NG_pt_sym :
Proof.
intros F P HF HP x f (H1,H2).
split.
-now apply Rnd_N_pt_sym.
+now apply Rnd_N_pt_opp_inv.
destruct H2 as [H2|H2].
left.
rewrite <- (Ropp_involutive x), <- (Ropp_involutive f).
@@ -748,20 +764,20 @@ rewrite <- (Ropp_involutive f).
rewrite <- H2 with (-f2).
apply sym_eq.
apply Ropp_involutive.
-apply Rnd_N_pt_sym.
+apply Rnd_N_pt_opp_inv.
exact HF.
now rewrite 2!Ropp_involutive.
Qed.
-Theorem Rnd_NG_unicity :
+Theorem Rnd_NG_unique :
forall (F : R -> Prop) (P : R -> R -> Prop),
- Rnd_NG_pt_unicity_prop F P ->
+ Rnd_NG_pt_unique_prop F P ->
forall rnd1 rnd2 : R -> R,
Rnd_NG F P rnd1 -> Rnd_NG F P rnd2 ->
forall x, rnd1 x = rnd2 x.
Proof.
intros F P HP rnd1 rnd2 H1 H2 x.
-now apply Rnd_NG_pt_unicity with F P x.
+now apply Rnd_NG_pt_unique with F P x.
Qed.
Theorem Rnd_NA_NG_pt :
@@ -775,7 +791,7 @@ destruct (Rle_or_lt 0 x) as [Hx|Hx].
(* *)
split ; intros (H1, H2).
(* . *)
-assert (Hf := Rnd_N_pt_pos F HF x f Hx H1).
+assert (Hf := Rnd_N_pt_ge_0 F HF x f Hx H1).
split.
exact H1.
destruct (Rnd_N_pt_DN_or_UP _ _ _ H1) as [H3|H3].
@@ -784,12 +800,12 @@ right.
intros f2 Hxf2.
specialize (H2 _ Hxf2).
destruct (Rnd_N_pt_DN_or_UP _ _ _ Hxf2) as [H4|H4].
-eapply Rnd_DN_pt_unicity ; eassumption.
+eapply Rnd_DN_pt_unique ; eassumption.
apply Rle_antisym.
rewrite Rabs_pos_eq with (1 := Hf) in H2.
rewrite Rabs_pos_eq in H2.
exact H2.
-now apply Rnd_N_pt_pos with F x.
+now apply Rnd_N_pt_ge_0 with F x.
apply Rle_trans with x.
apply H3.
apply H4.
@@ -803,8 +819,8 @@ split.
exact H1.
intros f2 Hxf2.
destruct H2 as [H2|H2].
-assert (Hf := Rnd_N_pt_pos F HF x f Hx H1).
-assert (Hf2 := Rnd_N_pt_pos F HF x f2 Hx Hxf2).
+assert (Hf := Rnd_N_pt_ge_0 F HF x f Hx H1).
+assert (Hf2 := Rnd_N_pt_ge_0 F HF x f2 Hx Hxf2).
rewrite 2!Rabs_pos_eq ; trivial.
rewrite 2!Rabs_pos_eq in H2 ; trivial.
destruct (Rnd_N_pt_DN_or_UP _ _ _ Hxf2) as [H3|H3].
@@ -820,7 +836,7 @@ assert (Hx' := Rlt_le _ _ Hx).
clear Hx. rename Hx' into Hx.
split ; intros (H1, H2).
(* . *)
-assert (Hf := Rnd_N_pt_neg F HF x f Hx H1).
+assert (Hf := Rnd_N_pt_le_0 F HF x f Hx H1).
split.
exact H1.
destruct (Rnd_N_pt_DN_or_UP _ _ _ H1) as [H3|H3].
@@ -842,15 +858,15 @@ apply H3.
rewrite Rabs_left1 with (1 := Hf) in H2.
rewrite Rabs_left1 in H2.
now apply Ropp_le_cancel.
-now apply Rnd_N_pt_neg with F x.
-eapply Rnd_UP_pt_unicity ; eassumption.
+now apply Rnd_N_pt_le_0 with F x.
+eapply Rnd_UP_pt_unique ; eassumption.
(* . *)
split.
exact H1.
intros f2 Hxf2.
destruct H2 as [H2|H2].
-assert (Hf := Rnd_N_pt_neg F HF x f Hx H1).
-assert (Hf2 := Rnd_N_pt_neg F HF x f2 Hx Hxf2).
+assert (Hf := Rnd_N_pt_le_0 F HF x f Hx H1).
+assert (Hf2 := Rnd_N_pt_le_0 F HF x f2 Hx Hxf2).
rewrite 2!Rabs_left1 ; trivial.
rewrite 2!Rabs_left1 in H2 ; trivial.
apply Ropp_le_contravar.
@@ -865,10 +881,10 @@ rewrite (H2 _ Hxf2).
apply Rle_refl.
Qed.
-Theorem Rnd_NA_pt_unicity_prop :
+Lemma Rnd_NA_pt_unique_prop :
forall F : R -> Prop,
F 0 ->
- Rnd_NG_pt_unicity_prop F (fun a b => (Rabs a <= Rabs b)%R).
+ Rnd_NG_pt_unique_prop F (fun a b => (Rabs a <= Rabs b)%R).
Proof.
intros F HF x d u Hxd1 Hxd2 Hxu1 Hxu2 Hd Hu.
apply Rle_antisym.
@@ -892,7 +908,7 @@ apply HF.
now apply Rlt_le.
Qed.
-Theorem Rnd_NA_pt_unicity :
+Theorem Rnd_NA_pt_unique :
forall F : R -> Prop,
F 0 ->
forall x f1 f2 : R,
@@ -900,12 +916,12 @@ Theorem Rnd_NA_pt_unicity :
f1 = f2.
Proof.
intros F HF x f1 f2 H1 H2.
-apply (Rnd_NG_pt_unicity F _ (Rnd_NA_pt_unicity_prop F HF) x).
+apply (Rnd_NG_pt_unique F _ (Rnd_NA_pt_unique_prop F HF) x).
now apply -> Rnd_NA_NG_pt.
now apply -> Rnd_NA_NG_pt.
Qed.
-Theorem Rnd_NA_N_pt :
+Theorem Rnd_NA_pt_N :
forall F : R -> Prop,
F 0 ->
forall x f : R,
@@ -936,29 +952,29 @@ destruct (Rle_lt_dec 0 x) as [Hx|Hx].
(* . *)
revert Hxf.
rewrite Rabs_pos_eq with (1 := Hx).
-rewrite 2!Rabs_pos_eq ; try ( apply (Rnd_N_pt_pos F HF x) ; assumption ).
+rewrite 2!Rabs_pos_eq ; try ( apply (Rnd_N_pt_ge_0 F HF x) ; assumption ).
intros Hxf.
rewrite H0.
apply Rplus_le_reg_r with f.
ring_simplify.
apply Rmult_le_compat_l with (2 := Hxf).
-now apply (Z2R_le 0 2).
+now apply IZR_le.
(* . *)
revert Hxf.
apply Rlt_le in Hx.
rewrite Rabs_left1 with (1 := Hx).
-rewrite 2!Rabs_left1 ; try ( apply (Rnd_N_pt_neg F HF x) ; assumption ).
+rewrite 2!Rabs_left1 ; try ( apply (Rnd_N_pt_le_0 F HF x) ; assumption ).
intros Hxf.
rewrite H0.
apply Ropp_le_contravar.
apply Rplus_le_reg_r with f.
ring_simplify.
apply Rmult_le_compat_l.
-now apply (Z2R_le 0 2).
+now apply IZR_le.
now apply Ropp_le_cancel.
Qed.
-Theorem Rnd_NA_unicity :
+Theorem Rnd_NA_unique :
forall (F : R -> Prop),
F 0 ->
forall rnd1 rnd2 : R -> R,
@@ -966,7 +982,7 @@ Theorem Rnd_NA_unicity :
forall x, rnd1 x = rnd2 x.
Proof.
intros F HF rnd1 rnd2 H1 H2 x.
-now apply Rnd_NA_pt_unicity with F x.
+now apply Rnd_NA_pt_unique with F x.
Qed.
Theorem Rnd_NA_pt_monotone :
@@ -975,7 +991,7 @@ Theorem Rnd_NA_pt_monotone :
round_pred_monotone (Rnd_NA_pt F).
Proof.
intros F HF x y f g Hxf Hyg Hxy.
-apply (Rnd_NG_pt_monotone F _ (Rnd_NA_pt_unicity_prop F HF) x y).
+apply (Rnd_NG_pt_monotone F _ (Rnd_NA_pt_unique_prop F HF) x y).
now apply -> Rnd_NA_NG_pt.
now apply -> Rnd_NA_NG_pt.
exact Hxy.
@@ -1165,7 +1181,7 @@ intros x.
destruct (proj1 (satisfies_any_imp_DN F Hany) (-x)) as (f, Hf).
exists (-f).
rewrite <- (Ropp_involutive x).
-apply Rnd_DN_UP_pt_sym.
+apply Rnd_UP_pt_opp.
apply Hany.
exact Hf.
apply Rnd_UP_pt_monotone.
diff --git a/flocq/Core/Fcore_ulp.v b/flocq/Core/Ulp.v
index 4fdd319e..4f4a5674 100644
--- a/flocq/Core/Fcore_ulp.v
+++ b/flocq/Core/Ulp.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2009-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -19,11 +19,7 @@ COPYING file for more details.
(** * Unit in the Last Place: our definition using fexp and its properties, successor and predecessor *)
Require Import Reals Psatz.
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_rnd.
-Require Import Fcore_generic_fmt.
-Require Import Fcore_float_prop.
+Require Import Raux Defs Round_pred Generic_fmt Float_prop.
Section Fcore_ulp.
@@ -97,10 +93,12 @@ Definition ulp x := match Req_bool x 0 with
| Some n => bpow (fexp n)
| None => 0%R
end
- | false => bpow (canonic_exp beta fexp x)
+ | false => bpow (cexp beta fexp x)
end.
-Lemma ulp_neq_0 : forall x:R, (x <> 0)%R -> ulp x = bpow (canonic_exp beta fexp x).
+Lemma ulp_neq_0 :
+ forall x, x <> 0%R ->
+ ulp x = bpow (cexp beta fexp x).
Proof.
intros x Hx.
unfold ulp; case (Req_bool_spec x); trivial.
@@ -118,7 +116,7 @@ case Req_bool_spec; intros H1.
rewrite Req_bool_true; trivial.
rewrite <- (Ropp_involutive x), H1; ring.
rewrite Req_bool_false.
-now rewrite canonic_exp_opp.
+now rewrite cexp_opp.
intros H2; apply H1; rewrite H2; ring.
Qed.
@@ -130,7 +128,7 @@ unfold ulp; case (Req_bool_spec x 0); intros H1.
rewrite Req_bool_true; trivial.
now rewrite H1, Rabs_R0.
rewrite Req_bool_false.
-now rewrite canonic_exp_abs.
+now rewrite cexp_abs.
now apply Rabs_no_R0.
Qed.
@@ -159,9 +157,8 @@ rewrite ulp_neq_0.
unfold F2R; simpl.
apply Rmult_le_compat_r.
apply bpow_ge_0.
-apply (Z2R_le (Zsucc 0)).
-apply Zlt_le_succ.
-apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+apply IZR_le, (Zlt_le_succ 0).
+apply gt_0_F2R with beta (cexp beta fexp x).
now rewrite <- Fx.
Qed.
@@ -178,8 +175,6 @@ now apply Rabs_pos_lt.
now apply generic_format_abs.
Qed.
-
-(* was ulp_DN_UP *)
Theorem round_UP_DN_ulp :
forall x, ~ F x ->
round beta fexp Zceil x = (round beta fexp Zfloor x + ulp x)%R.
@@ -189,13 +184,13 @@ rewrite ulp_neq_0.
unfold round. simpl.
unfold F2R. simpl.
rewrite Zceil_floor_neq.
-rewrite Z2R_plus. simpl.
+rewrite plus_IZR. simpl.
ring.
intros H.
apply Fx.
unfold generic_format, F2R. simpl.
rewrite <- H.
-rewrite Ztrunc_Z2R.
+rewrite Ztrunc_IZR.
rewrite H.
now rewrite scaled_mantissa_mult_bpow.
intros V; apply Fx.
@@ -210,7 +205,7 @@ Proof.
intros e.
rewrite ulp_neq_0.
apply f_equal.
-apply canonic_exp_fexp.
+apply cexp_fexp.
rewrite Rabs_pos_eq.
split.
ring_simplify (e + 1 - 1)%Z.
@@ -222,7 +217,7 @@ apply Rgt_not_eq, Rlt_gt, bpow_gt_0.
Qed.
-Lemma generic_format_ulp_0:
+Lemma generic_format_ulp_0 :
F (ulp 0).
Proof.
unfold ulp.
@@ -234,8 +229,9 @@ apply generic_format_bpow.
now apply valid_exp.
Qed.
-Lemma generic_format_bpow_ge_ulp_0: forall e,
- (ulp 0 <= bpow e)%R -> F (bpow e).
+Lemma generic_format_bpow_ge_ulp_0 :
+ forall e, (ulp 0 <= bpow e)%R ->
+ F (bpow e).
Proof.
intros e; unfold ulp.
rewrite Req_bool_true; trivial.
@@ -248,7 +244,7 @@ apply generic_format_bpow.
case (Zle_or_lt (e+1) (fexp (e+1))); intros H4.
absurd (e+1 <= e)%Z.
omega.
-apply Zle_trans with (1:=H4).
+apply Z.le_trans with (1:=H4).
replace (fexp (e+1)) with (fexp n).
now apply le_bpow with beta.
now apply fexp_negligible_exp_eq.
@@ -258,33 +254,36 @@ Qed.
(** The three following properties are equivalent:
[Exp_not_FTZ] ; forall x, F (ulp x) ; forall x, ulp 0 <= ulp x *)
-Lemma generic_format_ulp: Exp_not_FTZ fexp ->
- forall x, F (ulp x).
+Lemma generic_format_ulp :
+ Exp_not_FTZ fexp ->
+ forall x, F (ulp x).
Proof.
unfold Exp_not_FTZ; intros H x.
case (Req_dec x 0); intros Hx.
rewrite Hx; apply generic_format_ulp_0.
rewrite (ulp_neq_0 _ Hx).
-apply generic_format_bpow; unfold canonic_exp.
+apply generic_format_bpow.
apply H.
Qed.
-Lemma not_FTZ_generic_format_ulp:
- (forall x, F (ulp x)) -> Exp_not_FTZ fexp.
+Lemma not_FTZ_generic_format_ulp :
+ (forall x, F (ulp x)) ->
+ Exp_not_FTZ fexp.
Proof.
intros H e.
specialize (H (bpow (e-1))).
rewrite ulp_neq_0 in H.
2: apply Rgt_not_eq, bpow_gt_0.
-unfold canonic_exp in H.
-rewrite ln_beta_bpow in H.
-apply generic_format_bpow_inv' in H...
+unfold cexp in H.
+rewrite mag_bpow in H.
+apply generic_format_bpow_inv' in H.
now replace (e-1+1)%Z with e in H by ring.
Qed.
-Lemma ulp_ge_ulp_0: Exp_not_FTZ fexp ->
- forall x, (ulp 0 <= ulp x)%R.
+Lemma ulp_ge_ulp_0 :
+ Exp_not_FTZ fexp ->
+ forall x, (ulp 0 <= ulp x)%R.
Proof.
unfold Exp_not_FTZ; intros H x.
case (Req_dec x 0); intros Hx.
@@ -295,20 +294,21 @@ case negligible_exp_spec'.
intros (H1,H2); rewrite H1; apply ulp_ge_0.
intros (n,(H1,H2)); rewrite H1.
rewrite ulp_neq_0; trivial.
-apply bpow_le; unfold canonic_exp.
-generalize (ln_beta beta x); intros l.
+apply bpow_le; unfold cexp.
+generalize (mag beta x); intros l.
case (Zle_or_lt l (fexp l)); intros Hl.
-rewrite (fexp_negligible_exp_eq n l); trivial; apply Zle_refl.
+rewrite (fexp_negligible_exp_eq n l); trivial; apply Z.le_refl.
case (Zle_or_lt (fexp n) (fexp l)); trivial; intros K.
absurd (fexp n <= fexp l)%Z.
omega.
-apply Zle_trans with (2:= H _).
+apply Z.le_trans with (2:= H _).
apply Zeq_le, sym_eq, valid_exp; trivial.
omega.
Qed.
Lemma not_FTZ_ulp_ge_ulp_0:
- (forall x, (ulp 0 <= ulp x)%R) -> Exp_not_FTZ fexp.
+ (forall x, (ulp 0 <= ulp x)%R) ->
+ Exp_not_FTZ fexp.
Proof.
intros H e.
apply generic_format_bpow_inv' with beta.
@@ -318,9 +318,7 @@ rewrite <- ulp_bpow.
apply H.
Qed.
-
-
-Theorem ulp_le_pos :
+Lemma ulp_le_pos :
forall { Hm : Monotone_exp fexp },
forall x y: R,
(0 <= x)%R -> (x <= y)%R ->
@@ -332,7 +330,7 @@ rewrite ulp_neq_0.
rewrite ulp_neq_0.
apply bpow_le.
apply Hm.
-now apply ln_beta_le.
+now apply mag_le.
apply Rgt_not_eq, Rlt_gt.
now apply Rlt_le_trans with (1:=Hx).
now apply Rgt_not_eq.
@@ -341,7 +339,6 @@ apply ulp_ge_ulp_0.
apply monotone_exp_not_FTZ...
Qed.
-
Theorem ulp_le :
forall { Hm : Monotone_exp fexp },
forall x y: R,
@@ -355,26 +352,49 @@ apply ulp_le_pos; trivial.
apply Rabs_pos.
Qed.
+(** Properties when there is no minimal exponent *)
+Theorem eq_0_round_0_negligible_exp :
+ negligible_exp = None -> forall rnd {Vr: Valid_rnd rnd} x,
+ round beta fexp rnd x = 0%R -> x = 0%R.
+Proof.
+intros H rnd Vr x Hx.
+case (Req_dec x 0); try easy; intros Hx2.
+absurd (Rabs (round beta fexp rnd x) = 0%R).
+2: rewrite Hx, Rabs_R0; easy.
+apply Rgt_not_eq.
+apply Rlt_le_trans with (bpow (mag beta x - 1)).
+apply bpow_gt_0.
+apply abs_round_ge_generic; try assumption.
+apply generic_format_bpow.
+case negligible_exp_spec'; [intros (K1,K2)|idtac].
+ring_simplify (mag beta x-1+1)%Z.
+specialize (K2 (mag beta x)); now auto with zarith.
+intros (n,(Hn1,Hn2)).
+rewrite Hn1 in H; discriminate.
+now apply bpow_mag_le.
+Qed.
+
(** Definition and properties of pred and succ *)
Definition pred_pos x :=
- if Req_bool x (bpow (ln_beta beta x - 1)) then
- (x - bpow (fexp (ln_beta beta x - 1)))%R
+ if Req_bool x (bpow (mag beta x - 1)) then
+ (x - bpow (fexp (mag beta x - 1)))%R
else
(x - ulp x)%R.
Definition succ x :=
- if (Rle_bool 0 x) then
- (x+ulp x)%R
- else
- (- pred_pos (-x))%R.
+ if (Rle_bool 0 x) then
+ (x+ulp x)%R
+ else
+ (- pred_pos (-x))%R.
Definition pred x := (- succ (-x))%R.
-Theorem pred_eq_pos:
- forall x, (0 <= x)%R -> (pred x = pred_pos x)%R.
+Theorem pred_eq_pos :
+ forall x, (0 <= x)%R ->
+ pred x = pred_pos x.
Proof.
intros x Hx; unfold pred, succ.
case Rle_bool_spec; intros Hx'.
@@ -389,39 +409,29 @@ rewrite Ropp_0; ring.
now rewrite 2!Ropp_involutive.
Qed.
-Theorem succ_eq_pos:
- forall x, (0 <= x)%R -> (succ x = x + ulp x)%R.
+Theorem succ_eq_pos :
+ forall x, (0 <= x)%R ->
+ succ x = (x + ulp x)%R.
Proof.
intros x Hx; unfold succ.
now rewrite Rle_bool_true.
Qed.
-Lemma pred_eq_opp_succ_opp: forall x, pred x = (- succ (-x))%R.
+Theorem succ_opp :
+ forall x, succ (-x) = (- pred x)%R.
Proof.
-reflexivity.
-Qed.
-
-Lemma succ_eq_opp_pred_opp: forall x, succ x = (- pred (-x))%R.
-Proof.
-intros x; unfold pred.
-now rewrite 2!Ropp_involutive.
-Qed.
-
-Lemma succ_opp: forall x, (succ (-x) = - pred x)%R.
-Proof.
-intros x; rewrite succ_eq_opp_pred_opp.
-now rewrite Ropp_involutive.
+intros x.
+now apply sym_eq, Ropp_involutive.
Qed.
-Lemma pred_opp: forall x, (pred (-x) = - succ x)%R.
+Theorem pred_opp :
+ forall x, pred (-x) = (- succ x)%R.
Proof.
-intros x; rewrite pred_eq_opp_succ_opp.
+intros x.
+unfold pred.
now rewrite Ropp_involutive.
Qed.
-
-
-
(** pred and succ are in the format *)
(* cannont be x <> ulp 0, due to the counter-example 1-bit FP format fexp: e -> e-1 *)
@@ -436,7 +446,7 @@ intros x e Fx Hx' Hx.
(* *)
assert (1 <= Ztrunc (scaled_mantissa beta fexp x))%Z.
assert (0 < Ztrunc (scaled_mantissa beta fexp x))%Z.
-apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+apply gt_0_F2R with beta (cexp beta fexp x).
rewrite <- Fx.
apply Rle_lt_trans with (2:=Hx).
apply bpow_ge_0.
@@ -446,12 +456,11 @@ case (Zle_lt_or_eq _ _ H); intros Hm.
pattern x at 1 ; rewrite Fx.
rewrite ulp_neq_0.
unfold F2R. simpl.
-pattern (bpow (canonic_exp beta fexp x)) at 2 ; rewrite <- Rmult_1_l.
+pattern (bpow (cexp beta fexp x)) at 2 ; rewrite <- Rmult_1_l.
rewrite <- Rmult_minus_distr_r.
-change 1%R with (Z2R 1).
-rewrite <- Z2R_minus.
-change (bpow e <= F2R (Float beta (Ztrunc (scaled_mantissa beta fexp x) - 1) (canonic_exp beta fexp x)))%R.
-apply bpow_le_F2R_m1; trivial.
+rewrite <- minus_IZR.
+apply bpow_le_F2R_m1.
+easy.
now rewrite <- Fx.
apply Rgt_not_eq, Rlt_gt.
apply Rlt_trans with (2:=Hx), bpow_gt_0.
@@ -476,27 +485,23 @@ intros x e Zx Fx Hx.
pattern x at 1 ; rewrite Fx.
rewrite ulp_neq_0.
unfold F2R. simpl.
-pattern (bpow (canonic_exp beta fexp x)) at 2 ; rewrite <- Rmult_1_l.
+pattern (bpow (cexp beta fexp x)) at 2 ; rewrite <- Rmult_1_l.
rewrite <- Rmult_plus_distr_r.
-change 1%R with (Z2R 1).
-rewrite <- Z2R_plus.
-change (F2R (Float beta (Ztrunc (scaled_mantissa beta fexp x) + 1) (canonic_exp beta fexp x)) <= bpow e)%R.
+rewrite <- plus_IZR.
apply F2R_p1_le_bpow.
-apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+apply gt_0_F2R with beta (cexp beta fexp x).
now rewrite <- Fx.
now rewrite <- Fx.
now apply Rgt_not_eq.
Qed.
-
-
Lemma generic_format_pred_aux1:
forall x, (0 < x)%R -> F x ->
- x <> bpow (ln_beta beta x - 1) ->
+ x <> bpow (mag beta x - 1) ->
F (x - ulp x).
Proof.
intros x Zx Fx Hx.
-destruct (ln_beta beta x) as (ex, Ex).
+destruct (mag beta x) as (ex, Ex).
simpl in Hx.
specialize (Ex (Rgt_not_eq _ _ Zx)).
assert (Ex' : (bpow (ex - 1) < x < bpow ex)%R).
@@ -504,20 +509,20 @@ rewrite Rabs_pos_eq in Ex.
destruct Ex as (H,H'); destruct H; split; trivial.
contradict Hx; easy.
now apply Rlt_le.
-unfold generic_format, scaled_mantissa, canonic_exp.
-rewrite ln_beta_unique with beta (x - ulp x)%R ex.
+unfold generic_format, scaled_mantissa, cexp.
+rewrite mag_unique with beta (x - ulp x)%R ex.
pattern x at 1 3 ; rewrite Fx.
rewrite ulp_neq_0.
unfold scaled_mantissa.
-rewrite canonic_exp_fexp with (1 := Ex).
+rewrite cexp_fexp with (1 := Ex).
unfold F2R. simpl.
rewrite Rmult_minus_distr_r.
rewrite Rmult_assoc.
rewrite <- bpow_plus, Zplus_opp_r, Rmult_1_r.
-change (bpow 0) with (Z2R 1).
-rewrite <- Z2R_minus.
-rewrite Ztrunc_Z2R.
-rewrite Z2R_minus.
+change (bpow 0) with 1%R.
+rewrite <- minus_IZR.
+rewrite Ztrunc_IZR.
+rewrite minus_IZR.
rewrite Rmult_minus_distr_r.
now rewrite Rmult_1_l.
now apply Rgt_not_eq.
@@ -526,7 +531,7 @@ split.
apply id_m_ulp_ge_bpow; trivial.
rewrite ulp_neq_0.
intro H.
-assert (ex-1 < canonic_exp beta fexp x < ex)%Z.
+assert (ex-1 < cexp beta fexp x < ex)%Z.
split ; apply (lt_bpow beta) ; rewrite <- H ; easy.
clear -H0. omega.
now apply Rgt_not_eq.
@@ -541,13 +546,12 @@ apply Rle_0_minus.
pattern x at 2; rewrite Fx.
rewrite ulp_neq_0.
unfold F2R; simpl.
-pattern (bpow (canonic_exp beta fexp x)) at 1; rewrite <- Rmult_1_l.
+pattern (bpow (cexp beta fexp x)) at 1; rewrite <- Rmult_1_l.
apply Rmult_le_compat_r.
apply bpow_ge_0.
-replace 1%R with (Z2R 1) by reflexivity.
-apply Z2R_le.
+apply IZR_le.
assert (0 < Ztrunc (scaled_mantissa beta fexp x))%Z.
-apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+apply gt_0_F2R with beta (cexp beta fexp x).
rewrite <- Fx.
apply Rle_lt_trans with (2:=proj1 Ex').
apply bpow_ge_0.
@@ -557,8 +561,8 @@ Qed.
Lemma generic_format_pred_aux2 :
forall x, (0 < x)%R -> F x ->
- let e := ln_beta_val beta x (ln_beta beta x) in
- x = bpow (e - 1) ->
+ let e := mag_val beta x (mag beta x) in
+ x = bpow (e - 1) ->
F (x - bpow (fexp (e - 1))).
Proof.
intros x Zx Fx e Hx.
@@ -571,7 +575,7 @@ case (Zle_lt_or_eq _ _ He); clear He; intros He.
assert (f = F2R (Float beta (Zpower beta (e-1-(fexp (e-1))) -1) (fexp (e-1))))%R.
unfold f; rewrite Hx.
unfold F2R; simpl.
-rewrite Z2R_minus, Z2R_Zpower.
+rewrite minus_IZR, IZR_Zpower.
rewrite Rmult_minus_distr_r, Rmult_1_l.
rewrite <- bpow_plus.
now replace (e - 1 - fexp (e - 1) + fexp (e - 1))%Z with (e-1)%Z by ring.
@@ -580,7 +584,7 @@ rewrite H.
apply generic_format_F2R.
intros _.
apply Zeq_le.
-apply canonic_exp_fexp.
+apply cexp_fexp.
rewrite <- H.
unfold f; rewrite Hx.
rewrite Rabs_right.
@@ -593,9 +597,8 @@ apply Rle_trans with (2*bpow (e - 2))%R;[right; ring|idtac].
apply Rle_trans with (bpow 1*bpow (e - 2))%R.
apply Rmult_le_compat_r.
apply bpow_ge_0.
-replace 2%R with (Z2R 2) by reflexivity.
-replace (bpow 1) with (Z2R beta).
-apply Z2R_le.
+replace (bpow 1) with (IZR beta).
+apply IZR_le.
apply <- Zle_is_le_bool.
now destruct beta.
simpl.
@@ -619,31 +622,30 @@ rewrite Hx, He.
ring.
Qed.
-
-Theorem generic_format_succ_aux1 :
+Lemma generic_format_succ_aux1 :
forall x, (0 < x)%R -> F x ->
F (x + ulp x).
Proof.
intros x Zx Fx.
-destruct (ln_beta beta x) as (ex, Ex).
+destruct (mag beta x) as (ex, Ex).
specialize (Ex (Rgt_not_eq _ _ Zx)).
assert (Ex' := Ex).
rewrite Rabs_pos_eq in Ex'.
destruct (id_p_ulp_le_bpow x ex) ; try easy.
-unfold generic_format, scaled_mantissa, canonic_exp.
-rewrite ln_beta_unique with beta (x + ulp x)%R ex.
+unfold generic_format, scaled_mantissa, cexp.
+rewrite mag_unique with beta (x + ulp x)%R ex.
pattern x at 1 3 ; rewrite Fx.
rewrite ulp_neq_0.
unfold scaled_mantissa.
-rewrite canonic_exp_fexp with (1 := Ex).
+rewrite cexp_fexp with (1 := Ex).
unfold F2R. simpl.
rewrite Rmult_plus_distr_r.
rewrite Rmult_assoc.
rewrite <- bpow_plus, Zplus_opp_r, Rmult_1_r.
-change (bpow 0) with (Z2R 1).
-rewrite <- Z2R_plus.
-rewrite Ztrunc_Z2R.
-rewrite Z2R_plus.
+change (bpow 0) with 1%R.
+rewrite <- plus_IZR.
+rewrite Ztrunc_IZR.
+rewrite plus_IZR.
rewrite Rmult_plus_distr_r.
now rewrite Rmult_1_l.
now apply Rgt_not_eq.
@@ -667,7 +669,7 @@ replace (Ztrunc (scaled_mantissa beta fexp x)) with Z0.
rewrite F2R_0.
apply Rle_refl.
unfold scaled_mantissa.
-rewrite canonic_exp_fexp with (1 := Ex).
+rewrite cexp_fexp with (1 := Ex).
destruct (mantissa_small_pos beta fexp x ex) ; trivial.
rewrite Ztrunc_floor.
apply sym_eq.
@@ -679,7 +681,7 @@ now apply Rlt_le.
now apply Rlt_le.
Qed.
-Theorem generic_format_pred_pos :
+Lemma generic_format_pred_pos :
forall x, F x -> (0 < x)%R ->
F (pred_pos x).
Proof.
@@ -689,7 +691,6 @@ now apply generic_format_pred_aux2.
now apply generic_format_pred_aux1.
Qed.
-
Theorem generic_format_succ :
forall x, F x ->
F (succ x).
@@ -717,9 +718,7 @@ apply generic_format_succ.
now apply generic_format_opp.
Qed.
-
-
-Theorem pred_pos_lt_id :
+Lemma pred_pos_lt_id :
forall x, (x <> 0)%R ->
(pred_pos x < x)%R.
Proof.
@@ -754,7 +753,7 @@ apply bpow_gt_0.
pattern x at 1; rewrite <- (Ropp_involutive x).
apply Ropp_lt_contravar.
apply pred_pos_lt_id.
-now auto with real.
+auto with real.
Qed.
@@ -766,7 +765,7 @@ intros x Zx; unfold pred.
pattern x at 2; rewrite <- (Ropp_involutive x).
apply Ropp_lt_contravar.
apply succ_gt_id.
-now auto with real.
+auto with real.
Qed.
Theorem succ_ge_id :
@@ -781,7 +780,7 @@ Qed.
Theorem pred_le_id :
- forall x, (pred x <= x)%R.
+ forall x, (pred x <= x)%R.
Proof.
intros x; unfold pred.
pattern x at 2; rewrite <- (Ropp_involutive x).
@@ -790,7 +789,7 @@ apply succ_ge_id.
Qed.
-Theorem pred_pos_ge_0 :
+Lemma pred_pos_ge_0 :
forall x,
(0 < x)%R -> F x -> (0 <= pred_pos x)%R.
Proof.
@@ -801,8 +800,8 @@ case Req_bool_spec; intros H.
apply Rle_0_minus.
rewrite H.
apply bpow_le.
-destruct (ln_beta beta x) as (ex,Ex) ; simpl.
-rewrite ln_beta_bpow.
+destruct (mag beta x) as (ex,Ex) ; simpl.
+rewrite mag_bpow.
ring_simplify (ex - 1 + 1 - 1)%Z.
apply generic_format_bpow_inv with beta; trivial.
simpl in H.
@@ -824,36 +823,35 @@ Qed.
Lemma pred_pos_plus_ulp_aux1 :
forall x, (0 < x)%R -> F x ->
- x <> bpow (ln_beta beta x - 1) ->
+ x <> bpow (mag beta x - 1) ->
((x - ulp x) + ulp (x-ulp x) = x)%R.
Proof.
intros x Zx Fx Hx.
replace (ulp (x - ulp x)) with (ulp x).
ring.
-assert (H:(x <> 0)%R) by auto with real.
-assert (H':(x <> bpow (canonic_exp beta fexp x))%R).
-unfold canonic_exp; intros M.
-case_eq (ln_beta beta x); intros ex Hex T.
-assert (Lex:(ln_beta_val beta x (ln_beta beta x) = ex)%Z).
+assert (H : x <> 0%R) by now apply Rgt_not_eq.
+assert (H' : x <> bpow (cexp beta fexp x)).
+unfold cexp ; intros M.
+case_eq (mag beta x); intros ex Hex T.
+assert (Lex:(mag_val beta x (mag beta x) = ex)%Z).
rewrite T; reflexivity.
rewrite Lex in *.
clear T; simpl in *; specialize (Hex H).
-rewrite Rabs_right in Hex.
-2: apply Rle_ge; apply Rlt_le; easy.
-assert (ex-1 < fexp ex < ex)%Z.
-split ; apply (lt_bpow beta); rewrite <- M;[idtac|easy].
-destruct (proj1 Hex);[trivial|idtac].
-contradict Hx; auto with real.
+rewrite Rabs_pos_eq in Hex by now apply Rlt_le.
+assert (ex - 1 < fexp ex < ex)%Z.
+ split ; apply (lt_bpow beta) ; rewrite <- M by easy.
+ lra.
+ apply Hex.
omega.
-rewrite 2!ulp_neq_0; try auto with real.
+rewrite 2!ulp_neq_0 by lra.
apply f_equal.
-unfold canonic_exp; apply f_equal.
-case_eq (ln_beta beta x); intros ex Hex T.
-assert (Lex:(ln_beta_val beta x (ln_beta beta x) = ex)%Z).
+unfold cexp ; apply f_equal.
+case_eq (mag beta x); intros ex Hex T.
+assert (Lex:(mag_val beta x (mag beta x) = ex)%Z).
rewrite T; reflexivity.
rewrite Lex in *; simpl in *; clear T.
specialize (Hex H).
-apply sym_eq, ln_beta_unique.
+apply sym_eq, mag_unique.
rewrite Rabs_right.
rewrite Rabs_right in Hex.
2: apply Rle_ge; apply Rlt_le; easy.
@@ -863,8 +861,8 @@ apply Rle_trans with (x-ulp x)%R.
apply id_m_ulp_ge_bpow; trivial.
rewrite ulp_neq_0; trivial.
rewrite ulp_neq_0; trivial.
-right; unfold canonic_exp; now rewrite Lex.
-contradict Hx; auto with real.
+right; unfold cexp; now rewrite Lex.
+lra.
apply Rle_lt_trans with (2:=proj2 Hex).
rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
@@ -874,22 +872,19 @@ apply bpow_ge_0.
apply Rle_ge.
apply Rle_0_minus.
rewrite Fx.
-unfold F2R, canonic_exp; simpl.
+unfold F2R, cexp; simpl.
rewrite Lex.
pattern (bpow (fexp ex)) at 1; rewrite <- Rmult_1_l.
apply Rmult_le_compat_r.
apply bpow_ge_0.
-replace 1%R with (Z2R (Zsucc 0)) by reflexivity.
-apply Z2R_le.
-apply Zlt_le_succ.
-apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+apply IZR_le, (Zlt_le_succ 0).
+apply gt_0_F2R with beta (cexp beta fexp x).
now rewrite <- Fx.
Qed.
-
Lemma pred_pos_plus_ulp_aux2 :
forall x, (0 < x)%R -> F x ->
- let e := ln_beta_val beta x (ln_beta beta x) in
+ let e := mag_val beta x (mag beta x) in
x = bpow (e - 1) ->
(x - bpow (fexp (e-1)) <> 0)%R ->
((x - bpow (fexp (e-1))) + ulp (x - bpow (fexp (e-1))) = x)%R.
@@ -904,9 +899,9 @@ case (Zle_lt_or_eq _ _ He); clear He; intros He.
(* *)
rewrite ulp_neq_0; trivial.
apply f_equal.
-unfold canonic_exp; apply f_equal.
+unfold cexp ; apply f_equal.
apply sym_eq.
-apply ln_beta_unique.
+apply mag_unique.
rewrite Rabs_right.
split.
apply Rplus_le_reg_l with (bpow (fexp (e-1))).
@@ -917,9 +912,8 @@ apply Rle_trans with (2*bpow (e - 2))%R;[right; ring|idtac].
apply Rle_trans with (bpow 1*bpow (e - 2))%R.
apply Rmult_le_compat_r.
apply bpow_ge_0.
-replace 2%R with (Z2R 2) by reflexivity.
-replace (bpow 1) with (Z2R beta).
-apply Z2R_le.
+replace (bpow 1) with (IZR beta).
+apply IZR_le.
apply <- Zle_is_le_bool.
now destruct beta.
simpl.
@@ -944,7 +938,7 @@ Qed.
Lemma pred_pos_plus_ulp_aux3 :
forall x, (0 < x)%R -> F x ->
- let e := ln_beta_val beta x (ln_beta beta x) in
+ let e := mag_val beta x (mag beta x) in
x = bpow (e - 1) ->
(x - bpow (fexp (e-1)) = 0)%R ->
(ulp 0 = x)%R.
@@ -967,40 +961,44 @@ apply valid_exp; omega.
apply sym_eq, valid_exp; omega.
Qed.
-
-
-
(** The following one is false for x = 0 in FTZ *)
-Theorem pred_pos_plus_ulp :
+Lemma pred_pos_plus_ulp :
forall x, (0 < x)%R -> F x ->
(pred_pos x + ulp (pred_pos x) = x)%R.
Proof.
intros x Zx Fx.
unfold pred_pos.
case Req_bool_spec; intros H.
-case (Req_EM_T (x - bpow (fexp (ln_beta_val beta x (ln_beta beta x) -1))) 0); intros H1.
+case (Req_EM_T (x - bpow (fexp (mag_val beta x (mag beta x) -1))) 0); intros H1.
rewrite H1, Rplus_0_l.
now apply pred_pos_plus_ulp_aux3.
now apply pred_pos_plus_ulp_aux2.
now apply pred_pos_plus_ulp_aux1.
Qed.
-
-
+Theorem pred_plus_ulp :
+ forall x, (0 < x)%R -> F x ->
+ (pred x + ulp (pred x))%R = x.
+Proof.
+intros x Hx Fx.
+rewrite pred_eq_pos.
+now apply pred_pos_plus_ulp.
+now apply Rlt_le.
+Qed.
(** Rounding x + small epsilon *)
-Theorem ln_beta_plus_eps:
+Theorem mag_plus_eps :
forall x, (0 < x)%R -> F x ->
forall eps, (0 <= eps < ulp x)%R ->
- ln_beta beta (x + eps) = ln_beta beta x :> Z.
+ mag beta (x + eps) = mag beta x :> Z.
Proof.
intros x Zx Fx eps Heps.
-destruct (ln_beta beta x) as (ex, He).
+destruct (mag beta x) as (ex, He).
simpl.
specialize (He (Rgt_not_eq _ _ Zx)).
-apply ln_beta_unique.
+apply mag_unique.
rewrite Rabs_pos_eq.
rewrite Rabs_pos_eq in He.
split.
@@ -1012,13 +1010,11 @@ now apply Rplus_lt_compat_l.
pattern x at 1 ; rewrite Fx.
rewrite ulp_neq_0.
unfold F2R. simpl.
-pattern (bpow (canonic_exp beta fexp x)) at 2 ; rewrite <- Rmult_1_l.
+pattern (bpow (cexp beta fexp x)) at 2 ; rewrite <- Rmult_1_l.
rewrite <- Rmult_plus_distr_r.
-change 1%R with (Z2R 1).
-rewrite <- Z2R_plus.
-change (F2R (Float beta (Ztrunc (scaled_mantissa beta fexp x) + 1) (canonic_exp beta fexp x)) <= bpow ex)%R.
+rewrite <- plus_IZR.
apply F2R_p1_le_bpow.
-apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+apply gt_0_F2R with beta (cexp beta fexp x).
now rewrite <- Fx.
now rewrite <- Fx.
now apply Rgt_not_eq.
@@ -1028,7 +1024,7 @@ now apply Rlt_le.
apply Heps.
Qed.
-Theorem round_DN_plus_eps_pos:
+Theorem round_DN_plus_eps_pos :
forall x, (0 <= x)%R -> F x ->
forall eps, (0 <= eps < ulp x)%R ->
round beta fexp Zfloor (x + eps) = x.
@@ -1039,8 +1035,8 @@ destruct Zx as [Zx|Zx].
pattern x at 2 ; rewrite Fx.
unfold round.
unfold scaled_mantissa. simpl.
-unfold canonic_exp at 1 2.
-rewrite ln_beta_plus_eps ; trivial.
+unfold cexp at 1 2.
+rewrite mag_plus_eps ; trivial.
apply (f_equal (fun m => F2R (Float beta m _))).
rewrite Ztrunc_floor.
apply Zfloor_imp.
@@ -1050,12 +1046,12 @@ apply Rmult_le_compat_r.
apply bpow_ge_0.
pattern x at 1 ; rewrite <- Rplus_0_r.
now apply Rplus_le_compat_l.
-apply Rlt_le_trans with ((x + ulp x) * bpow (- canonic_exp beta fexp x))%R.
+apply Rlt_le_trans with ((x + ulp x) * bpow (- cexp beta fexp x))%R.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
now apply Rplus_lt_compat_l.
rewrite Rmult_plus_distr_r.
-rewrite Z2R_plus.
+rewrite plus_IZR.
apply Rplus_le_compat.
pattern x at 1 3 ; rewrite Fx.
unfold F2R. simpl.
@@ -1063,7 +1059,7 @@ rewrite Rmult_assoc.
rewrite <- bpow_plus.
rewrite Zplus_opp_r.
rewrite Rmult_1_r.
-rewrite Zfloor_Z2R.
+rewrite Zfloor_IZR.
apply Rle_refl.
rewrite ulp_neq_0.
2: now apply Rgt_not_eq.
@@ -1076,24 +1072,23 @@ apply bpow_ge_0.
(* . x=0 *)
rewrite <- Zx, Rplus_0_l; rewrite <- Zx in Heps.
case (proj1 Heps); intros P.
-unfold round, scaled_mantissa, canonic_exp.
+unfold round, scaled_mantissa, cexp.
revert Heps; unfold ulp.
rewrite Req_bool_true; trivial.
case negligible_exp_spec.
intros _ (H1,H2).
-absurd (0 < 0)%R; auto with real.
-now apply Rle_lt_trans with (1:=H1).
+exfalso ; lra.
intros n Hn H.
-assert (fexp (ln_beta beta eps) = fexp n).
+assert (fexp (mag beta eps) = fexp n).
apply valid_exp; try assumption.
-assert(ln_beta beta eps-1 < fexp n)%Z;[idtac|omega].
+assert(mag beta eps-1 < fexp n)%Z;[idtac|omega].
apply lt_bpow with beta.
apply Rle_lt_trans with (2:=proj2 H).
-destruct (ln_beta beta eps) as (e,He).
+destruct (mag beta eps) as (e,He).
simpl; rewrite Rabs_pos_eq in He.
now apply He, Rgt_not_eq.
now left.
-replace (Zfloor (eps * bpow (- fexp (ln_beta beta eps)))) with 0%Z.
+replace (Zfloor (eps * bpow (- fexp (mag beta eps)))) with 0%Z.
unfold F2R; simpl; ring.
apply sym_eq, Zfloor_imp.
split.
@@ -1128,8 +1123,8 @@ assert (Hd := round_DN_plus_eps_pos x Zx Fx eps Heps).
rewrite round_UP_DN_ulp.
rewrite Hd.
rewrite 2!ulp_neq_0.
-unfold canonic_exp.
-now rewrite ln_beta_plus_eps.
+unfold cexp.
+now rewrite mag_plus_eps.
now apply Rgt_not_eq.
now apply Rgt_not_eq, Rplus_lt_0_compat.
intros Fs.
@@ -1144,24 +1139,22 @@ now apply generic_format_succ_aux1.
rewrite <- Zx1, 2!Rplus_0_l.
intros Heps.
case (proj2 Heps).
-unfold round, scaled_mantissa, canonic_exp.
+unfold round, scaled_mantissa, cexp.
unfold ulp.
rewrite Req_bool_true; trivial.
case negligible_exp_spec.
-intros H2.
-intros J; absurd (0 < 0)%R; auto with real.
-apply Rlt_trans with eps; try assumption; apply Heps.
+lra.
intros n Hn H.
-assert (fexp (ln_beta beta eps) = fexp n).
+assert (fexp (mag beta eps) = fexp n).
apply valid_exp; try assumption.
-assert(ln_beta beta eps-1 < fexp n)%Z;[idtac|omega].
+assert(mag beta eps-1 < fexp n)%Z;[idtac|omega].
apply lt_bpow with beta.
apply Rle_lt_trans with (2:=H).
-destruct (ln_beta beta eps) as (e,He).
+destruct (mag beta eps) as (e,He).
simpl; rewrite Rabs_pos_eq in He.
now apply He, Rgt_not_eq.
now left.
-replace (Zceil (eps * bpow (- fexp (ln_beta beta eps)))) with 1%Z.
+replace (Zceil (eps * bpow (- fexp (mag beta eps)))) with 1%Z.
unfold F2R; simpl; rewrite H0; ring.
apply sym_eq, Zceil_imp.
split.
@@ -1316,7 +1309,7 @@ destruct Zp; trivial.
generalize H0.
rewrite pred_eq_pos;[idtac|now left].
unfold pred_pos.
-destruct (ln_beta beta y) as (ey,Hey); simpl.
+destruct (mag beta y) as (ey,Hey); simpl.
case Req_bool_spec; intros Hy2.
(* . *)
intros Hy3.
@@ -1326,7 +1319,7 @@ rewrite <- Hy2, <- Rplus_0_l, Hy3.
ring.
assert (Zx: (x <> 0)%R).
now apply Rgt_not_eq.
-destruct (ln_beta beta x) as (ex,Hex).
+destruct (mag beta x) as (ex,Hex).
specialize (Hex Zx).
assert (ex <= ey)%Z.
apply bpow_lt_bpow with beta.
@@ -1347,16 +1340,16 @@ omega.
absurd (0 < Ztrunc (scaled_mantissa beta fexp x) < 1)%Z.
omega.
split.
-apply F2R_gt_0_reg with beta (canonic_exp beta fexp x).
+apply gt_0_F2R with beta (cexp beta fexp x).
now rewrite <- Fx.
-apply lt_Z2R.
-apply Rmult_lt_reg_r with (bpow (canonic_exp beta fexp x)).
+apply lt_IZR.
+apply Rmult_lt_reg_r with (bpow (cexp beta fexp x)).
apply bpow_gt_0.
-replace (Z2R (Ztrunc (scaled_mantissa beta fexp x)) *
- bpow (canonic_exp beta fexp x))%R with x.
+replace (IZR (Ztrunc (scaled_mantissa beta fexp x)) *
+ bpow (cexp beta fexp x))%R with x.
rewrite Rmult_1_l.
-unfold canonic_exp.
-rewrite ln_beta_unique with beta x ex.
+unfold cexp.
+rewrite mag_unique with beta x ex.
rewrite H3,<-H1, <- Hy2.
apply H.
exact Hex.
@@ -1373,8 +1366,8 @@ assert (y = bpow (fexp ey))%R.
apply Rminus_diag_uniq.
rewrite Hy3.
rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq].
-unfold canonic_exp.
-rewrite (ln_beta_unique beta y ey); trivial.
+unfold cexp.
+rewrite (mag_unique beta y ey); trivial.
apply Hey.
now apply Rgt_not_eq.
contradict Hy2.
@@ -1382,8 +1375,8 @@ rewrite H1.
apply f_equal.
apply Zplus_reg_l with 1%Z.
ring_simplify.
-apply trans_eq with (ln_beta beta y).
-apply sym_eq; apply ln_beta_unique.
+apply trans_eq with (mag beta y).
+apply sym_eq; apply mag_unique.
rewrite H1, Rabs_right.
split.
apply bpow_le.
@@ -1391,7 +1384,7 @@ omega.
apply bpow_lt.
omega.
apply Rle_ge; apply bpow_ge_0.
-apply ln_beta_unique.
+apply mag_unique.
apply Hey.
now apply Rgt_not_eq.
(* *)
@@ -1418,7 +1411,7 @@ rewrite <- V; apply pred_pos_ge_0; trivial.
apply Rle_lt_trans with (1:=proj1 H); apply H.
Qed.
-Theorem succ_le_lt_aux:
+Lemma succ_le_lt_aux:
forall x y,
F x -> F y ->
(0 <= x)%R -> (x < y)%R ->
@@ -1468,7 +1461,7 @@ now apply generic_format_opp.
rewrite Ropp_0; now left.
Qed.
-Theorem le_pred_lt :
+Theorem pred_ge_gt :
forall x y,
F x -> F y ->
(x < y)%R ->
@@ -1483,7 +1476,7 @@ now apply generic_format_opp.
now apply Ropp_lt_contravar.
Qed.
-Theorem lt_succ_le :
+Theorem succ_gt_ge :
forall x y,
(y <> 0)%R ->
(x <= y)%R ->
@@ -1505,12 +1498,12 @@ apply Rlt_le_trans with (2 := Hxy).
now apply pred_lt_id.
Qed.
-Theorem succ_pred_aux : forall x, F x -> (0 < x)%R -> succ (pred x)=x.
+Lemma succ_pred_pos :
+ forall x, F x -> (0 < x)%R -> succ (pred x) = x.
Proof.
intros x Fx Hx.
-rewrite pred_eq_pos;[idtac|now left].
-rewrite succ_eq_pos.
-2: now apply pred_pos_ge_0.
+rewrite pred_eq_pos by now left.
+rewrite succ_eq_pos by now apply pred_pos_ge_0.
now apply pred_pos_plus_ulp.
Qed.
@@ -1530,7 +1523,7 @@ rewrite H1; ring.
(* *)
intros (n,(H1,H2)); rewrite H1.
unfold pred_pos.
-rewrite ln_beta_bpow.
+rewrite mag_bpow.
replace (fexp n + 1 - 1)%Z with (fexp n) by ring.
rewrite Req_bool_true; trivial.
apply Rminus_diag_eq, f_equal.
@@ -1554,7 +1547,7 @@ rewrite <- Ropp_0 at 1.
apply pred_opp.
Qed.
-Theorem pred_succ_aux :
+Lemma pred_succ_pos :
forall x, F x -> (0 < x)%R ->
pred (succ x) = x.
Proof.
@@ -1570,7 +1563,7 @@ apply Rle_antisym.
apply Rlt_le_trans with (1 := Hx).
apply succ_ge_id.
now apply generic_format_pred, generic_format_succ.
-- apply le_pred_lt with (1 := Fx).
+- apply pred_ge_gt with (1 := Fx).
now apply generic_format_succ.
apply succ_gt_id.
now apply Rgt_not_eq.
@@ -1582,12 +1575,12 @@ Theorem succ_pred :
Proof.
intros x Fx.
destruct (Rle_or_lt 0 x) as [[Hx|Hx]|Hx].
-now apply succ_pred_aux.
+now apply succ_pred_pos.
rewrite <- Hx.
rewrite pred_0, succ_opp, pred_ulp_0.
apply Ropp_0.
-rewrite pred_eq_opp_succ_opp, succ_opp.
-rewrite pred_succ_aux.
+unfold pred.
+rewrite succ_opp, pred_succ_pos.
apply Ropp_involutive.
now apply generic_format_opp.
now apply Ropp_0_gt_lt_contravar.
@@ -1606,8 +1599,8 @@ Qed.
Theorem round_UP_pred_plus_eps :
forall x, F x ->
- forall eps, (0 < eps <= if (Rle_bool x 0) then (ulp x)
- else (ulp (pred x)))%R ->
+ forall eps, (0 < eps <= if Rle_bool x 0 then ulp x
+ else ulp (pred x))%R ->
round beta fexp Zceil (pred x + eps) = x.
Proof.
intros x Fx eps Heps.
@@ -1636,7 +1629,6 @@ now apply pred_ge_0.
now apply generic_format_opp.
Qed.
-
Theorem round_DN_minus_eps:
forall x, F x ->
forall eps, (0 < eps <= if (Rle_bool x 0) then (ulp x)
@@ -1676,7 +1668,7 @@ Qed.
(* was ulp_error *)
Theorem error_lt_ulp :
forall rnd { Zrnd : Valid_rnd rnd } x,
- (x <> 0)%R ->
+ (x <> 0)%R ->
(Rabs (round beta fexp rnd x - x) < ulp x)%R.
Proof with auto with typeclass_instances.
intros rnd Zrnd x Zx.
@@ -1734,7 +1726,6 @@ intros Zx; left.
now apply error_lt_ulp.
Qed.
-(* was ulp_half_error *)
Theorem error_le_half_ulp :
forall choice x,
(Rabs (round beta fexp (Znearest choice) x - x) <= /2 * ulp x)%R.
@@ -1748,7 +1739,7 @@ rewrite Rplus_opp_r, Rabs_R0.
apply Rmult_le_pos.
apply Rlt_le.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
apply ulp_ge_0.
(* x <> rnd x *)
set (d := round beta fexp Zfloor x).
@@ -1761,7 +1752,7 @@ apply (round_DN_pt beta fexp x).
rewrite Rabs_left1.
rewrite Ropp_minus_distr.
apply Rmult_le_reg_r with 2%R.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
apply Rplus_le_reg_r with (d - x)%R.
ring_simplify.
apply Rle_trans with (1 := H).
@@ -1778,7 +1769,7 @@ rewrite Hu.
apply (round_UP_pt beta fexp x).
rewrite Rabs_pos_eq.
apply Rmult_le_reg_r with 2%R.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
apply Rplus_le_reg_r with (- (d + ulp x - x))%R.
ring_simplify.
apply Rlt_le.
@@ -1789,28 +1780,40 @@ rewrite Hu.
apply (round_UP_pt beta fexp x).
Qed.
-
Theorem ulp_DN :
- forall x,
- (0 < round beta fexp Zfloor x)%R ->
+ forall x, (0 <= x)%R ->
ulp (round beta fexp Zfloor x) = ulp x.
Proof with auto with typeclass_instances.
-intros x Hd.
-rewrite 2!ulp_neq_0.
-now rewrite canonic_exp_DN with (2 := Hd).
-intros T; contradict Hd; rewrite T, round_0...
-apply Rlt_irrefl.
-now apply Rgt_not_eq.
-Qed.
-
-Theorem round_neq_0_negligible_exp:
- negligible_exp=None -> forall rnd { Zrnd : Valid_rnd rnd } x,
- (x <> 0)%R -> (round beta fexp rnd x <> 0)%R.
+intros x [Hx|Hx].
+- rewrite (ulp_neq_0 x) by now apply Rgt_not_eq.
+ destruct (round_ge_generic beta fexp Zfloor 0 x) as [Hd|Hd].
+ apply generic_format_0.
+ now apply Rlt_le.
+ + rewrite ulp_neq_0 by now apply Rgt_not_eq.
+ now rewrite cexp_DN with (2 := Hd).
+ + rewrite <- Hd.
+ unfold cexp.
+ destruct (mag beta x) as [e He].
+ simpl.
+ specialize (He (Rgt_not_eq _ _ Hx)).
+ apply sym_eq in Hd.
+ assert (H := exp_small_round_0 _ _ _ _ _ He Hd).
+ unfold ulp.
+ rewrite Req_bool_true by easy.
+ destruct negligible_exp_spec as [H0|k Hk].
+ now elim Zlt_not_le with (1 := H0 e).
+ now apply f_equal, fexp_negligible_exp_eq.
+- rewrite <- Hx, round_0...
+Qed.
+
+Theorem round_neq_0_negligible_exp :
+ negligible_exp = None -> forall rnd { Zrnd : Valid_rnd rnd } x,
+ (x <> 0)%R -> (round beta fexp rnd x <> 0)%R.
Proof with auto with typeclass_instances.
intros H rndn Hrnd x Hx K.
case negligible_exp_spec'.
intros (_,Hn).
-destruct (ln_beta beta x) as (e,He).
+destruct (mag beta x) as (e,He).
absurd (fexp e < e)%Z.
apply Zle_not_lt.
apply exp_small_round_0 with beta rndn x...
@@ -1819,12 +1822,10 @@ intros (n,(H1,_)).
rewrite H in H1; discriminate.
Qed.
-
(** allows rnd x to be 0 *)
-(* was ulp_error_f *)
Theorem error_lt_ulp_round :
forall { Hm : Monotone_exp fexp } rnd { Zrnd : Valid_rnd rnd } x,
- ( x <> 0)%R ->
+ (x <> 0)%R ->
(Rabs (round beta fexp rnd x - x) < ulp (round beta fexp rnd x))%R.
Proof with auto with typeclass_instances.
intros Hm.
@@ -1847,72 +1848,34 @@ now apply valid_rnd_opp.
now apply Ropp_0_gt_lt_contravar.
(* 0 < x *)
intros rnd Hrnd x Hx.
-case (Rle_lt_or_eq_dec 0 (round beta fexp Zfloor x)).
-apply round_ge_generic...
-apply generic_format_0.
-now left.
-(* . 0 < round Zfloor x *)
-intros Hx2.
apply Rlt_le_trans with (ulp x).
apply error_lt_ulp...
now apply Rgt_not_eq.
rewrite <- ulp_DN; trivial.
apply ulp_le_pos.
-now left.
+apply round_ge_generic...
+apply generic_format_0.
+now apply Rlt_le.
case (round_DN_or_UP beta fexp rnd x); intros V; rewrite V.
apply Rle_refl.
apply Rle_trans with x.
apply round_DN_pt...
apply round_UP_pt...
-(* . 0 = round Zfloor x *)
-intros Hx2.
-case (round_DN_or_UP beta fexp rnd x); intros V; rewrite V; clear V.
-(* .. round down -- difficult case *)
-rewrite <- Hx2.
-unfold Rminus; rewrite Rplus_0_l, Rabs_Ropp.
-unfold ulp; rewrite Req_bool_true; trivial.
-case negligible_exp_spec.
-(* without minimal exponent *)
-intros K; contradict Hx2.
-apply Rlt_not_eq.
-apply F2R_gt_0_compat; simpl.
-apply Zlt_le_trans with 1%Z.
-apply Pos2Z.is_pos.
-apply Zfloor_lub.
-simpl; unfold scaled_mantissa, canonic_exp.
-destruct (ln_beta beta x) as (e,He); simpl.
-apply Rle_trans with (bpow (e-1) * bpow (- fexp e))%R.
-rewrite <- bpow_plus.
-replace 1%R with (bpow 0) by reflexivity.
-apply bpow_le.
-specialize (K e); omega.
-apply Rmult_le_compat_r.
-apply bpow_ge_0.
-rewrite <- (Rabs_pos_eq x).
-now apply He, Rgt_not_eq.
-now left.
-(* with a minimal exponent *)
-intros n Hn.
-rewrite Rabs_pos_eq;[idtac|now left].
-case (Rle_or_lt (bpow (fexp n)) x); trivial.
-intros K; contradict Hx2.
-apply Rlt_not_eq.
-apply Rlt_le_trans with (bpow (fexp n)).
-apply bpow_gt_0.
-apply round_ge_generic...
-apply generic_format_bpow.
-now apply valid_exp.
-(* .. round up *)
-apply Rlt_le_trans with (ulp x).
-apply error_lt_ulp...
-now apply Rgt_not_eq.
-apply ulp_le_pos.
-now left.
-apply round_UP_pt...
+now apply Rlt_le.
+Qed.
+
+Lemma error_le_ulp_round :
+ forall { Hm : Monotone_exp fexp } rnd { Zrnd : Valid_rnd rnd } x,
+ (Rabs (round beta fexp rnd x - x) <= ulp (round beta fexp rnd x))%R.
+Proof.
+intros Mexp rnd Vrnd x.
+destruct (Req_dec x 0) as [Zx|Nzx].
+{ rewrite Zx, round_0; [|exact Vrnd].
+ unfold Rminus; rewrite Ropp_0, Rplus_0_l, Rabs_R0; apply ulp_ge_0. }
+now apply Rlt_le, error_lt_ulp_round.
Qed.
(** allows both x and rnd x to be 0 *)
-(* was ulp_half_error_f *)
Theorem error_le_half_ulp_round :
forall { Hm : Monotone_exp fexp },
forall choice x,
@@ -1939,11 +1902,11 @@ apply Rle_trans with (1:=N).
right; apply f_equal.
rewrite ulp_neq_0; trivial.
apply f_equal.
-unfold canonic_exp.
+unfold cexp.
apply valid_exp; trivial.
-assert (ln_beta beta x -1 < fexp n)%Z;[idtac|omega].
+assert (mag beta x -1 < fexp n)%Z;[idtac|omega].
apply lt_bpow with beta.
-destruct (ln_beta beta x) as (e,He).
+destruct (mag beta x) as (e,He).
simpl.
apply Rle_lt_trans with (Rabs x).
now apply He.
@@ -1958,42 +1921,29 @@ now right.
(* *)
case (round_DN_or_UP beta fexp (Znearest choice) x); intros Hx.
(* . *)
-case (Rle_or_lt 0 (round beta fexp Zfloor x)).
-intros H; destruct H.
+destruct (Rle_or_lt 0 x) as [H|H].
rewrite Hx at 2.
-rewrite ulp_DN; trivial.
+rewrite ulp_DN by easy.
apply error_le_half_ulp.
-rewrite Hx in Hfx; contradict Hfx; auto with real.
-intros H.
apply Rle_trans with (1:=error_le_half_ulp _ _).
apply Rmult_le_compat_l.
apply Rlt_le, pos_half_prf.
apply ulp_le.
-rewrite Hx; rewrite (Rabs_left1 x), Rabs_left; try assumption.
+rewrite Rabs_left1 by now apply Rlt_le.
+rewrite Hx.
+rewrite Rabs_left1.
apply Ropp_le_contravar.
-apply (round_DN_pt beta fexp x).
-case (Rle_or_lt x 0); trivial.
-intros H1; contradict H.
-apply Rle_not_lt.
-apply round_ge_generic...
+apply round_DN_pt...
+apply round_le_generic...
apply generic_format_0.
-now left.
+now apply Rlt_le.
(* . *)
-case (Rle_or_lt 0 (round beta fexp Zceil x)).
-intros H; destruct H.
+destruct (Rle_or_lt 0 x) as [H|H].
apply Rle_trans with (1:=error_le_half_ulp _ _).
apply Rmult_le_compat_l.
apply Rlt_le, pos_half_prf.
apply ulp_le_pos; trivial.
-case (Rle_or_lt 0 x); trivial.
-intros H1; contradict H.
-apply Rle_not_lt.
-apply round_le_generic...
-apply generic_format_0.
-now left.
rewrite Hx; apply (round_UP_pt beta fexp x).
-rewrite Hx in Hfx; contradict Hfx; auto with real.
-intros H.
rewrite Hx at 2; rewrite <- (ulp_opp (round beta fexp Zceil x)).
rewrite <- round_DN_opp.
rewrite ulp_DN; trivial.
@@ -2002,7 +1952,9 @@ rewrite round_N_opp.
unfold Rminus.
rewrite <- Ropp_plus_distr, Rabs_Ropp.
apply error_le_half_ulp.
-rewrite round_DN_opp; apply Ropp_0_gt_lt_contravar; apply Rlt_gt; assumption.
+rewrite <- Ropp_0.
+apply Ropp_le_contravar.
+now apply Rlt_le.
Qed.
Theorem pred_le :
@@ -2011,18 +1963,22 @@ Theorem pred_le :
Proof.
intros x y Fx Fy [Hxy| ->].
2: apply Rle_refl.
-apply le_pred_lt with (2 := Fy).
+apply pred_ge_gt with (2 := Fy).
now apply generic_format_pred.
apply Rle_lt_trans with (2 := Hxy).
apply pred_le_id.
Qed.
-Theorem succ_le: forall x y,
- F x -> F y -> (x <= y)%R -> (succ x <= succ y)%R.
+Theorem succ_le :
+ forall x y, F x -> F y -> (x <= y)%R ->
+ (succ x <= succ y)%R.
Proof.
intros x y Fx Fy Hxy.
-rewrite 2!succ_eq_opp_pred_opp.
-apply Ropp_le_contravar, pred_le; try apply generic_format_opp; try assumption.
+apply Ropp_le_cancel.
+rewrite <- 2!pred_opp.
+apply pred_le.
+now apply generic_format_opp.
+now apply generic_format_opp.
now apply Ropp_le_contravar.
Qed.
@@ -2064,8 +2020,95 @@ apply Rgt_not_le with (1 := Hxy).
now apply succ_le_inv.
Qed.
-(* was lt_UP_le_DN *)
-Theorem le_round_DN_lt_UP :
+(** Adding [ulp] is a, somewhat reasonable, overapproximation of [succ]. *)
+Lemma succ_le_plus_ulp :
+ forall { Hm : Monotone_exp fexp } x,
+ (succ x <= x + ulp x)%R.
+Proof.
+intros Mexp x.
+destruct (Rle_or_lt 0 x) as [Px|Nx]; [now right; apply succ_eq_pos|].
+replace (_ + _)%R with (- (-x - ulp x))%R by ring.
+unfold succ; rewrite (Rle_bool_false _ _ Nx), <-ulp_opp.
+apply Ropp_le_contravar; unfold pred_pos.
+destruct (Req_dec (-x) (bpow (mag beta (-x) - 1))) as [Hx|Hx].
+{ rewrite (Req_bool_true _ _ Hx).
+ apply (Rplus_le_reg_r x); ring_simplify; apply Ropp_le_contravar.
+ unfold ulp; rewrite Req_bool_false; [|lra].
+ apply bpow_le, Mexp; lia. }
+ now rewrite (Req_bool_false _ _ Hx); right.
+Qed.
+
+(** And it also lies in the format. *)
+Lemma generic_format_plus_ulp :
+ forall { Hm : Monotone_exp fexp } x,
+ generic_format beta fexp x ->
+ generic_format beta fexp (x + ulp x).
+Proof.
+intros Mexp x Fx.
+destruct (Rle_or_lt 0 x) as [Px|Nx].
+{ now rewrite <-(succ_eq_pos _ Px); apply generic_format_succ. }
+apply generic_format_opp in Fx.
+replace (_ + _)%R with (- (-x - ulp x))%R by ring.
+apply generic_format_opp; rewrite <-ulp_opp.
+destruct (Req_dec (-x) (bpow (mag beta (-x) - 1))) as [Hx|Hx].
+{ unfold ulp; rewrite Req_bool_false; [|lra].
+ rewrite Hx at 1.
+ unfold cexp.
+ set (e := mag _ _).
+ assert (Hfe : (fexp e < e)%Z).
+ { now apply mag_generic_gt; [|lra|]. }
+ replace (e - 1)%Z with (e - 1 - fexp e + fexp e)%Z by ring.
+ rewrite bpow_plus.
+ set (m := bpow (_ - _)).
+ replace (_ - _)%R with ((m - 1) * bpow (fexp e))%R; [|unfold m; ring].
+ case_eq (e - 1 - fexp e)%Z.
+ { intro He; unfold m; rewrite He; simpl; ring_simplify (1 - 1)%R.
+ rewrite Rmult_0_l; apply generic_format_0. }
+ { intros p Hp; unfold m; rewrite Hp; simpl.
+ pose (f := {| Defs.Fnum := (Z.pow_pos beta p - 1)%Z;
+ Defs.Fexp := fexp e |} : Defs.float beta).
+ apply (generic_format_F2R' _ _ _ f); [|intro Hm'; unfold f; simpl].
+ { now unfold Defs.F2R; simpl; rewrite minus_IZR. }
+ unfold cexp.
+ replace (IZR _) with (bpow (Z.pos p)); [|now simpl].
+ rewrite <-Hp.
+ assert (He : (1 <= e - 1 - fexp e)%Z); [lia|].
+ set (e' := mag _ (_ * _)).
+ assert (H : (e' = e - 1 :> Z)%Z); [|rewrite H; apply Mexp; lia].
+ unfold e'; apply mag_unique.
+ rewrite Rabs_mult, (Rabs_pos_eq (bpow _)); [|apply bpow_ge_0].
+ rewrite Rabs_pos_eq;
+ [|apply (Rplus_le_reg_r 1); ring_simplify;
+ change 1%R with (bpow 0); apply bpow_le; lia].
+ assert (beta_pos : (0 < IZR beta)%R).
+ { apply (Rlt_le_trans _ 2); [lra|].
+ apply IZR_le, Z.leb_le, radix_prop. }
+ split.
+ { replace (e - 1 - 1)%Z with (e - 1 - fexp e + -1 + fexp e)%Z by ring.
+ rewrite bpow_plus.
+ apply Rmult_le_compat_r; [apply bpow_ge_0|].
+ rewrite bpow_plus; simpl; unfold Z.pow_pos; simpl.
+ rewrite Zmult_1_r.
+ apply (Rmult_le_reg_r _ _ _ beta_pos).
+ rewrite Rmult_assoc, Rinv_l; [|lra]; rewrite Rmult_1_r.
+ apply (Rplus_le_reg_r (IZR beta)); ring_simplify.
+ apply (Rle_trans _ (2 * bpow (e - 1 - fexp e))).
+ { change 2%R with (1 + 1)%R; rewrite Rmult_plus_distr_r, Rmult_1_l.
+ apply Rplus_le_compat_l.
+ rewrite <-bpow_1; apply bpow_le; lia. }
+ rewrite Rmult_comm; apply Rmult_le_compat_l; [apply bpow_ge_0|].
+ apply IZR_le, Z.leb_le, radix_prop. }
+ apply (Rmult_lt_reg_r (bpow (- fexp e))); [apply bpow_gt_0|].
+ rewrite Rmult_assoc, <-!bpow_plus.
+ replace (fexp e + - fexp e)%Z with 0%Z by ring; simpl.
+ rewrite Rmult_1_r; unfold Zminus; lra. }
+ intros p Hp; exfalso; lia. }
+replace (_ - _)%R with (pred_pos (-x)).
+{ now apply generic_format_pred_pos; [|lra]. }
+now unfold pred_pos; rewrite Req_bool_false.
+Qed.
+
+Theorem round_DN_ge_UP_gt :
forall x y, F y ->
(y < round beta fexp Zceil x -> y <= round beta fexp Zfloor x)%R.
Proof with auto with typeclass_instances.
@@ -2078,10 +2121,9 @@ apply round_UP_pt...
now apply Rlt_le.
Qed.
-(* was lt_DN_le_UP *)
-Theorem round_UP_le_gt_DN :
+Theorem round_UP_le_DN_lt :
forall x y, F y ->
- (round beta fexp Zfloor x < y -> round beta fexp Zceil x <= y)%R.
+ (round beta fexp Zfloor x < y -> round beta fexp Zceil x <= y)%R.
Proof with auto with typeclass_instances.
intros x y Fy Hlt.
apply round_UP_pt...
@@ -2092,8 +2134,6 @@ apply round_DN_pt...
now apply Rlt_le.
Qed.
-
-
Theorem pred_UP_le_DN :
forall x, (pred (round beta fexp Zceil x) <= round beta fexp Zfloor x)%R.
Proof with auto with typeclass_instances.
@@ -2115,16 +2155,26 @@ absurd (round beta fexp Zceil x <= - bpow (fexp n))%R.
apply Rlt_not_le.
rewrite Zx, <- Ropp_0.
apply Ropp_lt_contravar, bpow_gt_0.
-apply round_UP_le_gt_DN; try assumption.
+apply round_UP_le_DN_lt; try assumption.
apply generic_format_opp, generic_format_bpow.
now apply valid_exp.
assert (let u := round beta fexp Zceil x in pred u < u)%R as Hup.
now apply pred_lt_id.
-apply le_round_DN_lt_UP...
+apply round_DN_ge_UP_gt...
apply generic_format_pred...
now apply round_UP_pt.
Qed.
+Theorem UP_le_succ_DN :
+ forall x, (round beta fexp Zceil x <= succ (round beta fexp Zfloor x))%R.
+Proof.
+intros x.
+rewrite <- (Ropp_involutive x).
+rewrite round_DN_opp, round_UP_opp, succ_opp.
+apply Ropp_le_contravar.
+apply pred_UP_le_DN.
+Qed.
+
Theorem pred_UP_eq_DN :
forall x, ~ F x ->
(pred (round beta fexp Zceil x) = round beta fexp Zfloor x)%R.
@@ -2132,7 +2182,7 @@ Proof with auto with typeclass_instances.
intros x Fx.
apply Rle_antisym.
now apply pred_UP_le_DN.
-apply le_pred_lt; try apply generic_format_round...
+apply pred_ge_gt; try apply generic_format_round...
pose proof round_DN_UP_lt _ _ _ Fx as HE.
now apply Rlt_trans with (1 := proj1 HE) (2 := proj2 HE).
Qed.
@@ -2147,11 +2197,9 @@ rewrite succ_pred; trivial.
apply generic_format_round...
Qed.
-
-(* was betw_eq_DN *)
-Theorem round_DN_eq_betw: forall x d, F d
- -> (d <= x < succ d)%R
- -> round beta fexp Zfloor x = d.
+Theorem round_DN_eq :
+ forall x d, F d -> (d <= x < succ d)%R ->
+ round beta fexp Zfloor x = d.
Proof with auto with typeclass_instances.
intros x d Fd (Hxd1,Hxd2).
generalize (round_DN_pt beta fexp x); intros (T1,(T2,T3)).
@@ -2169,25 +2217,161 @@ apply generic_format_succ...
now left.
Qed.
-(* was betw_eq_UP *)
-Theorem round_UP_eq_betw: forall x u, F u
- -> (pred u < x <= u)%R
- -> round beta fexp Zceil x = u.
+Theorem round_UP_eq :
+ forall x u, F u -> (pred u < x <= u)%R ->
+ round beta fexp Zceil x = u.
Proof with auto with typeclass_instances.
intros x u Fu Hux.
rewrite <- (Ropp_involutive (round beta fexp Zceil x)).
rewrite <- round_DN_opp.
rewrite <- (Ropp_involutive u).
apply f_equal.
-apply round_DN_eq_betw; try assumption.
+apply round_DN_eq; try assumption.
now apply generic_format_opp.
split;[now apply Ropp_le_contravar|idtac].
rewrite succ_opp.
now apply Ropp_lt_contravar.
Qed.
+Lemma ulp_ulp_0 : forall {H : Exp_not_FTZ fexp},
+ ulp (ulp 0) = ulp 0.
+Proof.
+intros H; case (negligible_exp_spec').
+intros (K1,K2).
+replace (ulp 0) with 0%R at 1; try easy.
+apply sym_eq; unfold ulp; rewrite Req_bool_true; try easy.
+now rewrite K1.
+intros (n,(Hn1,Hn2)).
+apply Rle_antisym.
+replace (ulp 0) with (bpow (fexp n)).
+rewrite ulp_bpow.
+apply bpow_le.
+now apply valid_exp.
+unfold ulp; rewrite Req_bool_true; try easy.
+rewrite Hn1; easy.
+now apply ulp_ge_ulp_0.
+Qed.
+Lemma ulp_succ_pos : forall x, F x -> (0 < x)%R ->
+ ulp (succ x) = ulp x \/ succ x = bpow (mag beta x).
+Proof with auto with typeclass_instances.
+intros x Fx Hx.
+generalize (Rlt_le _ _ Hx); intros Hx'.
+rewrite succ_eq_pos;[idtac|now left].
+destruct (mag beta x) as (e,He); simpl.
+rewrite Rabs_pos_eq in He; try easy.
+specialize (He (Rgt_not_eq _ _ Hx)).
+assert (H:(x+ulp x <= bpow e)%R).
+apply id_p_ulp_le_bpow; try assumption.
+apply He.
+destruct H;[left|now right].
+rewrite ulp_neq_0 at 1.
+2: apply Rgt_not_eq, Rgt_lt, Rlt_le_trans with x...
+2: rewrite <- (Rplus_0_r x) at 1; apply Rplus_le_compat_l.
+2: apply ulp_ge_0.
+rewrite ulp_neq_0 at 2.
+2: now apply Rgt_not_eq.
+f_equal; unfold cexp; f_equal.
+apply trans_eq with e.
+apply mag_unique_pos; split; try assumption.
+apply Rle_trans with (1:=proj1 He).
+rewrite <- (Rplus_0_r x) at 1; apply Rplus_le_compat_l.
+apply ulp_ge_0.
+now apply sym_eq, mag_unique_pos.
+Qed.
+
+
+Lemma ulp_round_pos :
+ forall { Not_FTZ_ : Exp_not_FTZ fexp},
+ forall rnd { Zrnd : Valid_rnd rnd } x,
+ (0 < x)%R -> ulp (round beta fexp rnd x) = ulp x
+ \/ round beta fexp rnd x = bpow (mag beta x).
+Proof with auto with typeclass_instances.
+intros Not_FTZ_ rnd Zrnd x Hx.
+case (generic_format_EM beta fexp x); intros Fx.
+rewrite round_generic...
+case (round_DN_or_UP beta fexp rnd x); intros Hr; rewrite Hr.
+left.
+apply ulp_DN; now left...
+assert (M:(0 <= round beta fexp Zfloor x)%R).
+apply round_ge_generic...
+apply generic_format_0...
+apply Rlt_le...
+destruct M as [M|M].
+rewrite <- (succ_DN_eq_UP x)...
+case (ulp_succ_pos (round beta fexp Zfloor x)); try intros Y.
+apply generic_format_round...
+assumption.
+rewrite ulp_DN in Y...
+now apply Rlt_le.
+right; rewrite Y.
+apply f_equal, mag_DN...
+left; rewrite <- (succ_DN_eq_UP x)...
+rewrite <- M, succ_0.
+rewrite ulp_ulp_0...
+case (negligible_exp_spec').
+intros (K1,K2).
+absurd (x = 0)%R.
+now apply Rgt_not_eq.
+apply eq_0_round_0_negligible_exp with Zfloor...
+intros (n,(Hn1,Hn2)).
+replace (ulp 0) with (bpow (fexp n)).
+2: unfold ulp; rewrite Req_bool_true; try easy.
+2: now rewrite Hn1.
+rewrite ulp_neq_0.
+2: apply Rgt_not_eq...
+unfold cexp; f_equal.
+destruct (mag beta x) as (e,He); simpl.
+apply sym_eq, valid_exp...
+assert (e <= fexp e)%Z.
+apply exp_small_round_0_pos with beta Zfloor x...
+rewrite <- (Rabs_pos_eq x).
+apply He, Rgt_not_eq...
+apply Rlt_le...
+replace (fexp n) with (fexp e); try assumption.
+now apply fexp_negligible_exp_eq.
+Qed.
+
+
+Theorem ulp_round : forall { Not_FTZ_ : Exp_not_FTZ fexp},
+ forall rnd { Zrnd : Valid_rnd rnd } x,
+ ulp (round beta fexp rnd x) = ulp x
+ \/ Rabs (round beta fexp rnd x) = bpow (mag beta x).
+Proof with auto with typeclass_instances.
+intros Not_FTZ_ rnd Zrnd x.
+case (Rtotal_order x 0); intros Zx.
+case (ulp_round_pos (Zrnd_opp rnd) (-x)).
+now apply Ropp_0_gt_lt_contravar.
+rewrite ulp_opp, <- ulp_opp.
+rewrite <- round_opp, Ropp_involutive.
+intros Y;now left.
+rewrite mag_opp.
+intros Y; right.
+rewrite <- (Ropp_involutive x) at 1.
+rewrite round_opp, Y.
+rewrite Rabs_Ropp, Rabs_right...
+apply Rle_ge, bpow_ge_0.
+destruct Zx as [Zx|Zx].
+left; rewrite Zx; rewrite round_0...
+rewrite Rabs_right.
+apply ulp_round_pos...
+apply Rle_ge, round_ge_generic...
+apply generic_format_0...
+now apply Rlt_le.
+Qed.
+
+Lemma succ_round_ge_id :
+ forall rnd { Zrnd : Valid_rnd rnd } x,
+ (x <= succ (round beta fexp rnd x))%R.
+Proof.
+intros rnd Vrnd x.
+apply (Rle_trans _ (round beta fexp Raux.Zceil x)).
+{ now apply round_UP_pt. }
+destruct (round_DN_or_UP beta fexp rnd x) as [Hr|Hr]; rewrite Hr.
+{ now apply UP_le_succ_DN. }
+apply succ_ge_id.
+Qed.
(** Properties of rounding to nearest and ulp *)
@@ -2215,14 +2399,14 @@ assert (T: (u < (u + succ u) / 2 < succ u)%R) by lra.
destruct T as (T1,T2).
apply Rnd_N_pt_monotone with F v ((u + succ u) / 2)%R...
apply round_N_pt...
-apply Rnd_DN_pt_N with (succ u)%R.
+apply Rnd_N_pt_DN with (succ u)%R.
pattern u at 3; replace u with (round beta fexp Zfloor ((u + succ u) / 2)).
apply round_DN_pt...
-apply round_DN_eq_betw; trivial.
+apply round_DN_eq; trivial.
split; try left; assumption.
pattern (succ u) at 2; replace (succ u) with (round beta fexp Zceil ((u + succ u) / 2)).
apply round_UP_pt...
-apply round_UP_eq_betw; trivial.
+apply round_UP_eq; trivial.
apply generic_format_succ...
rewrite pred_succ; trivial.
split; try left; assumption.
@@ -2275,12 +2459,12 @@ Lemma round_N_eq_DN_pt: forall choice x d u,
Proof with auto with typeclass_instances.
intros choice x d u Hd Hu H.
assert (H0:(d = round beta fexp Zfloor x)%R).
-apply Rnd_DN_pt_unicity with (1:=Hd).
+apply Rnd_DN_pt_unique with (1:=Hd).
apply round_DN_pt...
rewrite H0.
apply round_N_eq_DN.
rewrite <- H0.
-rewrite Rnd_UP_pt_unicity with F x (round beta fexp Zceil x) u; try assumption.
+rewrite Rnd_UP_pt_unique with F x (round beta fexp Zceil x) u; try assumption.
apply round_UP_pt...
Qed.
@@ -2310,13 +2494,28 @@ Lemma round_N_eq_UP_pt: forall choice x d u,
Proof with auto with typeclass_instances.
intros choice x d u Hd Hu H.
assert (H0:(u = round beta fexp Zceil x)%R).
-apply Rnd_UP_pt_unicity with (1:=Hu).
+apply Rnd_UP_pt_unique with (1:=Hu).
apply round_UP_pt...
rewrite H0.
apply round_N_eq_UP.
rewrite <- H0.
-rewrite Rnd_DN_pt_unicity with F x (round beta fexp Zfloor x) d; try assumption.
+rewrite Rnd_DN_pt_unique with F x (round beta fexp Zfloor x) d; try assumption.
apply round_DN_pt...
Qed.
+Lemma round_N_plus_ulp_ge :
+ forall { Hm : Monotone_exp fexp } choice1 choice2 x,
+ let rx := round beta fexp (Znearest choice2) x in
+ (x <= round beta fexp (Znearest choice1) (rx + ulp rx))%R.
+Proof.
+intros Hm choice1 choice2 x.
+simpl.
+set (rx := round _ _ _ x).
+assert (Vrnd1 : Valid_rnd (Znearest choice1)) by now apply valid_rnd_N.
+assert (Vrnd2 : Valid_rnd (Znearest choice2)) by now apply valid_rnd_N.
+apply (Rle_trans _ (succ rx)); [now apply succ_round_ge_id|].
+rewrite round_generic; [now apply succ_le_plus_ulp|now simpl|].
+now apply generic_format_plus_ulp, generic_format_round.
+Qed.
+
End Fcore_ulp.
diff --git a/flocq/Core/Fcore_Zaux.v b/flocq/Core/Zaux.v
index f6731b4c..e21d93a4 100644
--- a/flocq/Core/Fcore_Zaux.v
+++ b/flocq/Core/Zaux.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2011-2013 Sylvie Boldo
+Copyright (C) 2011-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2011-2013 Guillaume Melquiond
+Copyright (C) 2011-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -17,7 +17,7 @@ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)
-Require Import ZArith.
+Require Import ZArith Omega.
Require Import Zquot.
Section Zmissing.
@@ -25,7 +25,7 @@ Section Zmissing.
(** About Z *)
Theorem Zopp_le_cancel :
forall x y : Z,
- (-y <= -x)%Z -> Zle x y.
+ (-y <= -x)%Z -> Z.le x y.
Proof.
intros x y Hxy.
apply Zplus_le_reg_r with (-x - y)%Z.
@@ -37,7 +37,7 @@ Theorem Zgt_not_eq :
(y < x)%Z -> (x <> y)%Z.
Proof.
intros x y H Hn.
-apply Zlt_irrefl with x.
+apply Z.lt_irrefl with x.
now rewrite Hn at 1.
Qed.
@@ -69,29 +69,8 @@ End Proof_Irrelevance.
Section Even_Odd.
-(** Zeven, used for rounding to nearest, ties to even *)
-Definition Zeven (n : Z) :=
- match n with
- | Zpos (xO _) => true
- | Zneg (xO _) => true
- | Z0 => true
- | _ => false
- end.
-
-Theorem Zeven_mult :
- forall x y, Zeven (x * y) = orb (Zeven x) (Zeven y).
-Proof.
-now intros [|[xp|xp|]|[xp|xp|]] [|[yp|yp|]|[yp|yp|]].
-Qed.
-
-Theorem Zeven_opp :
- forall x, Zeven (- x) = Zeven x.
-Proof.
-now intros [|[n|n|]|[n|n|]].
-Qed.
-
Theorem Zeven_ex :
- forall x, exists p, x = (2 * p + if Zeven x then 0 else 1)%Z.
+ forall x, exists p, x = (2 * p + if Z.even x then 0 else 1)%Z.
Proof.
intros [|[n|n|]|[n|n|]].
now exists Z0.
@@ -105,37 +84,6 @@ now exists (Zneg n).
now exists (-1)%Z.
Qed.
-Theorem Zeven_2xp1 :
- forall n, Zeven (2 * n + 1) = false.
-Proof.
-intros n.
-destruct (Zeven_ex (2 * n + 1)) as (p, Hp).
-revert Hp.
-case (Zeven (2 * n + 1)) ; try easy.
-intros H.
-apply False_ind.
-omega.
-Qed.
-
-Theorem Zeven_plus :
- forall x y, Zeven (x + y) = Bool.eqb (Zeven x) (Zeven y).
-Proof.
-intros x y.
-destruct (Zeven_ex x) as (px, Hx).
-rewrite Hx at 1.
-destruct (Zeven_ex y) as (py, Hy).
-rewrite Hy at 1.
-replace (2 * px + (if Zeven x then 0 else 1) + (2 * py + (if Zeven y then 0 else 1)))%Z
- with (2 * (px + py) + ((if Zeven x then 0 else 1) + (if Zeven y then 0 else 1)))%Z by ring.
-case (Zeven x) ; case (Zeven y).
-rewrite Zplus_0_r.
-now rewrite Zeven_mult.
-apply Zeven_2xp1.
-apply Zeven_2xp1.
-replace (2 * (px + py) + (1 + 1))%Z with (2 * (px + py + 1))%Z by ring.
-now rewrite Zeven_mult.
-Qed.
-
End Even_Odd.
Section Zpower.
@@ -145,12 +93,12 @@ Theorem Zpower_plus :
Zpower n (k1 + k2) = (Zpower n k1 * Zpower n k2)%Z.
Proof.
intros n k1 k2 H1 H2.
-now apply Zpower_exp ; apply Zle_ge.
+now apply Zpower_exp ; apply Z.le_ge.
Qed.
Theorem Zpower_Zpower_nat :
forall b e, (0 <= e)%Z ->
- Zpower b e = Zpower_nat b (Zabs_nat e).
+ Zpower b e = Zpower_nat b (Z.abs_nat e).
Proof.
intros b [|e|e] He.
apply refl_equal.
@@ -181,40 +129,14 @@ rewrite Zpower_nat_S.
now apply Zmult_lt_0_compat.
Qed.
-Theorem Zeven_Zpower :
- forall b e, (0 < e)%Z ->
- Zeven (Zpower b e) = Zeven b.
-Proof.
-intros b e He.
-case_eq (Zeven b) ; intros Hb.
-(* b even *)
-replace e with (e - 1 + 1)%Z by ring.
-rewrite Zpower_exp.
-rewrite Zeven_mult.
-replace (Zeven (b ^ 1)) with true.
-apply Bool.orb_true_r.
-unfold Zpower, Zpower_pos. simpl.
-now rewrite Zmult_1_r.
-omega.
-discriminate.
-(* b odd *)
-rewrite Zpower_Zpower_nat.
-induction (Zabs_nat e).
-easy.
-unfold Zpower_nat. simpl.
-rewrite Zeven_mult.
-now rewrite Hb.
-now apply Zlt_le_weak.
-Qed.
-
Theorem Zeven_Zpower_odd :
- forall b e, (0 <= e)%Z -> Zeven b = false ->
- Zeven (Zpower b e) = false.
+ forall b e, (0 <= e)%Z -> Z.even b = false ->
+ Z.even (Zpower b e) = false.
Proof.
intros b e He Hb.
destruct (Z_le_lt_eq_dec _ _ He) as [He'|He'].
rewrite <- Hb.
-now apply Zeven_Zpower.
+now apply Z.even_pow.
now rewrite <- He'.
Qed.
@@ -239,7 +161,7 @@ Variable r : radix.
Theorem radix_gt_0 : (0 < r)%Z.
Proof.
-apply Zlt_le_trans with 2%Z.
+apply Z.lt_le_trans with 2%Z.
easy.
apply Zle_bool_imp_le.
apply r.
@@ -248,7 +170,7 @@ Qed.
Theorem radix_gt_1 : (1 < r)%Z.
Proof.
destruct r as (v, Hr). simpl.
-apply Zlt_le_trans with 2%Z.
+apply Z.lt_le_trans with 2%Z.
easy.
now apply Zle_bool_imp_le.
Qed.
@@ -273,7 +195,7 @@ easy.
rewrite Zpower_nat_S.
apply Zmult_lt_0_compat with (2 := IHn).
apply radix_gt_0.
-apply Zle_lt_trans with (1 * Zpower_nat r n)%Z.
+apply Z.le_lt_trans with (1 * Zpower_nat r n)%Z.
rewrite Zmult_1_l.
now apply (Zlt_le_succ 0).
apply Zmult_lt_compat_r with (1 := H).
@@ -287,7 +209,7 @@ Theorem Zpower_gt_0 :
Proof.
intros p Hp.
rewrite Zpower_Zpower_nat with (1 := Hp).
-induction (Zabs_nat p).
+induction (Z.abs_nat p).
easy.
rewrite Zpower_nat_S.
apply Zmult_lt_0_compat with (2 := IHn).
@@ -336,7 +258,7 @@ rewrite <- (Zmult_1_r (r ^ e1)) at 1.
apply Zmult_lt_compat2.
split.
now apply Zpower_gt_0.
-apply Zle_refl.
+apply Z.le_refl.
split.
easy.
apply Zpower_gt_1.
@@ -363,6 +285,36 @@ apply Zpower_le.
clear -H ; omega.
Qed.
+Theorem Zpower_gt_id :
+ forall n, (n < Zpower r n)%Z.
+Proof.
+intros [|n|n] ; try easy.
+simpl.
+rewrite Zpower_pos_nat.
+rewrite Zpos_eq_Z_of_nat_o_nat_of_P.
+induction (nat_of_P n).
+easy.
+rewrite inj_S.
+change (Zpower_nat r (S n0)) with (r * Zpower_nat r n0)%Z.
+unfold Z.succ.
+apply Z.lt_le_trans with (r * (Z_of_nat n0 + 1))%Z.
+clear.
+apply Zlt_0_minus_lt.
+replace (r * (Z_of_nat n0 + 1) - (Z_of_nat n0 + 1))%Z with ((r - 1) * (Z_of_nat n0 + 1))%Z by ring.
+apply Zmult_lt_0_compat.
+cut (2 <= r)%Z. omega.
+apply Zle_bool_imp_le.
+apply r.
+apply (Zle_lt_succ 0).
+apply Zle_0_nat.
+apply Zmult_le_compat_l.
+now apply Zlt_le_succ.
+apply Z.le_trans with 2%Z.
+easy.
+apply Zle_bool_imp_le.
+apply r.
+Qed.
+
End Zpower.
Section Div_Mod.
@@ -380,7 +332,7 @@ rewrite Zopp_mult_distr_l.
apply Z_mod_plus.
easy.
apply Zmult_gt_0_compat.
-now apply Zlt_gt.
+now apply Z.lt_gt.
easy.
now elim Hb.
Qed.
@@ -411,7 +363,7 @@ Qed.
Theorem Zdiv_mod_mult :
forall n a b, (0 <= a)%Z -> (0 <= b)%Z ->
- (Zdiv (Zmod n (a * b)) a) = Zmod (Zdiv n a) b.
+ (Z.div (Zmod n (a * b)) a) = Zmod (Z.div n a) b.
Proof.
intros n a b Ha Hb.
destruct (Zle_lt_or_eq _ _ Ha) as [Ha'|Ha'].
@@ -421,12 +373,12 @@ rewrite (Zmult_comm a b) at 2.
rewrite Zmult_assoc.
unfold Zminus.
rewrite Zopp_mult_distr_l.
-rewrite Z_div_plus by now apply Zlt_gt.
+rewrite Z_div_plus by now apply Z.lt_gt.
rewrite <- Zdiv_Zdiv by easy.
apply sym_eq.
apply Zmod_eq.
-now apply Zlt_gt.
-now apply Zmult_gt_0_compat ; apply Zlt_gt.
+now apply Z.lt_gt.
+now apply Zmult_gt_0_compat ; apply Z.lt_gt.
rewrite <- Hb'.
rewrite Zmult_0_r, 2!Zmod_0_r.
apply Zdiv_0_l.
@@ -439,7 +391,7 @@ Theorem ZOdiv_mod_mult :
(Z.quot (Z.rem n (a * b)) a) = Z.rem (Z.quot n a) b.
Proof.
intros n a b.
-destruct (Z_eq_dec a 0) as [Za|Za].
+destruct (Z.eq_dec a 0) as [Za|Za].
rewrite Za.
now rewrite 2!Zquot_0_r, Zrem_0_l.
assert (Z.rem n (a * b) = n + - (Z.quot (Z.quot n a) b * b) * a)%Z.
@@ -456,34 +408,34 @@ Qed.
Theorem ZOdiv_small_abs :
forall a b,
- (Zabs a < b)%Z -> Z.quot a b = Z0.
+ (Z.abs a < b)%Z -> Z.quot a b = Z0.
Proof.
intros a b Ha.
destruct (Zle_or_lt 0 a) as [H|H].
-apply Zquot_small.
+apply Z.quot_small.
split.
exact H.
-now rewrite Zabs_eq in Ha.
-apply Zopp_inj.
-rewrite <- Zquot_opp_l, Zopp_0.
-apply Zquot_small.
+now rewrite Z.abs_eq in Ha.
+apply Z.opp_inj.
+rewrite <- Zquot_opp_l, Z.opp_0.
+apply Z.quot_small.
generalize (Zabs_non_eq a).
omega.
Qed.
Theorem ZOmod_small_abs :
forall a b,
- (Zabs a < b)%Z -> Z.rem a b = a.
+ (Z.abs a < b)%Z -> Z.rem a b = a.
Proof.
intros a b Ha.
destruct (Zle_or_lt 0 a) as [H|H].
-apply Zrem_small.
+apply Z.rem_small.
split.
exact H.
-now rewrite Zabs_eq in Ha.
-apply Zopp_inj.
+now rewrite Z.abs_eq in Ha.
+apply Z.opp_inj.
rewrite <- Zrem_opp_l.
-apply Zrem_small.
+apply Z.rem_small.
generalize (Zabs_non_eq a).
omega.
Qed.
@@ -493,7 +445,7 @@ Theorem ZOdiv_plus :
(Z.quot (a + b) c = Z.quot a c + Z.quot b c + Z.quot (Z.rem a c + Z.rem b c) c)%Z.
Proof.
intros a b c Hab.
-destruct (Z_eq_dec c 0) as [Zc|Zc].
+destruct (Z.eq_dec c 0) as [Zc|Zc].
now rewrite Zc, 4!Zquot_0_r.
apply Zmult_reg_r with (1 := Zc).
rewrite 2!Zmult_plus_distr_l.
@@ -632,8 +584,8 @@ Proof.
intros x y Hxy.
generalize (Zle_cases x y).
case Zle_bool ; intros H.
-elim (Zlt_irrefl x).
-now apply Zle_lt_trans with y.
+elim (Z.lt_irrefl x).
+now apply Z.le_lt_trans with y.
apply refl_equal.
Qed.
@@ -672,8 +624,8 @@ Proof.
intros x y Hxy.
generalize (Zlt_cases x y).
case Zlt_bool ; intros H.
-elim (Zlt_irrefl x).
-now apply Zlt_le_trans with y.
+elim (Z.lt_irrefl x).
+now apply Z.lt_le_trans with y.
apply refl_equal.
Qed.
@@ -707,32 +659,32 @@ Inductive Zcompare_prop (x y : Z) : comparison -> Prop :=
| Zcompare_Gt_ : (y < x)%Z -> Zcompare_prop x y Gt.
Theorem Zcompare_spec :
- forall x y, Zcompare_prop x y (Zcompare x y).
+ forall x y, Zcompare_prop x y (Z.compare x y).
Proof.
intros x y.
destruct (Z_dec x y) as [[H|H]|H].
generalize (Zlt_compare _ _ H).
-case (Zcompare x y) ; try easy.
+case (Z.compare x y) ; try easy.
now constructor.
generalize (Zgt_compare _ _ H).
-case (Zcompare x y) ; try easy.
+case (Z.compare x y) ; try easy.
constructor.
-now apply Zgt_lt.
+now apply Z.gt_lt.
generalize (proj2 (Zcompare_Eq_iff_eq _ _) H).
-case (Zcompare x y) ; try easy.
+case (Z.compare x y) ; try easy.
now constructor.
Qed.
Theorem Zcompare_Lt :
forall x y,
- (x < y)%Z -> Zcompare x y = Lt.
+ (x < y)%Z -> Z.compare x y = Lt.
Proof.
easy.
Qed.
Theorem Zcompare_Eq :
forall x y,
- (x = y)%Z -> Zcompare x y = Eq.
+ (x = y)%Z -> Z.compare x y = Eq.
Proof.
intros x y.
apply <- Zcompare_Eq_iff_eq.
@@ -740,21 +692,29 @@ Qed.
Theorem Zcompare_Gt :
forall x y,
- (y < x)%Z -> Zcompare x y = Gt.
+ (y < x)%Z -> Z.compare x y = Gt.
Proof.
intros x y.
-apply Zlt_gt.
+apply Z.lt_gt.
Qed.
End Zcompare.
Section cond_Zopp.
-Definition cond_Zopp (b : bool) m := if b then Zopp m else m.
+Definition cond_Zopp (b : bool) m := if b then Z.opp m else m.
+
+Theorem cond_Zopp_negb :
+ forall x y, cond_Zopp (negb x) y = Z.opp (cond_Zopp x y).
+Proof.
+intros [|] y.
+apply sym_eq, Z.opp_involutive.
+easy.
+Qed.
Theorem abs_cond_Zopp :
forall b m,
- Zabs (cond_Zopp b m) = Zabs m.
+ Z.abs (cond_Zopp b m) = Z.abs m.
Proof.
intros [|] m.
apply Zabs_Zopp.
@@ -763,14 +723,14 @@ Qed.
Theorem cond_Zopp_Zlt_bool :
forall m,
- cond_Zopp (Zlt_bool m 0) m = Zabs m.
+ cond_Zopp (Zlt_bool m 0) m = Z.abs m.
Proof.
intros m.
apply sym_eq.
case Zlt_bool_spec ; intros Hm.
apply Zabs_non_eq.
now apply Zlt_le_weak.
-now apply Zabs_eq.
+now apply Z.abs_eq.
Qed.
End cond_Zopp.
@@ -808,11 +768,11 @@ Section faster_div.
Lemma Zdiv_eucl_unique :
forall a b,
- Zdiv_eucl a b = (Zdiv a b, Zmod a b).
+ Z.div_eucl a b = (Z.div a b, Zmod a b).
Proof.
intros a b.
-unfold Zdiv, Zmod.
-now case Zdiv_eucl.
+unfold Z.div, Zmod.
+now case Z.div_eucl.
Qed.
Fixpoint Zpos_div_eucl_aux1 (a b : positive) {struct b} :=
@@ -835,7 +795,7 @@ intros a b.
revert a.
induction b ; intros a.
- easy.
-- change (Z.pos_div_eucl a (Zpos b~0)) with (Zdiv_eucl (Zpos a) (Zpos b~0)).
+- change (Z.pos_div_eucl a (Zpos b~0)) with (Z.div_eucl (Zpos a) (Zpos b~0)).
rewrite Zdiv_eucl_unique.
change (Zpos b~0) with (2 * Zpos b)%Z.
rewrite Z.rem_mul_r by easy.
@@ -843,7 +803,7 @@ induction b ; intros a.
destruct a as [a|a|].
+ change (Zpos_div_eucl_aux1 a~1 b~0) with (let (q, r) := Zpos_div_eucl_aux1 a b in (q, 2 * r + 1)%Z).
rewrite IHb. clear IHb.
- change (Z.pos_div_eucl a (Zpos b)) with (Zdiv_eucl (Zpos a) (Zpos b)).
+ change (Z.pos_div_eucl a (Zpos b)) with (Z.div_eucl (Zpos a) (Zpos b)).
rewrite Zdiv_eucl_unique.
change (Zpos a~1) with (1 + 2 * Zpos a)%Z.
rewrite (Zmult_comm 2 (Zpos a)).
@@ -853,7 +813,7 @@ induction b ; intros a.
apply Zplus_comm.
+ change (Zpos_div_eucl_aux1 a~0 b~0) with (let (q, r) := Zpos_div_eucl_aux1 a b in (q, 2 * r)%Z).
rewrite IHb. clear IHb.
- change (Z.pos_div_eucl a (Zpos b)) with (Zdiv_eucl (Zpos a) (Zpos b)).
+ change (Z.pos_div_eucl a (Zpos b)) with (Z.div_eucl (Zpos a) (Zpos b)).
rewrite Zdiv_eucl_unique.
change (Zpos a~0) with (2 * Zpos a)%Z.
rewrite (Zmult_comm 2 (Zpos a)).
@@ -861,7 +821,7 @@ induction b ; intros a.
apply f_equal.
now rewrite Z_mod_mult.
+ easy.
-- change (Z.pos_div_eucl a 1) with (Zdiv_eucl (Zpos a) 1).
+- change (Z.pos_div_eucl a 1) with (Z.div_eucl (Zpos a) 1).
rewrite Zdiv_eucl_unique.
now rewrite Zdiv_1_r, Zmod_1_r.
Qed.
@@ -879,13 +839,13 @@ Lemma Zpos_div_eucl_aux_correct :
Proof.
intros a b.
unfold Zpos_div_eucl_aux.
-change (Z.pos_div_eucl a (Zpos b)) with (Zdiv_eucl (Zpos a) (Zpos b)).
+change (Z.pos_div_eucl a (Zpos b)) with (Z.div_eucl (Zpos a) (Zpos b)).
rewrite Zdiv_eucl_unique.
case Pos.compare_spec ; intros H.
now rewrite H, Z_div_same, Z_mod_same.
now rewrite Zdiv_small, Zmod_small by (split ; easy).
rewrite Zpos_div_eucl_aux1_correct.
-change (Z.pos_div_eucl a (Zpos b)) with (Zdiv_eucl (Zpos a) (Zpos b)).
+change (Z.pos_div_eucl a (Zpos b)) with (Z.div_eucl (Zpos a) (Zpos b)).
apply Zdiv_eucl_unique.
Qed.
@@ -920,7 +880,7 @@ Definition Zfast_div_eucl (a b : Z) :=
Theorem Zfast_div_eucl_correct :
forall a b : Z,
- Zfast_div_eucl a b = Zdiv_eucl a b.
+ Zfast_div_eucl a b = Z.div_eucl a b.
Proof.
unfold Zfast_div_eucl.
intros [|a|a] [|b|b] ; try rewrite Zpos_div_eucl_aux_correct ; easy.
diff --git a/flocq/IEEE754/Binary.v b/flocq/IEEE754/Binary.v
new file mode 100644
index 00000000..0ec3a297
--- /dev/null
+++ b/flocq/IEEE754/Binary.v
@@ -0,0 +1,2814 @@
+(**
+This file is part of the Flocq formalization of floating-point
+arithmetic in Coq: http://flocq.gforge.inria.fr/
+
+Copyright (C) 2010-2018 Sylvie Boldo
+#<br />#
+Copyright (C) 2010-2018 Guillaume Melquiond
+
+This library is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+This library is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+COPYING file for more details.
+*)
+
+(** * IEEE-754 arithmetic *)
+Require Import Core Digits Round Bracket Operations Div Sqrt Relative.
+Require Import Psatz.
+
+Section AnyRadix.
+
+Inductive full_float :=
+ | F754_zero (s : bool)
+ | F754_infinity (s : bool)
+ | F754_nan (s : bool) (m : positive)
+ | F754_finite (s : bool) (m : positive) (e : Z).
+
+Definition FF2R beta x :=
+ match x with
+ | F754_finite s m e => F2R (Float beta (cond_Zopp s (Zpos m)) e)
+ | _ => 0%R
+ end.
+
+End AnyRadix.
+
+Section Binary.
+
+Arguments exist {A} {P}.
+
+(** [prec] is the number of bits of the mantissa including the implicit one;
+ [emax] is the exponent of the infinities.
+ For instance, binary32 is defined by [prec = 24] and [emax = 128]. *)
+Variable prec emax : Z.
+Context (prec_gt_0_ : Prec_gt_0 prec).
+Hypothesis Hmax : (prec < emax)%Z.
+
+Let emin := (3 - emax - prec)%Z.
+Let fexp := FLT_exp emin prec.
+Instance fexp_correct : Valid_exp fexp := FLT_exp_valid emin prec.
+Instance fexp_monotone : Monotone_exp fexp := FLT_exp_monotone emin prec.
+
+Definition canonical_mantissa m e :=
+ Zeq_bool (fexp (Zpos (digits2_pos m) + e)) e.
+
+Definition bounded m e :=
+ andb (canonical_mantissa m e) (Zle_bool e (emax - prec)).
+
+Definition nan_pl pl :=
+ Zlt_bool (Zpos (digits2_pos pl)) prec.
+
+Definition valid_binary x :=
+ match x with
+ | F754_finite _ m e => bounded m e
+ | F754_nan _ pl => nan_pl pl
+ | _ => true
+ end.
+
+(** Basic type used for representing binary FP numbers.
+ Note that there is exactly one such object per FP datum. *)
+
+Inductive binary_float :=
+ | B754_zero (s : bool)
+ | B754_infinity (s : bool)
+ | B754_nan (s : bool) (pl : positive) :
+ nan_pl pl = true -> binary_float
+ | B754_finite (s : bool) (m : positive) (e : Z) :
+ bounded m e = true -> binary_float.
+
+Definition FF2B x :=
+ match x as x return valid_binary x = true -> binary_float with
+ | F754_finite s m e => B754_finite s m e
+ | F754_infinity s => fun _ => B754_infinity s
+ | F754_zero s => fun _ => B754_zero s
+ | F754_nan b pl => fun H => B754_nan b pl H
+ end.
+
+Definition B2FF x :=
+ match x with
+ | B754_finite s m e _ => F754_finite s m e
+ | B754_infinity s => F754_infinity s
+ | B754_zero s => F754_zero s
+ | B754_nan b pl _ => F754_nan b pl
+ end.
+
+Definition B2R f :=
+ match f with
+ | B754_finite s m e _ => F2R (Float radix2 (cond_Zopp s (Zpos m)) e)
+ | _ => 0%R
+ end.
+
+Theorem FF2R_B2FF :
+ forall x,
+ FF2R radix2 (B2FF x) = B2R x.
+Proof.
+now intros [sx|sx|sx plx Hplx|sx mx ex Hx].
+Qed.
+
+Theorem B2FF_FF2B :
+ forall x Hx,
+ B2FF (FF2B x Hx) = x.
+Proof.
+now intros [sx|sx|sx plx|sx mx ex] Hx.
+Qed.
+
+Theorem valid_binary_B2FF :
+ forall x,
+ valid_binary (B2FF x) = true.
+Proof.
+now intros [sx|sx|sx plx Hplx|sx mx ex Hx].
+Qed.
+
+Theorem FF2B_B2FF :
+ forall x H,
+ FF2B (B2FF x) H = x.
+Proof.
+intros [sx|sx|sx plx Hplx|sx mx ex Hx] H ; try easy.
+apply f_equal, eqbool_irrelevance.
+apply f_equal, eqbool_irrelevance.
+Qed.
+
+Theorem FF2B_B2FF_valid :
+ forall x,
+ FF2B (B2FF x) (valid_binary_B2FF x) = x.
+Proof.
+intros x.
+apply FF2B_B2FF.
+Qed.
+
+Theorem B2R_FF2B :
+ forall x Hx,
+ B2R (FF2B x Hx) = FF2R radix2 x.
+Proof.
+now intros [sx|sx|sx plx|sx mx ex] Hx.
+Qed.
+
+Theorem match_FF2B :
+ forall {T} fz fi fn ff x Hx,
+ match FF2B x Hx return T with
+ | B754_zero sx => fz sx
+ | B754_infinity sx => fi sx
+ | B754_nan b p _ => fn b p
+ | B754_finite sx mx ex _ => ff sx mx ex
+ end =
+ match x with
+ | F754_zero sx => fz sx
+ | F754_infinity sx => fi sx
+ | F754_nan b p => fn b p
+ | F754_finite sx mx ex => ff sx mx ex
+ end.
+Proof.
+now intros T fz fi fn ff [sx|sx|sx plx|sx mx ex] Hx.
+Qed.
+
+Theorem canonical_canonical_mantissa :
+ forall (sx : bool) mx ex,
+ canonical_mantissa mx ex = true ->
+ canonical radix2 fexp (Float radix2 (cond_Zopp sx (Zpos mx)) ex).
+Proof.
+intros sx mx ex H.
+assert (Hx := Zeq_bool_eq _ _ H). clear H.
+apply sym_eq.
+simpl.
+pattern ex at 2 ; rewrite <- Hx.
+apply (f_equal fexp).
+rewrite mag_F2R_Zdigits.
+rewrite <- Zdigits_abs.
+rewrite Zpos_digits2_pos.
+now case sx.
+now case sx.
+Qed.
+
+Theorem generic_format_B2R :
+ forall x,
+ generic_format radix2 fexp (B2R x).
+Proof.
+intros [sx|sx|sx plx Hx |sx mx ex Hx] ; try apply generic_format_0.
+simpl.
+apply generic_format_canonical.
+apply canonical_canonical_mantissa.
+now destruct (andb_prop _ _ Hx) as (H, _).
+Qed.
+
+Theorem FLT_format_B2R :
+ forall x,
+ FLT_format radix2 emin prec (B2R x).
+Proof with auto with typeclass_instances.
+intros x.
+apply FLT_format_generic...
+apply generic_format_B2R.
+Qed.
+
+Theorem B2FF_inj :
+ forall x y : binary_float,
+ B2FF x = B2FF y ->
+ x = y.
+Proof.
+intros [sx|sx|sx plx Hplx|sx mx ex Hx] [sy|sy|sy ply Hply|sy my ey Hy] ; try easy.
+(* *)
+intros H.
+now inversion H.
+(* *)
+intros H.
+now inversion H.
+(* *)
+intros H.
+inversion H.
+clear H.
+revert Hplx.
+rewrite H2.
+intros Hx.
+apply f_equal, eqbool_irrelevance.
+(* *)
+intros H.
+inversion H.
+clear H.
+revert Hx.
+rewrite H2, H3.
+intros Hx.
+apply f_equal, eqbool_irrelevance.
+Qed.
+
+Definition is_finite_strict f :=
+ match f with
+ | B754_finite _ _ _ _ => true
+ | _ => false
+ end.
+
+Theorem B2R_inj:
+ forall x y : binary_float,
+ is_finite_strict x = true ->
+ is_finite_strict y = true ->
+ B2R x = B2R y ->
+ x = y.
+Proof.
+intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
+simpl.
+intros _ _ Heq.
+assert (Hs: sx = sy).
+(* *)
+revert Heq. clear.
+case sx ; case sy ; try easy ;
+ intros Heq ; apply False_ind ; revert Heq.
+apply Rlt_not_eq.
+apply Rlt_trans with R0.
+now apply F2R_lt_0.
+now apply F2R_gt_0.
+apply Rgt_not_eq.
+apply Rgt_trans with R0.
+now apply F2R_gt_0.
+now apply F2R_lt_0.
+assert (mx = my /\ ex = ey).
+(* *)
+refine (_ (canonical_unique _ fexp _ _ _ _ Heq)).
+rewrite Hs.
+now case sy ; intro H ; injection H ; split.
+apply canonical_canonical_mantissa.
+exact (proj1 (andb_prop _ _ Hx)).
+apply canonical_canonical_mantissa.
+exact (proj1 (andb_prop _ _ Hy)).
+(* *)
+revert Hx.
+rewrite Hs, (proj1 H), (proj2 H).
+intros Hx.
+apply f_equal.
+apply eqbool_irrelevance.
+Qed.
+
+Definition Bsign x :=
+ match x with
+ | B754_nan s _ _ => s
+ | B754_zero s => s
+ | B754_infinity s => s
+ | B754_finite s _ _ _ => s
+ end.
+
+Definition sign_FF x :=
+ match x with
+ | F754_nan s _ => s
+ | F754_zero s => s
+ | F754_infinity s => s
+ | F754_finite s _ _ => s
+ end.
+
+Theorem Bsign_FF2B :
+ forall x H,
+ Bsign (FF2B x H) = sign_FF x.
+Proof.
+now intros [sx|sx|sx plx|sx mx ex] H.
+Qed.
+
+Definition is_finite f :=
+ match f with
+ | B754_finite _ _ _ _ => true
+ | B754_zero _ => true
+ | _ => false
+ end.
+
+Definition is_finite_FF f :=
+ match f with
+ | F754_finite _ _ _ => true
+ | F754_zero _ => true
+ | _ => false
+ end.
+
+Theorem is_finite_FF2B :
+ forall x Hx,
+ is_finite (FF2B x Hx) = is_finite_FF x.
+Proof.
+now intros [| | |].
+Qed.
+
+Theorem is_finite_FF_B2FF :
+ forall x,
+ is_finite_FF (B2FF x) = is_finite x.
+Proof.
+now intros [| |? []|].
+Qed.
+
+Theorem B2R_Bsign_inj:
+ forall x y : binary_float,
+ is_finite x = true ->
+ is_finite y = true ->
+ B2R x = B2R y ->
+ Bsign x = Bsign y ->
+ x = y.
+Proof.
+intros. destruct x, y; try (apply B2R_inj; now eauto).
+- simpl in H2. congruence.
+- symmetry in H1. apply Rmult_integral in H1.
+ destruct H1. apply (eq_IZR _ 0) in H1. destruct s0; discriminate H1.
+ simpl in H1. pose proof (bpow_gt_0 radix2 e).
+ rewrite H1 in H3. apply Rlt_irrefl in H3. destruct H3.
+- apply Rmult_integral in H1.
+ destruct H1. apply (eq_IZR _ 0) in H1. destruct s; discriminate H1.
+ simpl in H1. pose proof (bpow_gt_0 radix2 e).
+ rewrite H1 in H3. apply Rlt_irrefl in H3. destruct H3.
+Qed.
+
+Definition is_nan f :=
+ match f with
+ | B754_nan _ _ _ => true
+ | _ => false
+ end.
+
+Definition is_nan_FF f :=
+ match f with
+ | F754_nan _ _ => true
+ | _ => false
+ end.
+
+Theorem is_nan_FF2B :
+ forall x Hx,
+ is_nan (FF2B x Hx) = is_nan_FF x.
+Proof.
+now intros [| | |].
+Qed.
+
+Theorem is_nan_FF_B2FF :
+ forall x,
+ is_nan_FF (B2FF x) = is_nan x.
+Proof.
+now intros [| |? []|].
+Qed.
+
+Definition get_nan_pl (x : binary_float) : positive :=
+ match x with B754_nan _ pl _ => pl | _ => xH end.
+
+Definition build_nan (x : { x | is_nan x = true }) : binary_float.
+Proof.
+apply (B754_nan (Bsign (proj1_sig x)) (get_nan_pl (proj1_sig x))).
+destruct x as [x H].
+simpl.
+revert H.
+assert (H: false = true -> nan_pl 1 = true) by now destruct (nan_pl 1).
+destruct x; try apply H.
+intros _.
+apply e.
+Defined.
+
+Theorem build_nan_correct :
+ forall x : { x | is_nan x = true },
+ build_nan x = proj1_sig x.
+Proof.
+intros [x H].
+now destruct x.
+Qed.
+
+Theorem B2R_build_nan :
+ forall x, B2R (build_nan x) = 0%R.
+Proof.
+easy.
+Qed.
+
+Theorem is_finite_build_nan :
+ forall x, is_finite (build_nan x) = false.
+Proof.
+easy.
+Qed.
+
+Theorem is_nan_build_nan :
+ forall x, is_nan (build_nan x) = true.
+Proof.
+easy.
+Qed.
+
+Definition erase (x : binary_float) : binary_float.
+Proof.
+destruct x as [s|s|s pl H|s m e H].
+- exact (B754_zero s).
+- exact (B754_infinity s).
+- apply (B754_nan s pl).
+ destruct nan_pl.
+ apply eq_refl.
+ exact H.
+- apply (B754_finite s m e).
+ destruct bounded.
+ apply eq_refl.
+ exact H.
+Defined.
+
+Theorem erase_correct :
+ forall x, erase x = x.
+Proof.
+destruct x as [s|s|s pl H|s m e H] ; try easy ; simpl.
+- apply f_equal, eqbool_irrelevance.
+- apply f_equal, eqbool_irrelevance.
+Qed.
+
+(** Opposite *)
+
+Definition Bopp opp_nan x :=
+ match x with
+ | B754_nan _ _ _ => build_nan (opp_nan x)
+ | B754_infinity sx => B754_infinity (negb sx)
+ | B754_finite sx mx ex Hx => B754_finite (negb sx) mx ex Hx
+ | B754_zero sx => B754_zero (negb sx)
+ end.
+
+Theorem Bopp_involutive :
+ forall opp_nan x,
+ is_nan x = false ->
+ Bopp opp_nan (Bopp opp_nan x) = x.
+Proof.
+now intros opp_nan [sx|sx|sx plx|sx mx ex Hx] ; simpl ; try rewrite Bool.negb_involutive.
+Qed.
+
+Theorem B2R_Bopp :
+ forall opp_nan x,
+ B2R (Bopp opp_nan x) = (- B2R x)%R.
+Proof.
+intros opp_nan [sx|sx|sx plx Hplx|sx mx ex Hx]; apply sym_eq ; try apply Ropp_0.
+simpl.
+rewrite <- F2R_opp.
+now case sx.
+Qed.
+
+Theorem is_finite_Bopp :
+ forall opp_nan x,
+ is_finite (Bopp opp_nan x) = is_finite x.
+Proof.
+now intros opp_nan [| | |].
+Qed.
+
+Lemma Bsign_Bopp :
+ forall opp_nan x, is_nan x = false -> Bsign (Bopp opp_nan x) = negb (Bsign x).
+Proof. now intros opp_nan [s|s|s pl H|s m e H]. Qed.
+
+(** Absolute value *)
+
+Definition Babs abs_nan (x : binary_float) : binary_float :=
+ match x with
+ | B754_nan _ _ _ => build_nan (abs_nan x)
+ | B754_infinity sx => B754_infinity false
+ | B754_finite sx mx ex Hx => B754_finite false mx ex Hx
+ | B754_zero sx => B754_zero false
+ end.
+
+Theorem B2R_Babs :
+ forall abs_nan x,
+ B2R (Babs abs_nan x) = Rabs (B2R x).
+Proof.
+ intros abs_nan [sx|sx|sx plx Hx|sx mx ex Hx]; apply sym_eq ; try apply Rabs_R0.
+ simpl. rewrite <- F2R_abs. now destruct sx.
+Qed.
+
+Theorem is_finite_Babs :
+ forall abs_nan x,
+ is_finite (Babs abs_nan x) = is_finite x.
+Proof.
+ now intros abs_nan [| | |].
+Qed.
+
+Theorem Bsign_Babs :
+ forall abs_nan x,
+ is_nan x = false ->
+ Bsign (Babs abs_nan x) = false.
+Proof.
+ now intros abs_nan [| | |].
+Qed.
+
+Theorem Babs_idempotent :
+ forall abs_nan (x: binary_float),
+ is_nan x = false ->
+ Babs abs_nan (Babs abs_nan x) = Babs abs_nan x.
+Proof.
+ now intros abs_nan [sx|sx|sx plx|sx mx ex Hx].
+Qed.
+
+Theorem Babs_Bopp :
+ forall abs_nan opp_nan x,
+ is_nan x = false ->
+ Babs abs_nan (Bopp opp_nan x) = Babs abs_nan x.
+Proof.
+ now intros abs_nan opp_nan [| | |].
+Qed.
+
+(** Comparison
+
+[Some c] means ordered as per [c]; [None] means unordered. *)
+
+Definition Bcompare (f1 f2 : binary_float) : option comparison :=
+ match f1, f2 with
+ | B754_nan _ _ _,_ | _,B754_nan _ _ _ => None
+ | B754_infinity s1, B754_infinity s2 =>
+ Some match s1, s2 with
+ | true, true => Eq
+ | false, false => Eq
+ | true, false => Lt
+ | false, true => Gt
+ end
+ | B754_infinity s, _ => Some (if s then Lt else Gt)
+ | _, B754_infinity s => Some (if s then Gt else Lt)
+ | B754_finite s _ _ _, B754_zero _ => Some (if s then Lt else Gt)
+ | B754_zero _, B754_finite s _ _ _ => Some (if s then Gt else Lt)
+ | B754_zero _, B754_zero _ => Some Eq
+ | B754_finite s1 m1 e1 _, B754_finite s2 m2 e2 _ =>
+ Some match s1, s2 with
+ | true, false => Lt
+ | false, true => Gt
+ | false, false =>
+ match Z.compare e1 e2 with
+ | Lt => Lt
+ | Gt => Gt
+ | Eq => Pcompare m1 m2 Eq
+ end
+ | true, true =>
+ match Z.compare e1 e2 with
+ | Lt => Gt
+ | Gt => Lt
+ | Eq => CompOpp (Pcompare m1 m2 Eq)
+ end
+ end
+ end.
+
+Theorem Bcompare_correct :
+ forall f1 f2,
+ is_finite f1 = true -> is_finite f2 = true ->
+ Bcompare f1 f2 = Some (Rcompare (B2R f1) (B2R f2)).
+Proof.
+ Ltac apply_Rcompare :=
+ match goal with
+ | [ |- Lt = Rcompare _ _ ] => symmetry; apply Rcompare_Lt
+ | [ |- Eq = Rcompare _ _ ] => symmetry; apply Rcompare_Eq
+ | [ |- Gt = Rcompare _ _ ] => symmetry; apply Rcompare_Gt
+ end.
+ unfold Bcompare; intros f1 f2 H1 H2.
+ destruct f1, f2; try easy; apply f_equal; clear H1 H2.
+ now rewrite Rcompare_Eq.
+ destruct s0 ; apply_Rcompare.
+ now apply F2R_lt_0.
+ now apply F2R_gt_0.
+ destruct s ; apply_Rcompare.
+ now apply F2R_lt_0.
+ now apply F2R_gt_0.
+ simpl.
+ apply andb_prop in e0; destruct e0; apply (canonical_canonical_mantissa false) in H.
+ apply andb_prop in e2; destruct e2; apply (canonical_canonical_mantissa false) in H1.
+ pose proof (Zcompare_spec e e1); unfold canonical, Fexp in H1, H.
+ assert (forall m1 m2 e1 e2,
+ let x := (IZR (Zpos m1) * bpow radix2 e1)%R in
+ let y := (IZR (Zpos m2) * bpow radix2 e2)%R in
+ (cexp radix2 fexp x < cexp radix2 fexp y)%Z -> (x < y)%R).
+ {
+ intros; apply Rnot_le_lt; intro; apply (mag_le radix2) in H5.
+ apply Zlt_not_le with (1 := H4).
+ now apply fexp_monotone.
+ now apply (F2R_gt_0 _ (Float radix2 (Zpos m2) e2)).
+ }
+ assert (forall m1 m2 e1 e2, (IZR (- Zpos m1) * bpow radix2 e1 < IZR (Zpos m2) * bpow radix2 e2)%R).
+ {
+ intros; apply (Rlt_trans _ 0%R).
+ now apply (F2R_lt_0 _ (Float radix2 (Zneg m1) e0)).
+ now apply (F2R_gt_0 _ (Float radix2 (Zpos m2) e2)).
+ }
+ unfold F2R, Fnum, Fexp.
+ destruct s, s0; try (now apply_Rcompare; apply H5); inversion H3;
+ try (apply_Rcompare; apply H4; rewrite H, H1 in H7; assumption);
+ try (apply_Rcompare; do 2 rewrite opp_IZR, Ropp_mult_distr_l_reverse;
+ apply Ropp_lt_contravar; apply H4; rewrite H, H1 in H7; assumption);
+ rewrite H7, Rcompare_mult_r, Rcompare_IZR by (apply bpow_gt_0); reflexivity.
+Qed.
+
+Theorem Bcompare_swap :
+ forall x y,
+ Bcompare y x = match Bcompare x y with Some c => Some (CompOpp c) | None => None end.
+Proof.
+ intros.
+ destruct x as [ ? | [] | ? ? | [] mx ex Bx ];
+ destruct y as [ ? | [] | ? ? | [] my ey By ]; simpl; try easy.
+- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy.
+ now rewrite (Pcompare_antisym mx my).
+- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy.
+ now rewrite Pcompare_antisym.
+Qed.
+
+Theorem bounded_lt_emax :
+ forall mx ex,
+ bounded mx ex = true ->
+ (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R.
+Proof.
+intros mx ex Hx.
+destruct (andb_prop _ _ Hx) as (H1,H2).
+generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1.
+generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2.
+generalize (mag_F2R_Zdigits radix2 (Zpos mx) ex).
+destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex).
+unfold mag_val.
+intros H.
+apply Rlt_le_trans with (bpow radix2 e').
+change (Zpos mx) with (Z.abs (Zpos mx)).
+rewrite F2R_Zabs.
+apply Ex.
+apply Rgt_not_eq.
+now apply F2R_gt_0.
+apply bpow_le.
+rewrite H. 2: discriminate.
+revert H1. clear -H2.
+rewrite Zpos_digits2_pos.
+unfold fexp, FLT_exp.
+intros ; zify ; omega.
+Qed.
+
+Theorem bounded_ge_emin :
+ forall mx ex,
+ bounded mx ex = true ->
+ (bpow radix2 emin <= F2R (Float radix2 (Zpos mx) ex))%R.
+Proof.
+intros mx ex Hx.
+destruct (andb_prop _ _ Hx) as [H1 _].
+apply Zeq_bool_eq in H1.
+generalize (mag_F2R_Zdigits radix2 (Zpos mx) ex).
+destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as [e' Ex].
+unfold mag_val.
+intros H.
+assert (H0 : Zpos mx <> 0%Z) by easy.
+rewrite Rabs_pos_eq in Ex by now apply F2R_ge_0.
+refine (Rle_trans _ _ _ _ (proj1 (Ex _))).
+2: now apply F2R_neq_0.
+apply bpow_le.
+rewrite H by easy.
+revert H1.
+rewrite Zpos_digits2_pos.
+generalize (Zdigits radix2 (Zpos mx)) (Zdigits_gt_0 radix2 (Zpos mx) H0).
+unfold fexp, FLT_exp.
+clear -prec_gt_0_.
+unfold Prec_gt_0 in prec_gt_0_.
+clearbody emin.
+intros ; zify ; omega.
+Qed.
+
+Theorem abs_B2R_lt_emax :
+ forall x,
+ (Rabs (B2R x) < bpow radix2 emax)%R.
+Proof.
+intros [sx|sx|sx plx Hx|sx mx ex Hx] ; simpl ; try ( rewrite Rabs_R0 ; apply bpow_gt_0 ).
+rewrite <- F2R_Zabs, abs_cond_Zopp.
+now apply bounded_lt_emax.
+Qed.
+
+Theorem abs_B2R_ge_emin :
+ forall x,
+ is_finite_strict x = true ->
+ (bpow radix2 emin <= Rabs (B2R x))%R.
+Proof.
+intros [sx|sx|sx plx Hx|sx mx ex Hx] ; simpl ; try discriminate.
+intros; case sx; simpl.
+- unfold F2R; simpl; rewrite Rabs_mult, <-abs_IZR; simpl.
+ rewrite Rabs_pos_eq; [|apply bpow_ge_0].
+ now apply bounded_ge_emin.
+- unfold F2R; simpl; rewrite Rabs_mult, <-abs_IZR; simpl.
+ rewrite Rabs_pos_eq; [|apply bpow_ge_0].
+ now apply bounded_ge_emin.
+Qed.
+
+Theorem bounded_canonical_lt_emax :
+ forall mx ex,
+ canonical radix2 fexp (Float radix2 (Zpos mx) ex) ->
+ (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R ->
+ bounded mx ex = true.
+Proof.
+intros mx ex Cx Bx.
+apply andb_true_intro.
+split.
+unfold canonical_mantissa.
+unfold canonical, Fexp in Cx.
+rewrite Cx at 2.
+rewrite Zpos_digits2_pos.
+unfold cexp.
+rewrite mag_F2R_Zdigits. 2: discriminate.
+now apply -> Zeq_is_eq_bool.
+apply Zle_bool_true.
+unfold canonical, Fexp in Cx.
+rewrite Cx.
+unfold cexp, fexp, FLT_exp.
+destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex). simpl.
+apply Z.max_lub.
+cut (e' - 1 < emax)%Z. clear ; omega.
+apply lt_bpow with radix2.
+apply Rle_lt_trans with (2 := Bx).
+change (Zpos mx) with (Z.abs (Zpos mx)).
+rewrite F2R_Zabs.
+apply Ex.
+apply Rgt_not_eq.
+now apply F2R_gt_0.
+unfold emin.
+generalize (prec_gt_0 prec).
+clear -Hmax ; omega.
+Qed.
+
+(** Truncation *)
+
+Record shr_record := { shr_m : Z ; shr_r : bool ; shr_s : bool }.
+
+Definition shr_1 mrs :=
+ let '(Build_shr_record m r s) := mrs in
+ let s := orb r s in
+ match m with
+ | Z0 => Build_shr_record Z0 false s
+ | Zpos xH => Build_shr_record Z0 true s
+ | Zpos (xO p) => Build_shr_record (Zpos p) false s
+ | Zpos (xI p) => Build_shr_record (Zpos p) true s
+ | Zneg xH => Build_shr_record Z0 true s
+ | Zneg (xO p) => Build_shr_record (Zneg p) false s
+ | Zneg (xI p) => Build_shr_record (Zneg p) true s
+ end.
+
+Definition loc_of_shr_record mrs :=
+ match mrs with
+ | Build_shr_record _ false false => loc_Exact
+ | Build_shr_record _ false true => loc_Inexact Lt
+ | Build_shr_record _ true false => loc_Inexact Eq
+ | Build_shr_record _ true true => loc_Inexact Gt
+ end.
+
+Definition shr_record_of_loc m l :=
+ match l with
+ | loc_Exact => Build_shr_record m false false
+ | loc_Inexact Lt => Build_shr_record m false true
+ | loc_Inexact Eq => Build_shr_record m true false
+ | loc_Inexact Gt => Build_shr_record m true true
+ end.
+
+Theorem shr_m_shr_record_of_loc :
+ forall m l,
+ shr_m (shr_record_of_loc m l) = m.
+Proof.
+now intros m [|[| |]].
+Qed.
+
+Theorem loc_of_shr_record_of_loc :
+ forall m l,
+ loc_of_shr_record (shr_record_of_loc m l) = l.
+Proof.
+now intros m [|[| |]].
+Qed.
+
+Definition shr mrs e n :=
+ match n with
+ | Zpos p => (iter_pos shr_1 p mrs, (e + n)%Z)
+ | _ => (mrs, e)
+ end.
+
+Lemma inbetween_shr_1 :
+ forall x mrs e,
+ (0 <= shr_m mrs)%Z ->
+ inbetween_float radix2 (shr_m mrs) e x (loc_of_shr_record mrs) ->
+ inbetween_float radix2 (shr_m (shr_1 mrs)) (e + 1) x (loc_of_shr_record (shr_1 mrs)).
+Proof.
+intros x mrs e Hm Hl.
+refine (_ (new_location_even_correct (F2R (Float radix2 (shr_m (shr_1 mrs)) (e + 1))) (bpow radix2 e) 2 _ _ _ x (if shr_r (shr_1 mrs) then 1 else 0) (loc_of_shr_record mrs) _ _)) ; try easy.
+2: apply bpow_gt_0.
+2: now case (shr_r (shr_1 mrs)) ; split.
+change 2%R with (bpow radix2 1).
+rewrite <- bpow_plus.
+rewrite (Zplus_comm 1), <- (F2R_bpow radix2 (e + 1)).
+unfold inbetween_float, F2R. simpl.
+rewrite plus_IZR, Rmult_plus_distr_r.
+replace (new_location_even 2 (if shr_r (shr_1 mrs) then 1%Z else 0%Z) (loc_of_shr_record mrs)) with (loc_of_shr_record (shr_1 mrs)).
+easy.
+clear -Hm.
+destruct mrs as (m, r, s).
+now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
+rewrite (F2R_change_exp radix2 e).
+2: apply Zle_succ.
+unfold F2R. simpl.
+rewrite <- 2!Rmult_plus_distr_r, <- 2!plus_IZR.
+rewrite Zplus_assoc.
+replace (shr_m (shr_1 mrs) * 2 ^ (e + 1 - e) + (if shr_r (shr_1 mrs) then 1%Z else 0%Z))%Z with (shr_m mrs).
+exact Hl.
+ring_simplify (e + 1 - e)%Z.
+change (2^1)%Z with 2%Z.
+rewrite Zmult_comm.
+clear -Hm.
+destruct mrs as (m, r, s).
+now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
+Qed.
+
+Theorem inbetween_shr :
+ forall x m e l n,
+ (0 <= m)%Z ->
+ inbetween_float radix2 m e x l ->
+ let '(mrs, e') := shr (shr_record_of_loc m l) e n in
+ inbetween_float radix2 (shr_m mrs) e' x (loc_of_shr_record mrs).
+Proof.
+intros x m e l n Hm Hl.
+destruct n as [|n|n].
+now destruct l as [|[| |]].
+2: now destruct l as [|[| |]].
+unfold shr.
+rewrite iter_pos_nat.
+rewrite Zpos_eq_Z_of_nat_o_nat_of_P.
+induction (nat_of_P n).
+simpl.
+rewrite Zplus_0_r.
+now destruct l as [|[| |]].
+rewrite iter_nat_S.
+rewrite inj_S.
+unfold Z.succ.
+rewrite Zplus_assoc.
+revert IHn0.
+apply inbetween_shr_1.
+clear -Hm.
+induction n0.
+now destruct l as [|[| |]].
+rewrite iter_nat_S.
+revert IHn0.
+generalize (iter_nat shr_1 n0 (shr_record_of_loc m l)).
+clear.
+intros (m, r, s) Hm.
+now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
+Qed.
+
+Definition shr_fexp m e l :=
+ shr (shr_record_of_loc m l) e (fexp (Zdigits2 m + e) - e).
+
+Theorem shr_truncate :
+ forall m e l,
+ (0 <= m)%Z ->
+ shr_fexp m e l =
+ let '(m', e', l') := truncate radix2 fexp (m, e, l) in (shr_record_of_loc m' l', e').
+Proof.
+intros m e l Hm.
+case_eq (truncate radix2 fexp (m, e, l)).
+intros (m', e') l'.
+unfold shr_fexp.
+rewrite Zdigits2_Zdigits.
+case_eq (fexp (Zdigits radix2 m + e) - e)%Z.
+(* *)
+intros He.
+unfold truncate.
+rewrite He.
+simpl.
+intros H.
+now inversion H.
+(* *)
+intros p Hp.
+assert (He: (e <= fexp (Zdigits radix2 m + e))%Z).
+clear -Hp ; zify ; omega.
+destruct (inbetween_float_ex radix2 m e l) as (x, Hx).
+generalize (inbetween_shr x m e l (fexp (Zdigits radix2 m + e) - e) Hm Hx).
+assert (Hx0 : (0 <= x)%R).
+apply Rle_trans with (F2R (Float radix2 m e)).
+now apply F2R_ge_0.
+exact (proj1 (inbetween_float_bounds _ _ _ _ _ Hx)).
+case_eq (shr (shr_record_of_loc m l) e (fexp (Zdigits radix2 m + e) - e)).
+intros mrs e'' H3 H4 H1.
+generalize (truncate_correct radix2 _ x m e l Hx0 Hx (or_introl _ He)).
+rewrite H1.
+intros (H2,_).
+rewrite <- Hp, H3.
+assert (e'' = e').
+change (snd (mrs, e'') = snd (fst (m',e',l'))).
+rewrite <- H1, <- H3.
+unfold truncate.
+now rewrite Hp.
+rewrite H in H4 |- *.
+apply (f_equal (fun v => (v, _))).
+destruct (inbetween_float_unique _ _ _ _ _ _ _ H2 H4) as (H5, H6).
+rewrite H5, H6.
+case mrs.
+now intros m0 [|] [|].
+(* *)
+intros p Hp.
+unfold truncate.
+rewrite Hp.
+simpl.
+intros H.
+now inversion H.
+Qed.
+
+(** Rounding modes *)
+
+Inductive mode := mode_NE | mode_ZR | mode_DN | mode_UP | mode_NA.
+
+Definition round_mode m :=
+ match m with
+ | mode_NE => ZnearestE
+ | mode_ZR => Ztrunc
+ | mode_DN => Zfloor
+ | mode_UP => Zceil
+ | mode_NA => ZnearestA
+ end.
+
+Definition choice_mode m sx mx lx :=
+ match m with
+ | mode_NE => cond_incr (round_N (negb (Z.even mx)) lx) mx
+ | mode_ZR => mx
+ | mode_DN => cond_incr (round_sign_DN sx lx) mx
+ | mode_UP => cond_incr (round_sign_UP sx lx) mx
+ | mode_NA => cond_incr (round_N true lx) mx
+ end.
+
+Global Instance valid_rnd_round_mode : forall m, Valid_rnd (round_mode m).
+Proof.
+destruct m ; unfold round_mode ; auto with typeclass_instances.
+Qed.
+
+Definition overflow_to_inf m s :=
+ match m with
+ | mode_NE => true
+ | mode_NA => true
+ | mode_ZR => false
+ | mode_UP => negb s
+ | mode_DN => s
+ end.
+
+Definition binary_overflow m s :=
+ if overflow_to_inf m s then F754_infinity s
+ else F754_finite s (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end) (emax - prec).
+
+Definition binary_round_aux mode sx mx ex lx :=
+ let '(mrs', e') := shr_fexp mx ex lx in
+ let '(mrs'', e'') := shr_fexp (choice_mode mode sx (shr_m mrs') (loc_of_shr_record mrs')) e' loc_Exact in
+ match shr_m mrs'' with
+ | Z0 => F754_zero sx
+ | Zpos m => if Zle_bool e'' (emax - prec) then F754_finite sx m e'' else binary_overflow mode sx
+ | _ => F754_nan false xH (* dummy *)
+ end.
+
+Theorem binary_round_aux_correct' :
+ forall mode x mx ex lx,
+ (x <> 0)%R ->
+ inbetween_float radix2 mx ex (Rabs x) lx ->
+ (ex <= cexp radix2 fexp x)%Z ->
+ let z := binary_round_aux mode (Rlt_bool x 0) mx ex lx in
+ valid_binary z = true /\
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 emax) then
+ FF2R radix2 z = round radix2 fexp (round_mode mode) x /\
+ is_finite_FF z = true /\ sign_FF z = Rlt_bool x 0
+ else
+ z = binary_overflow mode (Rlt_bool x 0).
+Proof with auto with typeclass_instances.
+intros m x mx ex lx Px Bx Ex z.
+unfold binary_round_aux in z.
+revert z.
+rewrite shr_truncate.
+refine (_ (round_trunc_sign_any_correct' _ _ (round_mode m) (choice_mode m) _ x mx ex lx Bx (or_introl _ Ex))).
+rewrite <- cexp_abs in Ex.
+refine (_ (truncate_correct_partial' _ fexp _ _ _ _ _ Bx Ex)).
+destruct (truncate radix2 fexp (mx, ex, lx)) as ((m1, e1), l1).
+rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc.
+set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
+intros (H1a,H1b) H1c.
+rewrite H1c.
+assert (Hm: (m1 <= m1')%Z).
+(* . *)
+unfold m1', choice_mode, cond_incr.
+case m ;
+ try apply Z.le_refl ;
+ match goal with |- (m1 <= if ?b then _ else _)%Z =>
+ case b ; [ apply Zle_succ | apply Z.le_refl ] end.
+assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
+(* . *)
+rewrite <- (Z.abs_eq m1').
+replace (Z.abs m1') with (Z.abs (cond_Zopp (Rlt_bool x 0) m1')).
+rewrite F2R_Zabs.
+now apply f_equal.
+apply abs_cond_Zopp.
+apply Z.le_trans with (2 := Hm).
+apply Zlt_succ_le.
+apply gt_0_F2R with radix2 e1.
+apply Rle_lt_trans with (1 := Rabs_pos x).
+exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
+(* . *)
+assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
+now apply inbetween_Exact.
+destruct m1' as [|m1'|m1'].
+(* . m1' = 0 *)
+rewrite shr_truncate. 2: apply Z.le_refl.
+generalize (truncate_0 radix2 fexp e1 loc_Exact).
+destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
+rewrite shr_m_shr_record_of_loc.
+intros Hm2.
+rewrite Hm2.
+repeat split.
+rewrite Rlt_bool_true.
+repeat split.
+apply sym_eq.
+case Rlt_bool ; apply F2R_0.
+rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0.
+apply bpow_gt_0.
+(* . 0 < m1' *)
+assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z).
+rewrite <- mag_F2R_Zdigits, <- Hr, mag_abs.
+2: discriminate.
+rewrite H1b.
+rewrite cexp_abs.
+fold (cexp radix2 fexp (round radix2 fexp (round_mode m) x)).
+apply cexp_round_ge...
+rewrite H1c.
+case (Rlt_bool x 0).
+apply Rlt_not_eq.
+now apply F2R_lt_0.
+apply Rgt_not_eq.
+now apply F2R_gt_0.
+refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)).
+2: now rewrite Hr ; apply F2R_gt_0.
+refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
+2: discriminate.
+rewrite shr_truncate. 2: easy.
+destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
+rewrite shr_m_shr_record_of_loc.
+intros (H3,H4) (H2,_).
+destruct m2 as [|m2|m2].
+elim Rgt_not_eq with (2 := H3).
+rewrite F2R_0.
+now apply F2R_gt_0.
+rewrite F2R_cond_Zopp, H3, abs_cond_Ropp, <- F2R_abs.
+simpl Z.abs.
+case_eq (Zle_bool e2 (emax - prec)) ; intros He2.
+assert (bounded m2 e2 = true).
+apply andb_true_intro.
+split.
+unfold canonical_mantissa.
+apply Zeq_bool_true.
+rewrite Zpos_digits2_pos.
+rewrite <- mag_F2R_Zdigits.
+apply sym_eq.
+now rewrite H3 in H4.
+discriminate.
+exact He2.
+apply (conj H).
+rewrite Rlt_bool_true.
+repeat split.
+apply F2R_cond_Zopp.
+now apply bounded_lt_emax.
+rewrite (Rlt_bool_false _ (bpow radix2 emax)).
+refine (conj _ (refl_equal _)).
+unfold binary_overflow.
+case overflow_to_inf.
+apply refl_equal.
+unfold valid_binary, bounded.
+rewrite Zle_bool_refl.
+rewrite Bool.andb_true_r.
+apply Zeq_bool_true.
+rewrite Zpos_digits2_pos.
+replace (Zdigits radix2 (Zpos (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end))) with prec.
+unfold fexp, FLT_exp, emin.
+generalize (prec_gt_0 prec).
+clear -Hmax ; zify ; omega.
+change 2%Z with (radix_val radix2).
+case_eq (Zpower radix2 prec - 1)%Z.
+simpl Zdigits.
+generalize (Zpower_gt_1 radix2 prec (prec_gt_0 prec)).
+clear ; omega.
+intros p Hp.
+apply Zle_antisym.
+cut (prec - 1 < Zdigits radix2 (Zpos p))%Z. clear ; omega.
+apply Zdigits_gt_Zpower.
+simpl Z.abs. rewrite <- Hp.
+cut (Zpower radix2 (prec - 1) < Zpower radix2 prec)%Z. clear ; omega.
+apply lt_IZR.
+rewrite 2!IZR_Zpower. 2: now apply Zlt_le_weak.
+apply bpow_lt.
+apply Zlt_pred.
+now apply Zlt_0_le_0_pred.
+apply Zdigits_le_Zpower.
+simpl Z.abs. rewrite <- Hp.
+apply Zlt_pred.
+intros p Hp.
+generalize (Zpower_gt_1 radix2 _ (prec_gt_0 prec)).
+clear -Hp ; zify ; omega.
+apply Rnot_lt_le.
+intros Hx.
+generalize (refl_equal (bounded m2 e2)).
+unfold bounded at 2.
+rewrite He2.
+rewrite Bool.andb_false_r.
+rewrite bounded_canonical_lt_emax with (2 := Hx).
+discriminate.
+unfold canonical.
+now rewrite <- H3.
+elim Rgt_not_eq with (2 := H3).
+apply Rlt_trans with R0.
+now apply F2R_lt_0.
+now apply F2R_gt_0.
+rewrite <- Hr.
+apply generic_format_abs...
+apply generic_format_round...
+(* . not m1' < 0 *)
+elim Rgt_not_eq with (2 := Hr).
+apply Rlt_le_trans with R0.
+now apply F2R_lt_0.
+apply Rabs_pos.
+(* *)
+now apply Rabs_pos_lt.
+(* all the modes are valid *)
+clear. case m.
+exact inbetween_int_NE_sign.
+exact inbetween_int_ZR_sign.
+exact inbetween_int_DN_sign.
+exact inbetween_int_UP_sign.
+exact inbetween_int_NA_sign.
+(* *)
+apply inbetween_float_bounds in Bx.
+apply Zlt_succ_le.
+eapply gt_0_F2R.
+apply Rle_lt_trans with (2 := proj2 Bx).
+apply Rabs_pos.
+Qed.
+
+Theorem binary_round_aux_correct :
+ forall mode x mx ex lx,
+ inbetween_float radix2 (Zpos mx) ex (Rabs x) lx ->
+ (ex <= fexp (Zdigits radix2 (Zpos mx) + ex))%Z ->
+ let z := binary_round_aux mode (Rlt_bool x 0) (Zpos mx) ex lx in
+ valid_binary z = true /\
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 emax) then
+ FF2R radix2 z = round radix2 fexp (round_mode mode) x /\
+ is_finite_FF z = true /\ sign_FF z = Rlt_bool x 0
+ else
+ z = binary_overflow mode (Rlt_bool x 0).
+Proof with auto with typeclass_instances.
+intros m x mx ex lx Bx Ex z.
+unfold binary_round_aux in z.
+revert z.
+rewrite shr_truncate. 2: easy.
+refine (_ (round_trunc_sign_any_correct _ _ (round_mode m) (choice_mode m) _ x (Zpos mx) ex lx Bx (or_introl _ Ex))).
+refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Bx Ex)).
+destruct (truncate radix2 fexp (Zpos mx, ex, lx)) as ((m1, e1), l1).
+rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc.
+set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
+intros (H1a,H1b) H1c.
+rewrite H1c.
+assert (Hm: (m1 <= m1')%Z).
+(* . *)
+unfold m1', choice_mode, cond_incr.
+case m ;
+ try apply Z.le_refl ;
+ match goal with |- (m1 <= if ?b then _ else _)%Z =>
+ case b ; [ apply Zle_succ | apply Z.le_refl ] end.
+assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
+(* . *)
+rewrite <- (Z.abs_eq m1').
+replace (Z.abs m1') with (Z.abs (cond_Zopp (Rlt_bool x 0) m1')).
+rewrite F2R_Zabs.
+now apply f_equal.
+apply abs_cond_Zopp.
+apply Z.le_trans with (2 := Hm).
+apply Zlt_succ_le.
+apply gt_0_F2R with radix2 e1.
+apply Rle_lt_trans with (1 := Rabs_pos x).
+exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
+(* . *)
+assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
+now apply inbetween_Exact.
+destruct m1' as [|m1'|m1'].
+(* . m1' = 0 *)
+rewrite shr_truncate. 2: apply Z.le_refl.
+generalize (truncate_0 radix2 fexp e1 loc_Exact).
+destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
+rewrite shr_m_shr_record_of_loc.
+intros Hm2.
+rewrite Hm2.
+repeat split.
+rewrite Rlt_bool_true.
+repeat split.
+apply sym_eq.
+case Rlt_bool ; apply F2R_0.
+rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0.
+apply bpow_gt_0.
+(* . 0 < m1' *)
+assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z).
+rewrite <- mag_F2R_Zdigits, <- Hr, mag_abs.
+2: discriminate.
+rewrite H1b.
+rewrite cexp_abs.
+fold (cexp radix2 fexp (round radix2 fexp (round_mode m) x)).
+apply cexp_round_ge...
+rewrite H1c.
+case (Rlt_bool x 0).
+apply Rlt_not_eq.
+now apply F2R_lt_0.
+apply Rgt_not_eq.
+now apply F2R_gt_0.
+refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)).
+2: now rewrite Hr ; apply F2R_gt_0.
+refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
+2: discriminate.
+rewrite shr_truncate. 2: easy.
+destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
+rewrite shr_m_shr_record_of_loc.
+intros (H3,H4) (H2,_).
+destruct m2 as [|m2|m2].
+elim Rgt_not_eq with (2 := H3).
+rewrite F2R_0.
+now apply F2R_gt_0.
+rewrite F2R_cond_Zopp, H3, abs_cond_Ropp, <- F2R_abs.
+simpl Z.abs.
+case_eq (Zle_bool e2 (emax - prec)) ; intros He2.
+assert (bounded m2 e2 = true).
+apply andb_true_intro.
+split.
+unfold canonical_mantissa.
+apply Zeq_bool_true.
+rewrite Zpos_digits2_pos.
+rewrite <- mag_F2R_Zdigits.
+apply sym_eq.
+now rewrite H3 in H4.
+discriminate.
+exact He2.
+apply (conj H).
+rewrite Rlt_bool_true.
+repeat split.
+apply F2R_cond_Zopp.
+now apply bounded_lt_emax.
+rewrite (Rlt_bool_false _ (bpow radix2 emax)).
+refine (conj _ (refl_equal _)).
+unfold binary_overflow.
+case overflow_to_inf.
+apply refl_equal.
+unfold valid_binary, bounded.
+rewrite Zle_bool_refl.
+rewrite Bool.andb_true_r.
+apply Zeq_bool_true.
+rewrite Zpos_digits2_pos.
+replace (Zdigits radix2 (Zpos (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end))) with prec.
+unfold fexp, FLT_exp, emin.
+generalize (prec_gt_0 prec).
+clear -Hmax ; zify ; omega.
+change 2%Z with (radix_val radix2).
+case_eq (Zpower radix2 prec - 1)%Z.
+simpl Zdigits.
+generalize (Zpower_gt_1 radix2 prec (prec_gt_0 prec)).
+clear ; omega.
+intros p Hp.
+apply Zle_antisym.
+cut (prec - 1 < Zdigits radix2 (Zpos p))%Z. clear ; omega.
+apply Zdigits_gt_Zpower.
+simpl Z.abs. rewrite <- Hp.
+cut (Zpower radix2 (prec - 1) < Zpower radix2 prec)%Z. clear ; omega.
+apply lt_IZR.
+rewrite 2!IZR_Zpower. 2: now apply Zlt_le_weak.
+apply bpow_lt.
+apply Zlt_pred.
+now apply Zlt_0_le_0_pred.
+apply Zdigits_le_Zpower.
+simpl Z.abs. rewrite <- Hp.
+apply Zlt_pred.
+intros p Hp.
+generalize (Zpower_gt_1 radix2 _ (prec_gt_0 prec)).
+clear -Hp ; zify ; omega.
+apply Rnot_lt_le.
+intros Hx.
+generalize (refl_equal (bounded m2 e2)).
+unfold bounded at 2.
+rewrite He2.
+rewrite Bool.andb_false_r.
+rewrite bounded_canonical_lt_emax with (2 := Hx).
+discriminate.
+unfold canonical.
+now rewrite <- H3.
+elim Rgt_not_eq with (2 := H3).
+apply Rlt_trans with R0.
+now apply F2R_lt_0.
+now apply F2R_gt_0.
+rewrite <- Hr.
+apply generic_format_abs...
+apply generic_format_round...
+(* . not m1' < 0 *)
+elim Rgt_not_eq with (2 := Hr).
+apply Rlt_le_trans with R0.
+now apply F2R_lt_0.
+apply Rabs_pos.
+(* *)
+apply Rlt_le_trans with (2 := proj1 (inbetween_float_bounds _ _ _ _ _ Bx)).
+now apply F2R_gt_0.
+(* all the modes are valid *)
+clear. case m.
+exact inbetween_int_NE_sign.
+exact inbetween_int_ZR_sign.
+exact inbetween_int_DN_sign.
+exact inbetween_int_UP_sign.
+exact inbetween_int_NA_sign.
+Qed.
+
+(** Multiplication *)
+
+Lemma Bmult_correct_aux :
+ forall m sx mx ex (Hx : bounded mx ex = true) sy my ey (Hy : bounded my ey = true),
+ let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
+ let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
+ let z := binary_round_aux m (xorb sx sy) (Zpos (mx * my)) (ex + ey) loc_Exact in
+ valid_binary z = true /\
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x * y))) (bpow radix2 emax) then
+ FF2R radix2 z = round radix2 fexp (round_mode m) (x * y) /\
+ is_finite_FF z = true /\ sign_FF z = xorb sx sy
+ else
+ z = binary_overflow m (xorb sx sy).
+Proof.
+intros m sx mx ex Hx sy my ey Hy x y.
+unfold x, y.
+rewrite <- F2R_mult.
+simpl.
+replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx) * cond_Zopp sy (Zpos my)) (ex + ey))) 0).
+apply binary_round_aux_correct.
+constructor.
+rewrite <- F2R_abs.
+apply F2R_eq.
+rewrite Zabs_Zmult.
+now rewrite 2!abs_cond_Zopp.
+(* *)
+change (Zpos (mx * my)) with (Zpos mx * Zpos my)%Z.
+assert (forall m e, bounded m e = true -> fexp (Zdigits radix2 (Zpos m) + e) = e)%Z.
+clear. intros m e Hb.
+destruct (andb_prop _ _ Hb) as (H,_).
+apply Zeq_bool_eq.
+now rewrite <- Zpos_digits2_pos.
+generalize (H _ _ Hx) (H _ _ Hy).
+clear x y sx sy Hx Hy H.
+unfold fexp, FLT_exp.
+refine (_ (Zdigits_mult_ge radix2 (Zpos mx) (Zpos my) _ _)) ; try discriminate.
+refine (_ (Zdigits_gt_0 radix2 (Zpos mx) _) (Zdigits_gt_0 radix2 (Zpos my) _)) ; try discriminate.
+generalize (Zdigits radix2 (Zpos mx)) (Zdigits radix2 (Zpos my)) (Zdigits radix2 (Zpos mx * Zpos my)).
+clear -Hmax.
+unfold emin.
+intros dx dy dxy Hx Hy Hxy.
+zify ; intros ; subst.
+omega.
+(* *)
+case sx ; case sy.
+apply Rlt_bool_false.
+now apply F2R_ge_0.
+apply Rlt_bool_true.
+now apply F2R_lt_0.
+apply Rlt_bool_true.
+now apply F2R_lt_0.
+apply Rlt_bool_false.
+now apply F2R_ge_0.
+Qed.
+
+Definition Bmult mult_nan m x y :=
+ match x, y with
+ | B754_nan _ _ _, _ | _, B754_nan _ _ _ => build_nan (mult_nan x y)
+ | B754_infinity sx, B754_infinity sy => B754_infinity (xorb sx sy)
+ | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
+ | B754_finite sx _ _ _, B754_infinity sy => B754_infinity (xorb sx sy)
+ | B754_infinity _, B754_zero _ => build_nan (mult_nan x y)
+ | B754_zero _, B754_infinity _ => build_nan (mult_nan x y)
+ | B754_finite sx _ _ _, B754_zero sy => B754_zero (xorb sx sy)
+ | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
+ | B754_zero sx, B754_zero sy => B754_zero (xorb sx sy)
+ | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
+ FF2B _ (proj1 (Bmult_correct_aux m sx mx ex Hx sy my ey Hy))
+ end.
+
+Theorem Bmult_correct :
+ forall mult_nan m x y,
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x * B2R y))) (bpow radix2 emax) then
+ B2R (Bmult mult_nan m x y) = round radix2 fexp (round_mode m) (B2R x * B2R y) /\
+ is_finite (Bmult mult_nan m x y) = andb (is_finite x) (is_finite y) /\
+ (is_nan (Bmult mult_nan m x y) = false ->
+ Bsign (Bmult mult_nan m x y) = xorb (Bsign x) (Bsign y))
+ else
+ B2FF (Bmult mult_nan m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
+Proof.
+intros mult_nan m [sx|sx|sx plx Hplx|sx mx ex Hx] [sy|sy|sy ply Hply|sy my ey Hy] ;
+ try ( rewrite ?Rmult_0_r, ?Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ simpl ; try easy ; now rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan | apply bpow_gt_0 | now auto with typeclass_instances ] ).
+simpl.
+case Bmult_correct_aux.
+intros H1.
+case Rlt_bool.
+intros (H2, (H3, H4)).
+split.
+now rewrite B2R_FF2B.
+split.
+now rewrite is_finite_FF2B.
+rewrite Bsign_FF2B. auto.
+intros H2.
+now rewrite B2FF_FF2B.
+Qed.
+
+(** Normalization and rounding *)
+
+Definition shl_align mx ex ex' :=
+ match (ex' - ex)%Z with
+ | Zneg d => (shift_pos d mx, ex')
+ | _ => (mx, ex)
+ end.
+
+Theorem shl_align_correct :
+ forall mx ex ex',
+ let (mx', ex'') := shl_align mx ex ex' in
+ F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex'') /\
+ (ex'' <= ex')%Z.
+Proof.
+intros mx ex ex'.
+unfold shl_align.
+case_eq (ex' - ex)%Z.
+(* d = 0 *)
+intros H.
+repeat split.
+rewrite Zminus_eq with (1 := H).
+apply Z.le_refl.
+(* d > 0 *)
+intros d Hd.
+repeat split.
+replace ex' with (ex' - ex + ex)%Z by ring.
+rewrite Hd.
+pattern ex at 1 ; rewrite <- Zplus_0_l.
+now apply Zplus_le_compat_r.
+(* d < 0 *)
+intros d Hd.
+rewrite shift_pos_correct, Zmult_comm.
+change (Zpower_pos 2 d) with (Zpower radix2 (Zpos d)).
+change (Zpos d) with (Z.opp (Zneg d)).
+rewrite <- Hd.
+split.
+replace (- (ex' - ex))%Z with (ex - ex')%Z by ring.
+apply F2R_change_exp.
+apply Zle_0_minus_le.
+replace (ex - ex')%Z with (- (ex' - ex))%Z by ring.
+now rewrite Hd.
+apply Z.le_refl.
+Qed.
+
+Theorem snd_shl_align :
+ forall mx ex ex',
+ (ex' <= ex)%Z ->
+ snd (shl_align mx ex ex') = ex'.
+Proof.
+intros mx ex ex' He.
+unfold shl_align.
+case_eq (ex' - ex)%Z ; simpl.
+intros H.
+now rewrite Zminus_eq with (1 := H).
+intros p.
+clear -He ; zify ; omega.
+intros.
+apply refl_equal.
+Qed.
+
+Definition shl_align_fexp mx ex :=
+ shl_align mx ex (fexp (Zpos (digits2_pos mx) + ex)).
+
+Theorem shl_align_fexp_correct :
+ forall mx ex,
+ let (mx', ex') := shl_align_fexp mx ex in
+ F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex') /\
+ (ex' <= fexp (Zdigits radix2 (Zpos mx') + ex'))%Z.
+Proof.
+intros mx ex.
+unfold shl_align_fexp.
+generalize (shl_align_correct mx ex (fexp (Zpos (digits2_pos mx) + ex))).
+rewrite Zpos_digits2_pos.
+case shl_align.
+intros mx' ex' (H1, H2).
+split.
+exact H1.
+rewrite <- mag_F2R_Zdigits. 2: easy.
+rewrite <- H1.
+now rewrite mag_F2R_Zdigits.
+Qed.
+
+Definition binary_round m sx mx ex :=
+ let '(mz, ez) := shl_align_fexp mx ex in binary_round_aux m sx (Zpos mz) ez loc_Exact.
+
+Theorem binary_round_correct :
+ forall m sx mx ex,
+ let z := binary_round m sx mx ex in
+ valid_binary z = true /\
+ let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) x)) (bpow radix2 emax) then
+ FF2R radix2 z = round radix2 fexp (round_mode m) x /\
+ is_finite_FF z = true /\
+ sign_FF z = sx
+ else
+ z = binary_overflow m sx.
+Proof.
+intros m sx mx ex.
+unfold binary_round.
+generalize (shl_align_fexp_correct mx ex).
+destruct (shl_align_fexp mx ex) as (mz, ez).
+intros (H1, H2).
+set (x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex)).
+replace sx with (Rlt_bool x 0).
+apply binary_round_aux_correct.
+constructor.
+unfold x.
+now rewrite <- F2R_Zabs, abs_cond_Zopp.
+exact H2.
+unfold x.
+case sx.
+apply Rlt_bool_true.
+now apply F2R_lt_0.
+apply Rlt_bool_false.
+now apply F2R_ge_0.
+Qed.
+
+Definition binary_normalize mode m e szero :=
+ match m with
+ | Z0 => B754_zero szero
+ | Zpos m => FF2B _ (proj1 (binary_round_correct mode false m e))
+ | Zneg m => FF2B _ (proj1 (binary_round_correct mode true m e))
+ end.
+
+Theorem binary_normalize_correct :
+ forall m mx ex szero,
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (F2R (Float radix2 mx ex)))) (bpow radix2 emax) then
+ B2R (binary_normalize m mx ex szero) = round radix2 fexp (round_mode m) (F2R (Float radix2 mx ex)) /\
+ is_finite (binary_normalize m mx ex szero) = true /\
+ Bsign (binary_normalize m mx ex szero) =
+ match Rcompare (F2R (Float radix2 mx ex)) 0 with
+ | Eq => szero
+ | Lt => true
+ | Gt => false
+ end
+ else
+ B2FF (binary_normalize m mx ex szero) = binary_overflow m (Rlt_bool (F2R (Float radix2 mx ex)) 0).
+Proof with auto with typeclass_instances.
+intros m mx ez szero.
+destruct mx as [|mz|mz] ; simpl.
+rewrite F2R_0, round_0, Rabs_R0, Rlt_bool_true...
+split... split...
+rewrite Rcompare_Eq...
+apply bpow_gt_0.
+(* . mz > 0 *)
+generalize (binary_round_correct m false mz ez).
+simpl.
+case Rlt_bool_spec.
+intros _ (Vz, (Rz, (Rz', Rz''))).
+split.
+now rewrite B2R_FF2B.
+split.
+now rewrite is_finite_FF2B.
+rewrite Bsign_FF2B, Rz''.
+rewrite Rcompare_Gt...
+apply F2R_gt_0.
+simpl. zify; omega.
+intros Hz' (Vz, Rz).
+rewrite B2FF_FF2B, Rz.
+apply f_equal.
+apply sym_eq.
+apply Rlt_bool_false.
+now apply F2R_ge_0.
+(* . mz < 0 *)
+generalize (binary_round_correct m true mz ez).
+simpl.
+case Rlt_bool_spec.
+intros _ (Vz, (Rz, (Rz', Rz''))).
+split.
+now rewrite B2R_FF2B.
+split.
+now rewrite is_finite_FF2B.
+rewrite Bsign_FF2B, Rz''.
+rewrite Rcompare_Lt...
+apply F2R_lt_0.
+simpl. zify; omega.
+intros Hz' (Vz, Rz).
+rewrite B2FF_FF2B, Rz.
+apply f_equal.
+apply sym_eq.
+apply Rlt_bool_true.
+now apply F2R_lt_0.
+Qed.
+
+(** Addition *)
+
+Definition Bplus plus_nan m x y :=
+ match x, y with
+ | B754_nan _ _ _, _ | _, B754_nan _ _ _ => build_nan (plus_nan x y)
+ | B754_infinity sx, B754_infinity sy =>
+ if Bool.eqb sx sy then x else build_nan (plus_nan x y)
+ | B754_infinity _, _ => x
+ | _, B754_infinity _ => y
+ | B754_zero sx, B754_zero sy =>
+ if Bool.eqb sx sy then x else
+ match m with mode_DN => B754_zero true | _ => B754_zero false end
+ | B754_zero _, _ => y
+ | _, B754_zero _ => x
+ | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
+ let ez := Z.min ex ey in
+ binary_normalize m (Zplus (cond_Zopp sx (Zpos (fst (shl_align mx ex ez)))) (cond_Zopp sy (Zpos (fst (shl_align my ey ez)))))
+ ez (match m with mode_DN => true | _ => false end)
+ end.
+
+Theorem Bplus_correct :
+ forall plus_nan m x y,
+ is_finite x = true ->
+ is_finite y = true ->
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 emax) then
+ B2R (Bplus plus_nan m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y) /\
+ is_finite (Bplus plus_nan m x y) = true /\
+ Bsign (Bplus plus_nan m x y) =
+ match Rcompare (B2R x + B2R y) 0 with
+ | Eq => match m with mode_DN => orb (Bsign x) (Bsign y)
+ | _ => andb (Bsign x) (Bsign y) end
+ | Lt => true
+ | Gt => false
+ end
+ else
+ (B2FF (Bplus plus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = Bsign y).
+Proof with auto with typeclass_instances.
+intros plus_nan m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] Fx Fy ; try easy.
+(* *)
+rewrite Rplus_0_r, round_0, Rabs_R0, Rlt_bool_true...
+simpl.
+rewrite Rcompare_Eq by auto.
+destruct sx, sy; try easy; now case m.
+apply bpow_gt_0.
+(* *)
+rewrite Rplus_0_l, round_generic, Rlt_bool_true...
+split... split...
+simpl. unfold F2R.
+erewrite <- Rmult_0_l, Rcompare_mult_r.
+rewrite Rcompare_IZR with (y:=0%Z).
+destruct sy...
+apply bpow_gt_0.
+apply abs_B2R_lt_emax.
+apply generic_format_B2R.
+(* *)
+rewrite Rplus_0_r, round_generic, Rlt_bool_true...
+split... split...
+simpl. unfold F2R.
+erewrite <- Rmult_0_l, Rcompare_mult_r.
+rewrite Rcompare_IZR with (y:=0%Z).
+destruct sx...
+apply bpow_gt_0.
+apply abs_B2R_lt_emax.
+apply generic_format_B2R.
+(* *)
+clear Fx Fy.
+simpl.
+set (szero := match m with mode_DN => true | _ => false end).
+set (ez := Z.min ex ey).
+set (mz := (cond_Zopp sx (Zpos (fst (shl_align mx ex ez))) + cond_Zopp sy (Zpos (fst (shl_align my ey ez))))%Z).
+assert (Hp: (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) +
+ F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey))%R = F2R (Float radix2 mz ez)).
+rewrite 2!F2R_cond_Zopp.
+generalize (shl_align_correct mx ex ez).
+generalize (shl_align_correct my ey ez).
+generalize (snd_shl_align mx ex ez (Z.le_min_l ex ey)).
+generalize (snd_shl_align my ey ez (Z.le_min_r ex ey)).
+destruct (shl_align mx ex ez) as (mx', ex').
+destruct (shl_align my ey ez) as (my', ey').
+simpl.
+intros H1 H2.
+rewrite H1, H2.
+clear H1 H2.
+intros (H1, _) (H2, _).
+rewrite H1, H2.
+clear H1 H2.
+rewrite <- 2!F2R_cond_Zopp.
+unfold F2R. simpl.
+now rewrite <- Rmult_plus_distr_r, <- plus_IZR.
+rewrite Hp.
+assert (Sz: (bpow radix2 emax <= Rabs (round radix2 fexp (round_mode m) (F2R (Float radix2 mz ez))))%R -> sx = Rlt_bool (F2R (Float radix2 mz ez)) 0 /\ sx = sy).
+(* . *)
+rewrite <- Hp.
+intros Bz.
+destruct (Bool.bool_dec sx sy) as [Hs|Hs].
+(* .. *)
+refine (conj _ Hs).
+rewrite Hs.
+apply sym_eq.
+case sy.
+apply Rlt_bool_true.
+rewrite <- (Rplus_0_r 0).
+apply Rplus_lt_compat.
+now apply F2R_lt_0.
+now apply F2R_lt_0.
+apply Rlt_bool_false.
+rewrite <- (Rplus_0_r 0).
+apply Rplus_le_compat.
+now apply F2R_ge_0.
+now apply F2R_ge_0.
+(* .. *)
+elim Rle_not_lt with (1 := Bz).
+generalize (bounded_lt_emax _ _ Hx) (bounded_lt_emax _ _ Hy) (andb_prop _ _ Hx) (andb_prop _ _ Hy).
+intros Bx By (Hx',_) (Hy',_).
+generalize (canonical_canonical_mantissa sx _ _ Hx') (canonical_canonical_mantissa sy _ _ Hy').
+clear -Bx By Hs prec_gt_0_.
+intros Cx Cy.
+destruct sx.
+(* ... *)
+destruct sy.
+now elim Hs.
+clear Hs.
+apply Rabs_lt.
+split.
+apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)).
+rewrite F2R_Zopp.
+now apply Ropp_lt_contravar.
+apply round_ge_generic...
+now apply generic_format_canonical.
+pattern (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)) at 1 ; rewrite <- Rplus_0_r.
+apply Rplus_le_compat_l.
+now apply F2R_ge_0.
+apply Rle_lt_trans with (2 := By).
+apply round_le_generic...
+now apply generic_format_canonical.
+rewrite <- (Rplus_0_l (F2R (Float radix2 (Zpos my) ey))).
+apply Rplus_le_compat_r.
+now apply F2R_le_0.
+(* ... *)
+destruct sy.
+2: now elim Hs.
+clear Hs.
+apply Rabs_lt.
+split.
+apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)).
+rewrite F2R_Zopp.
+now apply Ropp_lt_contravar.
+apply round_ge_generic...
+now apply generic_format_canonical.
+pattern (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)) at 1 ; rewrite <- Rplus_0_l.
+apply Rplus_le_compat_r.
+now apply F2R_ge_0.
+apply Rle_lt_trans with (2 := Bx).
+apply round_le_generic...
+now apply generic_format_canonical.
+rewrite <- (Rplus_0_r (F2R (Float radix2 (Zpos mx) ex))).
+apply Rplus_le_compat_l.
+now apply F2R_le_0.
+(* . *)
+generalize (binary_normalize_correct m mz ez szero).
+case Rlt_bool_spec.
+split; try easy. split; try easy.
+destruct (Rcompare_spec (F2R (beta:=radix2) {| Fnum := mz; Fexp := ez |}) 0); try easy.
+rewrite H1 in Hp.
+apply Rplus_opp_r_uniq in Hp.
+rewrite <- F2R_Zopp in Hp.
+eapply canonical_unique in Hp.
+inversion Hp. destruct sy, sx, m; try discriminate H3; easy.
+apply canonical_canonical_mantissa.
+apply Bool.andb_true_iff in Hy. easy.
+replace (-cond_Zopp sx (Z.pos mx))%Z with (cond_Zopp (negb sx) (Z.pos mx))
+ by (destruct sx; auto).
+apply canonical_canonical_mantissa.
+apply Bool.andb_true_iff in Hx. easy.
+intros Hz' Vz.
+specialize (Sz Hz').
+split.
+rewrite Vz.
+now apply f_equal.
+apply Sz.
+Qed.
+
+(** Subtraction *)
+
+Definition Bminus minus_nan m x y :=
+ match x, y with
+ | B754_nan _ _ _, _ | _, B754_nan _ _ _ => build_nan (minus_nan x y)
+ | B754_infinity sx, B754_infinity sy =>
+ if Bool.eqb sx (negb sy) then x else build_nan (minus_nan x y)
+ | B754_infinity _, _ => x
+ | _, B754_infinity sy => B754_infinity (negb sy)
+ | B754_zero sx, B754_zero sy =>
+ if Bool.eqb sx (negb sy) then x else
+ match m with mode_DN => B754_zero true | _ => B754_zero false end
+ | B754_zero _, B754_finite sy my ey Hy => B754_finite (negb sy) my ey Hy
+ | _, B754_zero _ => x
+ | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
+ let ez := Z.min ex ey in
+ binary_normalize m (Zminus (cond_Zopp sx (Zpos (fst (shl_align mx ex ez)))) (cond_Zopp sy (Zpos (fst (shl_align my ey ez)))))
+ ez (match m with mode_DN => true | _ => false end)
+ end.
+
+Theorem Bminus_correct :
+ forall minus_nan m x y,
+ is_finite x = true ->
+ is_finite y = true ->
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x - B2R y))) (bpow radix2 emax) then
+ B2R (Bminus minus_nan m x y) = round radix2 fexp (round_mode m) (B2R x - B2R y) /\
+ is_finite (Bminus minus_nan m x y) = true /\
+ Bsign (Bminus minus_nan m x y) =
+ match Rcompare (B2R x - B2R y) 0 with
+ | Eq => match m with mode_DN => orb (Bsign x) (negb (Bsign y))
+ | _ => andb (Bsign x) (negb (Bsign y)) end
+ | Lt => true
+ | Gt => false
+ end
+ else
+ (B2FF (Bminus minus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = negb (Bsign y)).
+Proof with auto with typeclass_instances.
+intros minus_nan m x y Fx Fy.
+generalize (Bplus_correct minus_nan m x (Bopp (fun n => minus_nan n (B754_zero false)) y) Fx).
+rewrite is_finite_Bopp, B2R_Bopp.
+intros H.
+specialize (H Fy).
+replace (negb (Bsign y)) with (Bsign (Bopp (fun n => minus_nan n (B754_zero false)) y)).
+destruct x as [| | |sx mx ex Hx], y as [| | |sy my ey Hy] ; try easy.
+unfold Bminus, Zminus.
+now rewrite <- cond_Zopp_negb.
+now destruct y as [ | | | ].
+Qed.
+
+(** Division *)
+
+Definition Fdiv_core_binary m1 e1 m2 e2 :=
+ let d1 := Zdigits2 m1 in
+ let d2 := Zdigits2 m2 in
+ let e' := Z.min (fexp (d1 + e1 - (d2 + e2))) (e1 - e2) in
+ let s := (e1 - e2 - e')%Z in
+ let m' :=
+ match s with
+ | Zpos _ => Z.shiftl m1 s
+ | Z0 => m1
+ | Zneg _ => Z0
+ end in
+ let '(q, r) := Zfast_div_eucl m' m2 in
+ (q, e', new_location m2 r loc_Exact).
+
+Lemma Bdiv_correct_aux :
+ forall m sx mx ex sy my ey,
+ let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
+ let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
+ let z :=
+ let '(mz, ez, lz) := Fdiv_core_binary (Zpos mx) ex (Zpos my) ey in
+ binary_round_aux m (xorb sx sy) mz ez lz in
+ valid_binary z = true /\
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x / y))) (bpow radix2 emax) then
+ FF2R radix2 z = round radix2 fexp (round_mode m) (x / y) /\
+ is_finite_FF z = true /\ sign_FF z = xorb sx sy
+ else
+ z = binary_overflow m (xorb sx sy).
+Proof.
+intros m sx mx ex sy my ey.
+unfold Fdiv_core_binary.
+rewrite 2!Zdigits2_Zdigits.
+set (e' := Z.min _ _).
+generalize (Fdiv_core_correct radix2 (Zpos mx) ex (Zpos my) ey e' eq_refl eq_refl).
+unfold Fdiv_core.
+rewrite Zle_bool_true by apply Z.le_min_r.
+match goal with |- context [Zfast_div_eucl ?m _] => set (mx' := m) end.
+assert (mx' = Zpos mx * Zpower radix2 (ex - ey - e'))%Z as <-.
+{ unfold mx'.
+ destruct (ex - ey - e')%Z as [|p|p].
+ now rewrite Zmult_1_r.
+ now rewrite Z.shiftl_mul_pow2.
+ easy. }
+clearbody mx'.
+rewrite Zfast_div_eucl_correct.
+destruct Z.div_eucl as [q r].
+intros Bz.
+assert (xorb sx sy = Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) *
+ / F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey)) 0) as ->.
+{ apply eq_sym.
+case sy ; simpl.
+change (Zneg my) with (Z.opp (Zpos my)).
+rewrite F2R_Zopp.
+rewrite <- Ropp_inv_permute.
+rewrite Ropp_mult_distr_r_reverse.
+case sx ; simpl.
+apply Rlt_bool_false.
+rewrite <- Ropp_mult_distr_l_reverse.
+apply Rmult_le_pos.
+rewrite <- F2R_opp.
+now apply F2R_ge_0.
+apply Rlt_le.
+apply Rinv_0_lt_compat.
+now apply F2R_gt_0.
+apply Rlt_bool_true.
+rewrite <- Ropp_0.
+apply Ropp_lt_contravar.
+apply Rmult_lt_0_compat.
+now apply F2R_gt_0.
+apply Rinv_0_lt_compat.
+now apply F2R_gt_0.
+apply Rgt_not_eq.
+now apply F2R_gt_0.
+case sx.
+apply Rlt_bool_true.
+rewrite F2R_Zopp.
+rewrite Ropp_mult_distr_l_reverse.
+rewrite <- Ropp_0.
+apply Ropp_lt_contravar.
+apply Rmult_lt_0_compat.
+now apply F2R_gt_0.
+apply Rinv_0_lt_compat.
+now apply F2R_gt_0.
+apply Rlt_bool_false.
+apply Rmult_le_pos.
+now apply F2R_ge_0.
+apply Rlt_le.
+apply Rinv_0_lt_compat.
+now apply F2R_gt_0. }
+unfold Rdiv.
+apply binary_round_aux_correct'.
+- apply Rmult_integral_contrapositive_currified.
+ now apply F2R_neq_0 ; case sx.
+ apply Rinv_neq_0_compat.
+ now apply F2R_neq_0 ; case sy.
+- rewrite Rabs_mult, Rabs_Rinv.
+ now rewrite <- 2!F2R_Zabs, 2!abs_cond_Zopp.
+ now apply F2R_neq_0 ; case sy.
+- rewrite <- cexp_abs, Rabs_mult, Rabs_Rinv.
+ rewrite 2!F2R_cond_Zopp, 2!abs_cond_Ropp, <- Rabs_Rinv.
+ rewrite <- Rabs_mult, cexp_abs.
+ apply Z.le_trans with (1 := Z.le_min_l _ _).
+ apply FLT_exp_monotone.
+ now apply mag_div_F2R.
+ now apply F2R_neq_0.
+ now apply F2R_neq_0 ; case sy.
+Qed.
+
+Definition Bdiv div_nan m x y :=
+ match x, y with
+ | B754_nan _ _ _, _ | _, B754_nan _ _ _ => build_nan (div_nan x y)
+ | B754_infinity sx, B754_infinity sy => build_nan (div_nan x y)
+ | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
+ | B754_finite sx _ _ _, B754_infinity sy => B754_zero (xorb sx sy)
+ | B754_infinity sx, B754_zero sy => B754_infinity (xorb sx sy)
+ | B754_zero sx, B754_infinity sy => B754_zero (xorb sx sy)
+ | B754_finite sx _ _ _, B754_zero sy => B754_infinity (xorb sx sy)
+ | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
+ | B754_zero sx, B754_zero sy => build_nan (div_nan x y)
+ | B754_finite sx mx ex _, B754_finite sy my ey _ =>
+ FF2B _ (proj1 (Bdiv_correct_aux m sx mx ex sy my ey))
+ end.
+
+Theorem Bdiv_correct :
+ forall div_nan m x y,
+ B2R y <> 0%R ->
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x / B2R y))) (bpow radix2 emax) then
+ B2R (Bdiv div_nan m x y) = round radix2 fexp (round_mode m) (B2R x / B2R y) /\
+ is_finite (Bdiv div_nan m x y) = is_finite x /\
+ (is_nan (Bdiv div_nan m x y) = false ->
+ Bsign (Bdiv div_nan m x y) = xorb (Bsign x) (Bsign y))
+ else
+ B2FF (Bdiv div_nan m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
+Proof.
+intros div_nan m x [sy|sy|sy ply|sy my ey Hy] Zy ; try now elim Zy.
+revert x.
+unfold Rdiv.
+intros [sx|sx|sx plx Hx|sx mx ex Hx] ;
+ try ( rewrite Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ simpl ; try easy ; now rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan | apply bpow_gt_0 | auto with typeclass_instances ] ).
+simpl.
+case Bdiv_correct_aux.
+intros H1.
+unfold Rdiv.
+case Rlt_bool.
+intros (H2, (H3, H4)).
+split.
+now rewrite B2R_FF2B.
+split.
+now rewrite is_finite_FF2B.
+rewrite Bsign_FF2B. congruence.
+intros H2.
+now rewrite B2FF_FF2B.
+Qed.
+
+(** Square root *)
+
+Definition Fsqrt_core_binary m e :=
+ let d := Zdigits2 m in
+ let e' := Z.min (fexp (Z.div2 (d + e + 1))) (Z.div2 e) in
+ let s := (e - 2 * e')%Z in
+ let m' :=
+ match s with
+ | Zpos p => Z.shiftl m s
+ | Z0 => m
+ | Zneg _ => Z0
+ end in
+ let (q, r) := Z.sqrtrem m' in
+ let l :=
+ if Zeq_bool r 0 then loc_Exact
+ else loc_Inexact (if Zle_bool r q then Lt else Gt) in
+ (q, e', l).
+
+Lemma Bsqrt_correct_aux :
+ forall m mx ex (Hx : bounded mx ex = true),
+ let x := F2R (Float radix2 (Zpos mx) ex) in
+ let z :=
+ let '(mz, ez, lz) := Fsqrt_core_binary (Zpos mx) ex in
+ binary_round_aux m false mz ez lz in
+ valid_binary z = true /\
+ FF2R radix2 z = round radix2 fexp (round_mode m) (sqrt x) /\
+ is_finite_FF z = true /\ sign_FF z = false.
+Proof with auto with typeclass_instances.
+intros m mx ex Hx.
+unfold Fsqrt_core_binary.
+rewrite Zdigits2_Zdigits.
+set (e' := Z.min _ _).
+assert (2 * e' <= ex)%Z as He.
+{ assert (e' <= Z.div2 ex)%Z by apply Z.le_min_r.
+ rewrite (Zdiv2_odd_eqn ex).
+ destruct Z.odd ; omega. }
+generalize (Fsqrt_core_correct radix2 (Zpos mx) ex e' eq_refl He).
+unfold Fsqrt_core.
+set (mx' := match (ex - 2 * e')%Z with Z0 => _ | _ => _ end).
+assert (mx' = Zpos mx * Zpower radix2 (ex - 2 * e'))%Z as <-.
+{ unfold mx'.
+ destruct (ex - 2 * e')%Z as [|p|p].
+ now rewrite Zmult_1_r.
+ now rewrite Z.shiftl_mul_pow2.
+ easy. }
+clearbody mx'.
+destruct Z.sqrtrem as [mz r].
+set (lz := if Zeq_bool r 0 then _ else _).
+clearbody lz.
+intros Bz.
+refine (_ (binary_round_aux_correct' m (sqrt (F2R (Float radix2 (Zpos mx) ex))) mz e' lz _ _ _)) ; cycle 1.
+ now apply Rgt_not_eq, sqrt_lt_R0, F2R_gt_0.
+ rewrite Rabs_pos_eq.
+ exact Bz.
+ apply sqrt_ge_0.
+ apply Z.le_trans with (1 := Z.le_min_l _ _).
+ apply FLT_exp_monotone.
+ rewrite mag_sqrt_F2R by easy.
+ apply Z.le_refl.
+rewrite Rlt_bool_false by apply sqrt_ge_0.
+rewrite Rlt_bool_true.
+easy.
+rewrite Rabs_pos_eq.
+refine (_ (relative_error_FLT_ex radix2 emin prec (prec_gt_0 prec) (round_mode m) (sqrt (F2R (Float radix2 (Zpos mx) ex))) _)).
+fold fexp.
+intros (eps, (Heps, Hr)).
+rewrite Hr.
+assert (Heps': (Rabs eps < 1)%R).
+apply Rlt_le_trans with (1 := Heps).
+fold (bpow radix2 0).
+apply bpow_le.
+generalize (prec_gt_0 prec).
+clear ; omega.
+apply Rsqr_incrst_0.
+3: apply bpow_ge_0.
+rewrite Rsqr_mult.
+rewrite Rsqr_sqrt.
+2: now apply F2R_ge_0.
+unfold Rsqr.
+apply Rmult_ge_0_gt_0_lt_compat.
+apply Rle_ge.
+apply Rle_0_sqr.
+apply bpow_gt_0.
+now apply bounded_lt_emax.
+apply Rlt_le_trans with 4%R.
+apply (Rsqr_incrst_1 _ 2).
+apply Rplus_lt_compat_l.
+apply (Rabs_lt_inv _ _ Heps').
+rewrite <- (Rplus_opp_r 1).
+apply Rplus_le_compat_l.
+apply Rlt_le.
+apply (Rabs_lt_inv _ _ Heps').
+now apply IZR_le.
+change 4%R with (bpow radix2 2).
+apply bpow_le.
+generalize (prec_gt_0 prec).
+clear -Hmax ; omega.
+apply Rmult_le_pos.
+apply sqrt_ge_0.
+rewrite <- (Rplus_opp_r 1).
+apply Rplus_le_compat_l.
+apply Rlt_le.
+apply (Rabs_lt_inv _ _ Heps').
+rewrite Rabs_pos_eq.
+2: apply sqrt_ge_0.
+apply Rsqr_incr_0.
+2: apply bpow_ge_0.
+2: apply sqrt_ge_0.
+rewrite Rsqr_sqrt.
+2: now apply F2R_ge_0.
+apply Rle_trans with (bpow radix2 emin).
+unfold Rsqr.
+rewrite <- bpow_plus.
+apply bpow_le.
+unfold emin.
+clear -Hmax ; omega.
+apply generic_format_ge_bpow with fexp.
+intros.
+apply Z.le_max_r.
+now apply F2R_gt_0.
+apply generic_format_canonical.
+apply (canonical_canonical_mantissa false).
+apply (andb_prop _ _ Hx).
+apply round_ge_generic...
+apply generic_format_0.
+apply sqrt_ge_0.
+Qed.
+
+Definition Bsqrt sqrt_nan m x :=
+ match x with
+ | B754_nan sx plx _ => build_nan (sqrt_nan x)
+ | B754_infinity false => x
+ | B754_infinity true => build_nan (sqrt_nan x)
+ | B754_finite true _ _ _ => build_nan (sqrt_nan x)
+ | B754_zero _ => x
+ | B754_finite sx mx ex Hx =>
+ FF2B _ (proj1 (Bsqrt_correct_aux m mx ex Hx))
+ end.
+
+Theorem Bsqrt_correct :
+ forall sqrt_nan m x,
+ B2R (Bsqrt sqrt_nan m x) = round radix2 fexp (round_mode m) (sqrt (B2R x)) /\
+ is_finite (Bsqrt sqrt_nan m x) = match x with B754_zero _ => true | B754_finite false _ _ _ => true | _ => false end /\
+ (is_nan (Bsqrt sqrt_nan m x) = false -> Bsign (Bsqrt sqrt_nan m x) = Bsign x).
+Proof.
+intros sqrt_nan m [sx|[|]|sx plx Hplx|sx mx ex Hx] ;
+ try ( simpl ; rewrite sqrt_0, round_0, ?B2R_build_nan, ?is_finite_build_nan, ?is_nan_build_nan ; intuition auto with typeclass_instances ; easy).
+simpl.
+case Bsqrt_correct_aux.
+intros H1 (H2, (H3, H4)).
+case sx.
+rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan.
+refine (conj _ (conj (refl_equal false) _)).
+apply sym_eq.
+unfold sqrt.
+case Rcase_abs.
+intros _.
+apply round_0.
+auto with typeclass_instances.
+intros H.
+elim Rge_not_lt with (1 := H).
+now apply F2R_lt_0.
+easy.
+split.
+now rewrite B2R_FF2B.
+split.
+now rewrite is_finite_FF2B.
+intros _.
+now rewrite Bsign_FF2B.
+Qed.
+
+(** A few values *)
+
+Definition Bone := FF2B _ (proj1 (binary_round_correct mode_NE false 1 0)).
+
+Theorem Bone_correct : B2R Bone = 1%R.
+Proof.
+unfold Bone; simpl.
+set (Hr := binary_round_correct _ _ _ _).
+unfold Hr; rewrite B2R_FF2B.
+destruct Hr as (Vz, Hr).
+revert Hr.
+fold emin; simpl.
+rewrite round_generic; [|now apply valid_rnd_N|].
+- unfold F2R; simpl; rewrite Rmult_1_r.
+ rewrite Rlt_bool_true.
+ + now intros (Hr, Hr'); rewrite Hr.
+ + rewrite Rabs_pos_eq; [|lra].
+ change 1%R with (bpow radix2 0); apply bpow_lt.
+ unfold Prec_gt_0 in prec_gt_0_; lia.
+- apply generic_format_F2R; intros _.
+ unfold cexp, fexp, FLT_exp, F2R; simpl; rewrite Rmult_1_r, mag_1.
+ unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
+Qed.
+
+Lemma is_finite_Bone : is_finite Bone = true.
+Proof.
+generalize Bone_correct; case Bone; simpl;
+ try (intros; reflexivity); intros; exfalso; lra.
+Qed.
+
+Lemma Bsign_Bone : Bsign Bone = false.
+Proof.
+generalize Bone_correct; case Bone; simpl;
+ try (intros; exfalso; lra); intros s' m e _.
+case s'; [|now intro]; unfold F2R; simpl.
+intro H; exfalso; revert H; apply Rlt_not_eq, (Rle_lt_trans _ 0); [|lra].
+rewrite <-Ropp_0, <-(Ropp_involutive (_ * _)); apply Ropp_le_contravar.
+rewrite Ropp_mult_distr_l; apply Rmult_le_pos; [|now apply bpow_ge_0].
+unfold IZR; rewrite <-INR_IPR; generalize (INR_pos m); lra.
+Qed.
+
+Lemma Bmax_float_proof :
+ valid_binary
+ (F754_finite false (shift_pos (Z.to_pos prec) 1 - 1) (emax - prec))
+ = true.
+Proof.
+unfold valid_binary, bounded; apply andb_true_intro; split.
+- unfold canonical_mantissa; apply Zeq_bool_true.
+ set (p := Z.pos (digits2_pos _)).
+ assert (H : p = prec).
+ { unfold p; rewrite Zpos_digits2_pos, Pos2Z.inj_sub.
+ - rewrite shift_pos_correct, Z.mul_1_r.
+ assert (P2pm1 : (0 <= 2 ^ prec - 1)%Z).
+ { apply (Zplus_le_reg_r _ _ 1); ring_simplify.
+ change 1%Z with (2 ^ 0)%Z; change 2%Z with (radix2 : Z).
+ apply Zpower_le; unfold Prec_gt_0 in prec_gt_0_; lia. }
+ apply Zdigits_unique;
+ rewrite Z.pow_pos_fold, Z2Pos.id; [|exact prec_gt_0_]; simpl; split.
+ + rewrite (Z.abs_eq _ P2pm1).
+ replace prec with (prec - 1 + 1)%Z at 2 by ring.
+ rewrite Zpower_plus; [| unfold Prec_gt_0 in prec_gt_0_; lia|lia].
+ simpl; unfold Z.pow_pos; simpl.
+ assert (1 <= 2 ^ (prec - 1))%Z; [|lia].
+ change 1%Z with (2 ^ 0)%Z; change 2%Z with (radix2 : Z).
+ apply Zpower_le; simpl; unfold Prec_gt_0 in prec_gt_0_; lia.
+ + now rewrite Z.abs_eq; [lia|].
+ - change (_ < _)%positive
+ with (Z.pos 1 < Z.pos (shift_pos (Z.to_pos prec) 1))%Z.
+ rewrite shift_pos_correct, Z.mul_1_r, Z.pow_pos_fold.
+ rewrite Z2Pos.id; [|exact prec_gt_0_].
+ change 1%Z with (2 ^ 0)%Z; change 2%Z with (radix2 : Z).
+ apply Zpower_lt; unfold Prec_gt_0 in prec_gt_0_; lia. }
+ unfold fexp, FLT_exp; rewrite H, Z.max_l; [ring|].
+ unfold Prec_gt_0 in prec_gt_0_; unfold emin; lia.
+- apply Zle_bool_true; unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
+Qed.
+
+Definition Bmax_float := FF2B _ Bmax_float_proof.
+
+(** Extraction/modification of mantissa/exponent *)
+
+Definition Bnormfr_mantissa x :=
+ match x with
+ | B754_finite _ mx ex _ =>
+ if Z.eqb ex (-prec)%Z then Npos mx else 0%N
+ | _ => 0%N
+ end.
+
+Definition Bldexp mode f e :=
+ match f with
+ | B754_finite sx mx ex _ =>
+ FF2B _ (proj1 (binary_round_correct mode sx mx (ex+e)))
+ | _ => f
+ end.
+
+Theorem Bldexp_correct :
+ forall m (f : binary_float) e,
+ if Rlt_bool
+ (Rabs (round radix2 fexp (round_mode m) (B2R f * bpow radix2 e)))
+ (bpow radix2 emax) then
+ (B2R (Bldexp m f e)
+ = round radix2 fexp (round_mode m) (B2R f * bpow radix2 e))%R /\
+ is_finite (Bldexp m f e) = is_finite f /\
+ Bsign (Bldexp m f e) = Bsign f
+ else
+ B2FF (Bldexp m f e) = binary_overflow m (Bsign f).
+Proof.
+intros m f e.
+case f.
+- intro s; simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode].
+ now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0].
+- intro s; simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode].
+ now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0].
+- intro s; simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode].
+ now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0].
+- intros s mf ef Hmef.
+ case (Rlt_bool_spec _ _); intro Hover.
+ + unfold Bldexp; rewrite B2R_FF2B, is_finite_FF2B, Bsign_FF2B.
+ simpl; unfold F2R; simpl; rewrite Rmult_assoc, <-bpow_plus.
+ destruct (binary_round_correct m s mf (ef + e)) as (Hf, Hr).
+ fold emin in Hr; simpl in Hr; rewrite Rlt_bool_true in Hr.
+ * now destruct Hr as (Hr, (Hfr, Hsr)); rewrite Hr, Hfr, Hsr.
+ * now revert Hover; unfold B2R, F2R; simpl; rewrite Rmult_assoc, bpow_plus.
+ + unfold Bldexp; rewrite B2FF_FF2B; simpl.
+ destruct (binary_round_correct m s mf (ef + e)) as (Hf, Hr).
+ fold emin in Hr; simpl in Hr; rewrite Rlt_bool_false in Hr; [exact Hr|].
+ now revert Hover; unfold B2R, F2R; simpl; rewrite Rmult_assoc, bpow_plus.
+Qed.
+
+(** This hypothesis is needed to implement Bfrexp
+ (otherwise, we have emin > - prec
+ and Bfrexp cannot fit the mantissa in interval [0.5, 1)) *)
+Hypothesis Hemax : (3 <= emax)%Z.
+
+Definition Ffrexp_core_binary s m e :=
+ if (Z.to_pos prec <=? digits2_pos m)%positive then
+ (F754_finite s m (-prec), (e + prec)%Z)
+ else
+ let d := (prec - Z.pos (digits2_pos m))%Z in
+ (F754_finite s (shift_pos (Z.to_pos d) m) (-prec), (e + prec - d)%Z).
+
+Lemma Bfrexp_correct_aux :
+ forall sx mx ex (Hx : bounded mx ex = true),
+ let x := F2R (Float radix2 (cond_Zopp sx (Z.pos mx)) ex) in
+ let z := fst (Ffrexp_core_binary sx mx ex) in
+ let e := snd (Ffrexp_core_binary sx mx ex) in
+ valid_binary z = true /\
+ (/2 <= Rabs (FF2R radix2 z) < 1)%R /\
+ (x = FF2R radix2 z * bpow radix2 e)%R.
+Proof.
+intros sx mx ex Bx.
+set (x := F2R _).
+set (z := fst _).
+set (e := snd _); simpl.
+assert (Dmx_le_prec : (Z.pos (digits2_pos mx) <= prec)%Z).
+{ revert Bx; unfold bounded; rewrite Bool.andb_true_iff.
+ unfold canonical_mantissa; rewrite <-Zeq_is_eq_bool; unfold fexp, FLT_exp.
+ case (Z.max_spec (Z.pos (digits2_pos mx) + ex - prec) emin); lia. }
+assert (Dmx_le_prec' : (digits2_pos mx <= Z.to_pos prec)%positive).
+{ change (_ <= _)%positive
+ with (Z.pos (digits2_pos mx) <= Z.pos (Z.to_pos prec))%Z.
+ now rewrite Z2Pos.id; [|now apply prec_gt_0_]. }
+unfold z, e, Ffrexp_core_binary.
+case (Pos.leb_spec _ _); simpl; intro Dmx.
+- unfold bounded, F2R; simpl.
+ assert (Dmx' : digits2_pos mx = Z.to_pos prec).
+ { now apply Pos.le_antisym. }
+ assert (Dmx'' : Z.pos (digits2_pos mx) = prec).
+ { now rewrite Dmx', Z2Pos.id; [|apply prec_gt_0_]. }
+ split; [|split].
+ + apply andb_true_intro.
+ split; [|apply Zle_bool_true; lia].
+ apply Zeq_bool_true; unfold fexp, FLT_exp.
+ rewrite Dmx', Z2Pos.id; [|now apply prec_gt_0_].
+ rewrite Z.max_l; [ring|unfold emin; lia].
+ + rewrite Rabs_mult, (Rabs_pos_eq (bpow _ _)); [|now apply bpow_ge_0].
+ rewrite <-abs_IZR, abs_cond_Zopp; simpl; split.
+ * apply (Rmult_le_reg_r (bpow radix2 prec)); [now apply bpow_gt_0|].
+ rewrite Rmult_assoc, <-bpow_plus, Z.add_opp_diag_l; simpl.
+ rewrite Rmult_1_r.
+ change (/ 2)%R with (bpow radix2 (- 1)); rewrite <-bpow_plus.
+ rewrite <-Dmx'', Z.add_comm, Zpos_digits2_pos, Zdigits_mag; [|lia].
+ set (b := bpow _ _).
+ rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia].
+ apply bpow_mag_le; apply IZR_neq; lia.
+ * apply (Rmult_lt_reg_r (bpow radix2 prec)); [now apply bpow_gt_0|].
+ rewrite Rmult_assoc, <-bpow_plus, Z.add_opp_diag_l; simpl.
+ rewrite Rmult_1_l, Rmult_1_r.
+ rewrite <-Dmx'', Zpos_digits2_pos, Zdigits_mag; [|lia].
+ set (b := bpow _ _).
+ rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia].
+ apply bpow_mag_gt; apply IZR_neq; lia.
+ + unfold x, F2R; simpl; rewrite Rmult_assoc, <-bpow_plus.
+ now replace (_ + _)%Z with ex by ring.
+- unfold bounded, F2R; simpl.
+ assert (Dmx' : (Z.pos (digits2_pos mx) < prec)%Z).
+ { now rewrite <-(Z2Pos.id prec); [|now apply prec_gt_0_]. }
+ split; [|split].
+ + unfold bounded; apply andb_true_intro.
+ split; [|apply Zle_bool_true; lia].
+ apply Zeq_bool_true; unfold fexp, FLT_exp.
+ rewrite Zpos_digits2_pos, shift_pos_correct, Z.pow_pos_fold.
+ rewrite Z2Pos.id; [|lia].
+ rewrite Z.mul_comm; change 2%Z with (radix2 : Z).
+ rewrite Zdigits_mult_Zpower; [|lia|lia].
+ rewrite Zpos_digits2_pos; replace (_ - _)%Z with (- prec)%Z by ring.
+ now rewrite Z.max_l; [|unfold emin; lia].
+ + rewrite Rabs_mult, (Rabs_pos_eq (bpow _ _)); [|now apply bpow_ge_0].
+ rewrite <-abs_IZR, abs_cond_Zopp; simpl.
+ rewrite shift_pos_correct, mult_IZR.
+ change (IZR (Z.pow_pos _ _))
+ with (bpow radix2 (Z.pos (Z.to_pos ((prec - Z.pos (digits2_pos mx)))))).
+ rewrite Z2Pos.id; [|lia].
+ rewrite Rmult_comm, <-Rmult_assoc, <-bpow_plus.
+ set (d := Z.pos (digits2_pos mx)).
+ replace (_ + _)%Z with (- d)%Z by ring; split.
+ * apply (Rmult_le_reg_l (bpow radix2 d)); [now apply bpow_gt_0|].
+ rewrite <-Rmult_assoc, <-bpow_plus, Z.add_opp_diag_r.
+ rewrite Rmult_1_l.
+ change (/ 2)%R with (bpow radix2 (- 1)); rewrite <-bpow_plus.
+ rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia].
+ unfold d; rewrite Zpos_digits2_pos, Zdigits_mag; [|lia].
+ apply bpow_mag_le; apply IZR_neq; lia.
+ * apply (Rmult_lt_reg_l (bpow radix2 d)); [now apply bpow_gt_0|].
+ rewrite <-Rmult_assoc, <-bpow_plus, Z.add_opp_diag_r.
+ rewrite Rmult_1_l, Rmult_1_r.
+ rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia].
+ unfold d; rewrite Zpos_digits2_pos, Zdigits_mag; [|lia].
+ apply bpow_mag_gt; apply IZR_neq; lia.
+ + rewrite Rmult_assoc, <-bpow_plus, shift_pos_correct.
+ rewrite IZR_cond_Zopp, mult_IZR, cond_Ropp_mult_r, <-IZR_cond_Zopp.
+ change (IZR (Z.pow_pos _ _))
+ with (bpow radix2 (Z.pos (Z.to_pos (prec - Z.pos (digits2_pos mx))))).
+ rewrite Z2Pos.id; [|lia].
+ rewrite Rmult_comm, <-Rmult_assoc, <-bpow_plus.
+ now replace (_ + _)%Z with ex by ring; rewrite Rmult_comm.
+Qed.
+
+Definition Bfrexp f :=
+ match f with
+ | B754_finite s m e H =>
+ let e' := snd (Ffrexp_core_binary s m e) in
+ (FF2B _ (proj1 (Bfrexp_correct_aux s m e H)), e')
+ | _ => (f, (-2*emax-prec)%Z)
+ end.
+
+Theorem Bfrexp_correct :
+ forall f,
+ is_finite_strict f = true ->
+ let x := B2R f in
+ let z := fst (Bfrexp f) in
+ let e := snd (Bfrexp f) in
+ (/2 <= Rabs (B2R z) < 1)%R /\
+ (x = B2R z * bpow radix2 e)%R /\
+ e = mag radix2 x.
+Proof.
+intro f; case f; intro s; try discriminate; intros m e Hf _.
+generalize (Bfrexp_correct_aux s m e Hf).
+intros (_, (Hb, Heq)); simpl; rewrite B2R_FF2B.
+split; [now simpl|]; split; [now simpl|].
+rewrite Heq, mag_mult_bpow.
+- apply (Z.add_reg_l (- (snd (Ffrexp_core_binary s m e)))).
+ now ring_simplify; symmetry; apply mag_unique.
+- intro H; destruct Hb as (Hb, _); revert Hb; rewrite H, Rabs_R0; lra.
+Qed.
+
+(** Ulp *)
+
+Definition Bulp x := Bldexp mode_NE Bone (fexp (snd (Bfrexp x))).
+
+Theorem Bulp_correct :
+ forall x,
+ is_finite x = true ->
+ B2R (Bulp x) = ulp radix2 fexp (B2R x) /\
+ is_finite (Bulp x) = true /\
+ Bsign (Bulp x) = false.
+Proof.
+intro x; case x.
+- intros s _; unfold Bulp.
+ replace (fexp _) with emin.
+ + generalize (Bldexp_correct mode_NE Bone emin).
+ rewrite Bone_correct, Rmult_1_l, round_generic;
+ [|now apply valid_rnd_N|apply generic_format_bpow; unfold fexp, FLT_exp;
+ rewrite Z.max_r; unfold Prec_gt_0 in prec_gt_0_; lia].
+ rewrite Rlt_bool_true.
+ * intros (Hr, (Hf, Hs)); rewrite Hr, Hf, Hs.
+ split; [|now split; [apply is_finite_Bone|apply Bsign_Bone]].
+ simpl; unfold ulp; rewrite Req_bool_true; [|reflexivity].
+ destruct (negligible_exp_FLT emin prec) as (n, (Hn, Hn')).
+ change fexp with (FLT_exp emin prec); rewrite Hn.
+ now unfold FLT_exp; rewrite Z.max_r;
+ [|unfold Prec_gt_0 in prec_gt_0_; lia].
+ * rewrite Rabs_pos_eq; [|now apply bpow_ge_0]; apply bpow_lt.
+ unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
+ + simpl; change (fexp _) with (fexp (-2 * emax - prec)).
+ unfold fexp, FLT_exp; rewrite Z.max_r; [reflexivity|].
+ unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
+- intro; discriminate.
+- intros s pl Hpl; discriminate.
+- intros s m e Hme _; unfold Bulp, ulp, cexp.
+ set (f := B754_finite _ _ _ _).
+ rewrite Req_bool_false.
+ + destruct (Bfrexp_correct f (eq_refl _)) as (Hfr1, (Hfr2, Hfr3)).
+ rewrite Hfr3.
+ set (e' := fexp _).
+ generalize (Bldexp_correct mode_NE Bone e').
+ rewrite Bone_correct, Rmult_1_l, round_generic; [|now apply valid_rnd_N|].
+ { rewrite Rlt_bool_true.
+ - intros (Hr, (Hf, Hs)); rewrite Hr, Hf, Hs.
+ now split; [|split; [apply is_finite_Bone|apply Bsign_Bone]].
+ - rewrite Rabs_pos_eq; [|now apply bpow_ge_0].
+ unfold e', fexp, FLT_exp.
+ case (Z.max_spec (mag radix2 (B2R f) - prec) emin)
+ as [(_, Hm)|(_, Hm)]; rewrite Hm; apply bpow_lt;
+ [now unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia|].
+ apply (Zplus_lt_reg_r _ _ prec); ring_simplify.
+ assert (mag radix2 (B2R f) <= emax)%Z;
+ [|now unfold Prec_gt_0 in prec_gt_0_; lia].
+ apply mag_le_bpow; [|now apply abs_B2R_lt_emax].
+ now unfold f, B2R; apply F2R_neq_0; case s. }
+ apply generic_format_bpow, Z.max_lub.
+ * unfold Prec_gt_0 in prec_gt_0_; lia.
+ * apply Z.le_max_r.
+ + now unfold f, B2R; apply F2R_neq_0; case s.
+Qed.
+
+(** Successor (and predecessor) *)
+
+Definition Bpred_pos pred_pos_nan x :=
+ match x with
+ | B754_finite _ mx _ _ =>
+ let d :=
+ if (mx~0 =? shift_pos (Z.to_pos prec) 1)%positive then
+ Bldexp mode_NE Bone (fexp (snd (Bfrexp x) - 1))
+ else
+ Bulp x in
+ Bminus (fun _ => pred_pos_nan) mode_NE x d
+ | _ => x
+ end.
+
+Theorem Bpred_pos_correct :
+ forall pred_pos_nan x,
+ (0 < B2R x)%R ->
+ B2R (Bpred_pos pred_pos_nan x) = pred_pos radix2 fexp (B2R x) /\
+ is_finite (Bpred_pos pred_pos_nan x) = true /\
+ Bsign (Bpred_pos pred_pos_nan x) = false.
+Proof.
+intros pred_pos_nan x.
+generalize (Bfrexp_correct x).
+case x.
+- simpl; intros s _ Bx; exfalso; apply (Rlt_irrefl _ Bx).
+- simpl; intros s _ Bx; exfalso; apply (Rlt_irrefl _ Bx).
+- simpl; intros s pl Hpl _ Bx; exfalso; apply (Rlt_irrefl _ Bx).
+- intros sx mx ex Hmex Hfrexpx Px.
+ assert (Hsx : sx = false).
+ { revert Px; case sx; unfold B2R, F2R; simpl; [|now intro].
+ intro Px; exfalso; revert Px; apply Rle_not_lt.
+ rewrite <-(Rmult_0_l (bpow radix2 ex)).
+ apply Rmult_le_compat_r; [apply bpow_ge_0|apply IZR_le; lia]. }
+ clear Px; rewrite Hsx in Hfrexpx |- *; clear Hsx sx.
+ specialize (Hfrexpx (eq_refl _)).
+ simpl in Hfrexpx; rewrite B2R_FF2B in Hfrexpx.
+ destruct Hfrexpx as (Hfrexpx_bounds, (Hfrexpx_eq, Hfrexpx_exp)).
+ unfold Bpred_pos, Bfrexp.
+ simpl (snd (_, snd _)).
+ rewrite Hfrexpx_exp.
+ set (x' := B754_finite _ _ _ _).
+ set (xr := F2R _).
+ assert (Nzxr : xr <> 0%R).
+ { unfold xr, F2R; simpl.
+ rewrite <-(Rmult_0_l (bpow radix2 ex)); intro H.
+ apply Rmult_eq_reg_r in H; [|apply Rgt_not_eq, bpow_gt_0].
+ apply eq_IZR in H; lia. }
+ assert (Hulp := Bulp_correct x').
+ specialize (Hulp (eq_refl _)).
+ assert (Hldexp := Bldexp_correct mode_NE Bone (fexp (mag radix2 xr - 1))).
+ rewrite Bone_correct, Rmult_1_l in Hldexp.
+ assert (Fbpowxr : generic_format radix2 fexp
+ (bpow radix2 (fexp (mag radix2 xr - 1)))).
+ { apply generic_format_bpow, Z.max_lub.
+ - unfold Prec_gt_0 in prec_gt_0_; lia.
+ - apply Z.le_max_r. }
+ assert (H : Rlt_bool (Rabs
+ (round radix2 fexp (round_mode mode_NE)
+ (bpow radix2 (fexp (mag radix2 xr - 1)))))
+ (bpow radix2 emax) = true); [|rewrite H in Hldexp; clear H].
+ { apply Rlt_bool_true; rewrite round_generic;
+ [|apply valid_rnd_round_mode|apply Fbpowxr].
+ rewrite Rabs_pos_eq; [|apply bpow_ge_0]; apply bpow_lt.
+ apply Z.max_lub_lt; [|unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia].
+ apply (Zplus_lt_reg_r _ _ (prec + 1)); ring_simplify.
+ rewrite Z.add_1_r; apply Zle_lt_succ, mag_le_bpow.
+ - exact Nzxr.
+ - apply (Rlt_le_trans _ (bpow radix2 emax)).
+ + change xr with (B2R x'); apply abs_B2R_lt_emax.
+ + apply bpow_le; unfold Prec_gt_0 in prec_gt_0_; lia. }
+ set (d := if (mx~0 =? _)%positive then _ else _).
+ set (minus_nan := fun _ => _).
+ assert (Hminus := Bminus_correct minus_nan mode_NE x' d (eq_refl _)).
+ assert (Fd : is_finite d = true).
+ { unfold d; case (_ =? _)%positive.
+ - now rewrite (proj1 (proj2 Hldexp)), is_finite_Bone.
+ - now rewrite (proj1 (proj2 Hulp)). }
+ specialize (Hminus Fd).
+ assert (Px : (0 <= B2R x')%R).
+ { unfold B2R, x', F2R; simpl.
+ now apply Rmult_le_pos; [apply IZR_le|apply bpow_ge_0]. }
+ assert (Pd : (0 <= B2R d)%R).
+ { unfold d; case (_ =? _)%positive.
+ - rewrite (proj1 Hldexp).
+ now rewrite round_generic; [apply bpow_ge_0|apply valid_rnd_N|].
+ - rewrite (proj1 Hulp); apply ulp_ge_0. }
+ assert (Hdlex : (B2R d <= B2R x')%R).
+ { unfold d; case (_ =? _)%positive.
+ - rewrite (proj1 Hldexp).
+ rewrite round_generic; [|now apply valid_rnd_N|now simpl].
+ apply (Rle_trans _ (bpow radix2 (mag radix2 xr - 1))).
+ + apply bpow_le, Z.max_lub.
+ * unfold Prec_gt_0 in prec_gt_0_; lia.
+ * apply (Zplus_le_reg_r _ _ 1); ring_simplify.
+ apply mag_ge_bpow.
+ replace (_ - 1)%Z with emin by ring.
+ now change xr with (B2R x'); apply abs_B2R_ge_emin.
+ + rewrite <-(Rabs_pos_eq _ Px).
+ now change xr with (B2R x'); apply bpow_mag_le.
+ - rewrite (proj1 Hulp); apply ulp_le_id.
+ + assert (B2R x' <> 0%R); [exact Nzxr|lra].
+ + apply generic_format_B2R. }
+ assert (H : Rlt_bool
+ (Rabs
+ (round radix2 fexp
+ (round_mode mode_NE) (B2R x' - B2R d)))
+ (bpow radix2 emax) = true); [|rewrite H in Hminus; clear H].
+ { apply Rlt_bool_true.
+ rewrite <-round_NE_abs; [|now apply FLT_exp_valid].
+ rewrite Rabs_pos_eq; [|lra].
+ apply (Rle_lt_trans _ (B2R x')).
+ - apply round_le_generic;
+ [now apply FLT_exp_valid|now apply valid_rnd_N| |lra].
+ apply generic_format_B2R.
+ - apply (Rle_lt_trans _ _ _ (Rle_abs _)), abs_B2R_lt_emax. }
+ rewrite (proj1 Hminus).
+ rewrite (proj1 (proj2 Hminus)).
+ rewrite (proj2 (proj2 Hminus)).
+ split; [|split; [reflexivity|now case (Rcompare_spec _ _); [lra| |]]].
+ unfold pred_pos, d.
+ case (Pos.eqb_spec _ _); intro Hd; case (Req_bool_spec _ _); intro Hpred.
+ + rewrite (proj1 Hldexp).
+ rewrite (round_generic _ _ _ _ Fbpowxr).
+ change xr with (B2R x').
+ replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')).
+ * rewrite round_generic; [reflexivity|now apply valid_rnd_N|].
+ apply generic_format_pred_pos;
+ [now apply FLT_exp_valid|apply generic_format_B2R|].
+ change xr with (B2R x') in Nzxr; lra.
+ * now unfold pred_pos; rewrite Req_bool_true.
+ + exfalso; apply Hpred.
+ assert (Hmx : IZR (Z.pos mx) = bpow radix2 (prec - 1)).
+ { apply (Rmult_eq_reg_l 2); [|lra]; rewrite <-mult_IZR.
+ change (2 * Z.pos mx)%Z with (Z.pos mx~0); rewrite Hd.
+ rewrite shift_pos_correct, Z.mul_1_r.
+ change (IZR (Z.pow_pos _ _)) with (bpow radix2 (Z.pos (Z.to_pos prec))).
+ rewrite Z2Pos.id; [|exact prec_gt_0_].
+ change 2%R with (bpow radix2 1); rewrite <-bpow_plus.
+ f_equal; ring. }
+ unfold x' at 1; unfold B2R at 1; unfold F2R; simpl.
+ rewrite Hmx, <-bpow_plus; f_equal.
+ apply (Z.add_reg_l 1); ring_simplify; symmetry; apply mag_unique_pos.
+ unfold F2R; simpl; rewrite Hmx, <-bpow_plus; split.
+ * right; f_equal; ring.
+ * apply bpow_lt; lia.
+ + rewrite (proj1 Hulp).
+ assert (H : ulp radix2 fexp (B2R x')
+ = bpow radix2 (fexp (mag radix2 (B2R x') - 1)));
+ [|rewrite H; clear H].
+ { unfold ulp; rewrite Req_bool_false; [|now simpl].
+ unfold cexp; f_equal.
+ assert (H : (mag radix2 (B2R x') <= emin + prec)%Z).
+ { assert (Hcm : canonical_mantissa mx ex = true).
+ { now generalize Hmex; unfold bounded; rewrite Bool.andb_true_iff. }
+ apply (canonical_canonical_mantissa false) in Hcm.
+ revert Hcm; fold emin; unfold canonical, cexp; simpl.
+ change (F2R _) with (B2R x'); intro Hex.
+ apply Z.nlt_ge; intro H'; apply Hd.
+ apply Pos2Z.inj_pos; rewrite shift_pos_correct, Z.mul_1_r.
+ apply eq_IZR; change (IZR (Z.pow_pos _ _))
+ with (bpow radix2 (Z.pos (Z.to_pos prec))).
+ rewrite Z2Pos.id; [|exact prec_gt_0_].
+ change (Z.pos mx~0) with (2 * Z.pos mx)%Z.
+ rewrite Z.mul_comm, mult_IZR.
+ apply (Rmult_eq_reg_r (bpow radix2 (ex - 1)));
+ [|apply Rgt_not_eq, bpow_gt_0].
+ change 2%R with (bpow radix2 1); rewrite Rmult_assoc, <-!bpow_plus.
+ replace (1 + _)%Z with ex by ring.
+ unfold B2R at 1, F2R in Hpred; simpl in Hpred; rewrite Hpred.
+ change (F2R _) with (B2R x'); rewrite Hex.
+ unfold fexp, FLT_exp; rewrite Z.max_l; [f_equal; ring|lia]. }
+ now unfold fexp, FLT_exp; do 2 (rewrite Z.max_r; [|lia]). }
+ replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')).
+ * rewrite round_generic; [reflexivity|apply valid_rnd_N|].
+ apply generic_format_pred_pos;
+ [now apply FLT_exp_valid| |change xr with (B2R x') in Nzxr; lra].
+ apply generic_format_B2R.
+ * now unfold pred_pos; rewrite Req_bool_true.
+ + rewrite (proj1 Hulp).
+ replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')).
+ * rewrite round_generic; [reflexivity|now apply valid_rnd_N|].
+ apply generic_format_pred_pos;
+ [now apply FLT_exp_valid|apply generic_format_B2R|].
+ change xr with (B2R x') in Nzxr; lra.
+ * now unfold pred_pos; rewrite Req_bool_false.
+Qed.
+
+Definition Bsucc succ_nan x :=
+ match x with
+ | B754_zero _ => Bldexp mode_NE Bone emin
+ | B754_infinity false => x
+ | B754_infinity true => Bopp succ_nan Bmax_float
+ | B754_nan _ _ _ => build_nan (succ_nan x)
+ | B754_finite false _ _ _ =>
+ Bplus (fun _ => succ_nan) mode_NE x (Bulp x)
+ | B754_finite true _ _ _ =>
+ Bopp succ_nan (Bpred_pos succ_nan (Bopp succ_nan x))
+ end.
+
+Lemma Bsucc_correct :
+ forall succ_nan x,
+ is_finite x = true ->
+ if Rlt_bool (succ radix2 fexp (B2R x)) (bpow radix2 emax) then
+ B2R (Bsucc succ_nan x) = succ radix2 fexp (B2R x) /\
+ is_finite (Bsucc succ_nan x) = true /\
+ (Bsign (Bsucc succ_nan x) = Bsign x && is_finite_strict x)%bool
+ else
+ B2FF (Bsucc succ_nan x) = F754_infinity false.
+Proof.
+assert (Hsucc : succ radix2 fexp 0 = bpow radix2 emin).
+{ unfold succ; rewrite Rle_bool_true; [|now right]; rewrite Rplus_0_l.
+ unfold ulp; rewrite Req_bool_true; [|now simpl].
+ destruct (negligible_exp_FLT emin prec) as (n, (Hne, Hn)).
+ now unfold fexp; rewrite Hne; unfold FLT_exp; rewrite Z.max_r;
+ [|unfold Prec_gt_0 in prec_gt_0_; lia]. }
+intros succ_nan [s|s|s pl Hpl|sx mx ex Hmex]; try discriminate; intros _.
+- generalize (Bldexp_correct mode_NE Bone emin); unfold Bsucc; simpl.
+ assert (Hbemin : round radix2 fexp ZnearestE (bpow radix2 emin)
+ = bpow radix2 emin).
+ { rewrite round_generic; [reflexivity|apply valid_rnd_N|].
+ apply generic_format_bpow.
+ unfold fexp, FLT_exp; rewrite Z.max_r; [now simpl|].
+ unfold Prec_gt_0 in prec_gt_0_; lia. }
+ rewrite Hsucc, Rlt_bool_true.
+ + intros (Hr, (Hf, Hs)); rewrite Hr, Hf, Hs.
+ rewrite Bone_correct, Rmult_1_l, is_finite_Bone, Bsign_Bone.
+ case Rlt_bool_spec; intro Hover.
+ * now rewrite Bool.andb_false_r.
+ * exfalso; revert Hover; apply Rlt_not_le, bpow_lt.
+ unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
+ + rewrite Bone_correct, Rmult_1_l, Hbemin, Rabs_pos_eq; [|apply bpow_ge_0].
+ apply bpow_lt; unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
+- unfold Bsucc; case sx.
+ + case Rlt_bool_spec; intro Hover.
+ * rewrite B2R_Bopp; simpl (Bopp _ (B754_finite _ _ _ _)).
+ rewrite is_finite_Bopp.
+ set (ox := B754_finite false mx ex Hmex).
+ assert (Hpred := Bpred_pos_correct succ_nan ox).
+ assert (Hox : (0 < B2R ox)%R); [|specialize (Hpred Hox); clear Hox].
+ { now apply Rmult_lt_0_compat; [apply IZR_lt|apply bpow_gt_0]. }
+ rewrite (proj1 Hpred), (proj1 (proj2 Hpred)).
+ unfold succ; rewrite Rle_bool_false; [split; [|split]|].
+ { now unfold B2R, F2R, ox; simpl; rewrite Ropp_mult_distr_l, <-opp_IZR. }
+ { now simpl. }
+ { simpl (Bsign (B754_finite _ _ _ _)); simpl (true && _)%bool.
+ rewrite Bsign_Bopp, (proj2 (proj2 Hpred)); [now simpl|].
+ now destruct Hpred as (_, (H, _)); revert H; case (Bpred_pos _ _). }
+ unfold B2R, F2R; simpl; change (Z.neg mx) with (- Z.pos mx)%Z.
+ rewrite opp_IZR, <-Ropp_mult_distr_l, <-Ropp_0; apply Ropp_lt_contravar.
+ now apply Rmult_lt_0_compat; [apply IZR_lt|apply bpow_gt_0].
+ * exfalso; revert Hover; apply Rlt_not_le.
+ apply (Rle_lt_trans _ (succ radix2 fexp 0)).
+ { apply succ_le; [now apply FLT_exp_valid|apply generic_format_B2R|
+ apply generic_format_0|].
+ unfold B2R, F2R; simpl; change (Z.neg mx) with (- Z.pos mx)%Z.
+ rewrite opp_IZR, <-Ropp_mult_distr_l, <-Ropp_0; apply Ropp_le_contravar.
+ now apply Rmult_le_pos; [apply IZR_le|apply bpow_ge_0]. }
+ rewrite Hsucc; apply bpow_lt.
+ unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
+ + set (x := B754_finite _ _ _ _).
+ set (plus_nan := fun _ => succ_nan).
+ assert (Hulp := Bulp_correct x (eq_refl _)).
+ assert (Hplus := Bplus_correct plus_nan mode_NE x (Bulp x) (eq_refl _)).
+ rewrite (proj1 (proj2 Hulp)) in Hplus; specialize (Hplus (eq_refl _)).
+ assert (Px : (0 <= B2R x)%R).
+ { now apply Rmult_le_pos; [apply IZR_le|apply bpow_ge_0]. }
+ assert (Hsucc' : (succ radix2 fexp (B2R x)
+ = B2R x + ulp radix2 fexp (B2R x))%R).
+ { now unfold succ; rewrite (Rle_bool_true _ _ Px). }
+ rewrite (proj1 Hulp), <- Hsucc' in Hplus.
+ rewrite round_generic in Hplus;
+ [|apply valid_rnd_N| now apply generic_format_succ;
+ [apply FLT_exp_valid|apply generic_format_B2R]].
+ rewrite Rabs_pos_eq in Hplus; [|apply (Rle_trans _ _ _ Px), succ_ge_id].
+ revert Hplus; case Rlt_bool_spec; intros Hover Hplus.
+ * split; [now simpl|split; [now simpl|]].
+ rewrite (proj2 (proj2 Hplus)); case Rcompare_spec.
+ { intro H; exfalso; revert H.
+ apply Rle_not_lt, (Rle_trans _ _ _ Px), succ_ge_id. }
+ { intro H; exfalso; revert H; apply Rgt_not_eq, Rlt_gt.
+ apply (Rlt_le_trans _ (B2R x)); [|apply succ_ge_id].
+ now apply Rmult_lt_0_compat; [apply IZR_lt|apply bpow_gt_0]. }
+ now simpl.
+ * now rewrite (proj1 Hplus).
+Qed.
+
+Definition Bpred pred_nan x :=
+ Bopp pred_nan (Bsucc pred_nan (Bopp pred_nan x)).
+
+Lemma Bpred_correct :
+ forall pred_nan x,
+ is_finite x = true ->
+ if Rlt_bool (- bpow radix2 emax) (pred radix2 fexp (B2R x)) then
+ B2R (Bpred pred_nan x) = pred radix2 fexp (B2R x) /\
+ is_finite (Bpred pred_nan x) = true /\
+ (Bsign (Bpred pred_nan x) = Bsign x || negb (is_finite_strict x))%bool
+ else
+ B2FF (Bpred pred_nan x) = F754_infinity true.
+Proof.
+intros pred_nan x Fx.
+assert (Fox : is_finite (Bopp pred_nan x) = true).
+{ now rewrite is_finite_Bopp. }
+rewrite <-(Ropp_involutive (B2R x)), <-(B2R_Bopp pred_nan).
+rewrite pred_opp, Rlt_bool_opp.
+generalize (Bsucc_correct pred_nan _ Fox).
+case (Rlt_bool _ _).
+- intros (HR, (HF, HS)); unfold Bpred.
+ rewrite B2R_Bopp, HR, is_finite_Bopp.
+ rewrite <-(Bool.negb_involutive (Bsign x)), <-Bool.negb_andb.
+ split; [reflexivity|split; [exact HF|]].
+ replace (is_finite_strict x) with (is_finite_strict (Bopp pred_nan x));
+ [|now case x; try easy; intros s pl Hpl; simpl;
+ rewrite is_finite_strict_build_nan].
+ rewrite Bsign_Bopp, <-(Bsign_Bopp pred_nan x), HS.
+ + now simpl.
+ + now revert Fx; case x.
+ + now revert HF; case (Bsucc _ _).
+- now unfold Bpred; case (Bsucc _ _); intro s; case s.
+Qed.
+
+End Binary.
diff --git a/flocq/Appli/Fappli_IEEE_bits.v b/flocq/IEEE754/Bits.v
index e6a012cf..3a84edfe 100644
--- a/flocq/Appli/Fappli_IEEE_bits.v
+++ b/flocq/IEEE754/Bits.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2011-2013 Sylvie Boldo
+Copyright (C) 2011-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2011-2013 Guillaume Melquiond
+Copyright (C) 2011-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,46 +18,18 @@ COPYING file for more details.
*)
(** * IEEE-754 encoding of binary floating-point data *)
-Require Import Fcore.
-Require Import Fcore_digits.
-Require Import Fcalc_digits.
-Require Import Fappli_IEEE.
+Require Import Core Digits Binary.
Section Binary_Bits.
-Arguments exist {A P} x _.
-Arguments B754_zero {prec emax} _.
-Arguments B754_infinity {prec emax} _.
-Arguments B754_nan {prec emax} _ _.
-Arguments B754_finite {prec emax} _ m e _.
+Arguments exist {A} {P}.
+Arguments B754_zero {prec} {emax}.
+Arguments B754_infinity {prec} {emax}.
+Arguments B754_nan {prec} {emax}.
+Arguments B754_finite {prec} {emax}.
(** Number of bits for the fraction and exponent *)
Variable mw ew : Z.
-Hypothesis Hmw : (0 < mw)%Z.
-Hypothesis Hew : (0 < ew)%Z.
-
-Let emax := Zpower 2 (ew - 1).
-Let prec := (mw + 1)%Z.
-Let emin := (3 - emax - prec)%Z.
-Let binary_float := binary_float prec emax.
-
-Let Hprec : (0 < prec)%Z.
-unfold prec.
-apply Zle_lt_succ.
-now apply Zlt_le_weak.
-Qed.
-
-Let Hm_gt_0 : (0 < 2^mw)%Z.
-apply (Zpower_gt_0 radix2).
-now apply Zlt_le_weak.
-Qed.
-
-Let He_gt_0 : (0 < 2^ew)%Z.
-apply (Zpower_gt_0 radix2).
-now apply Zlt_le_weak.
-Qed.
-
-Hypothesis Hmax : (prec < emax)%Z.
Definition join_bits (s : bool) m e :=
(Z.shiftl ((if s then Zpower 2 ew else 0) + e) mw + m)%Z.
@@ -69,8 +41,14 @@ Lemma join_bits_range :
(0 <= join_bits s m e < 2 ^ (mw + ew + 1))%Z.
Proof.
intros s m e Hm He.
+assert (0 <= mw)%Z as Hmw.
+ destruct mw as [|mw'|mw'] ; try easy.
+ clear -Hm ; simpl in Hm ; omega.
+assert (0 <= ew)%Z as Hew.
+ destruct ew as [|ew'|ew'] ; try easy.
+ clear -He ; simpl in He ; omega.
unfold join_bits.
-rewrite Z.shiftl_mul_pow2 by now apply Zlt_le_weak.
+rewrite Z.shiftl_mul_pow2 by easy.
split.
- apply (Zplus_le_compat 0 _ 0) with (2 := proj1 Hm).
rewrite <- (Zmult_0_l (2^mw)).
@@ -79,26 +57,24 @@ split.
clear -He ; omega.
now rewrite Zmult_0_l.
clear -Hm ; omega.
-- apply Zlt_le_trans with (((if s then 2 ^ ew else 0) + e + 1) * 2 ^ mw)%Z.
+- apply Z.lt_le_trans with (((if s then 2 ^ ew else 0) + e + 1) * 2 ^ mw)%Z.
rewrite (Zmult_plus_distr_l _ 1).
apply Zplus_lt_compat_l.
now rewrite Zmult_1_l.
rewrite <- (Zplus_assoc mw), (Zplus_comm mw), Zpower_plus.
apply Zmult_le_compat_r.
- rewrite Zpower_plus.
+ rewrite Zpower_plus by easy.
change (2^1)%Z with 2%Z.
case s ; clear -He ; omega.
- now apply Zlt_le_weak.
- easy.
clear -Hm ; omega.
clear -Hew ; omega.
- now apply Zlt_le_weak.
+ easy.
Qed.
Definition split_bits x :=
let mm := Zpower 2 mw in
let em := Zpower 2 ew in
- (Zle_bool (mm * em) x, Zmod x mm, Zmod (Zdiv x mm) em)%Z.
+ (Zle_bool (mm * em) x, Zmod x mm, Zmod (Z.div x mm) em)%Z.
Theorem split_join_bits :
forall s m e,
@@ -107,45 +83,75 @@ Theorem split_join_bits :
split_bits (join_bits s m e) = (s, m, e).
Proof.
intros s m e Hm He.
+assert (0 <= mw)%Z as Hmw.
+ destruct mw as [|mw'|mw'] ; try easy.
+ clear -Hm ; simpl in Hm ; omega.
+assert (0 <= ew)%Z as Hew.
+ destruct ew as [|ew'|ew'] ; try easy.
+ clear -He ; simpl in He ; omega.
unfold split_bits, join_bits.
-rewrite Z.shiftl_mul_pow2 by now apply Zlt_le_weak.
-apply f_equal2.
-apply f_equal2.
-(* *)
-case s.
-apply Zle_bool_true.
-apply Zle_0_minus_le.
-ring_simplify.
-apply Zplus_le_0_compat.
-apply Zmult_le_0_compat.
-apply He.
+rewrite Z.shiftl_mul_pow2 by easy.
+apply f_equal2 ; [apply f_equal2|].
+- case s.
+ + apply Zle_bool_true.
+ apply Zle_0_minus_le.
+ ring_simplify.
+ apply Zplus_le_0_compat.
+ apply Zmult_le_0_compat.
+ apply He.
+ clear -Hm ; omega.
+ apply Hm.
+ + apply Zle_bool_false.
+ apply Zplus_lt_reg_l with (2^mw * (-e))%Z.
+ replace (2 ^ mw * - e + ((0 + e) * 2 ^ mw + m))%Z with (m * 1)%Z by ring.
+ rewrite <- Zmult_plus_distr_r.
+ apply Z.lt_le_trans with (2^mw * 1)%Z.
+ now apply Zmult_lt_compat_r.
+ apply Zmult_le_compat_l.
+ clear -He ; omega.
+ clear -Hm ; omega.
+- rewrite Zplus_comm.
+ rewrite Z_mod_plus_full.
+ now apply Zmod_small.
+- rewrite Z_div_plus_full_l by (clear -Hm ; omega).
+ rewrite Zdiv_small with (1 := Hm).
+ rewrite Zplus_0_r.
+ case s.
+ + replace (2^ew + e)%Z with (e + 1 * 2^ew)%Z by ring.
+ rewrite Z_mod_plus_full.
+ now apply Zmod_small.
+ + now apply Zmod_small.
+Qed.
+
+Hypothesis Hmw : (0 < mw)%Z.
+Hypothesis Hew : (0 < ew)%Z.
+
+Let emax := Zpower 2 (ew - 1).
+Let prec := (mw + 1)%Z.
+Let emin := (3 - emax - prec)%Z.
+Let binary_float := binary_float prec emax.
+
+Let Hprec : (0 < prec)%Z.
+Proof.
+unfold prec.
+apply Zle_lt_succ.
now apply Zlt_le_weak.
-apply Hm.
-apply Zle_bool_false.
-apply Zplus_lt_reg_l with (2^mw * (-e))%Z.
-replace (2 ^ mw * - e + ((0 + e) * 2 ^ mw + m))%Z with (m * 1)%Z by ring.
-rewrite <- Zmult_plus_distr_r.
-apply Zlt_le_trans with (2^mw * 1)%Z.
-now apply Zmult_lt_compat_r.
-apply Zmult_le_compat_l.
-clear -He. omega.
+Qed.
+
+Let Hm_gt_0 : (0 < 2^mw)%Z.
+Proof.
+apply (Zpower_gt_0 radix2).
now apply Zlt_le_weak.
-(* *)
-rewrite Zplus_comm.
-rewrite Z_mod_plus_full.
-now apply Zmod_small.
-(* *)
-rewrite Z_div_plus_full_l.
-rewrite Zdiv_small with (1 := Hm).
-rewrite Zplus_0_r.
-case s.
-replace (2^ew + e)%Z with (e + 1 * 2^ew)%Z by ring.
-rewrite Z_mod_plus_full.
-now apply Zmod_small.
-now apply Zmod_small.
-now apply Zgt_not_eq.
Qed.
+Let He_gt_0 : (0 < 2^ew)%Z.
+Proof.
+apply (Zpower_gt_0 radix2).
+now apply Zlt_le_weak.
+Qed.
+
+Hypothesis Hmax : (prec < emax)%Z.
+
Theorem join_split_bits :
forall x,
(0 <= x < Zpower 2 (mw + ew + 1))%Z ->
@@ -171,17 +177,15 @@ case Zle_bool_spec ; intros Hs.
apply Zle_antisym.
cut (x / (2^mw * 2^ew) < 2)%Z. clear ; omega.
apply Zdiv_lt_upper_bound.
-try apply Hx. (* 8.2/8.3 compatibility *)
now apply Zmult_lt_0_compat.
-rewrite <- Zpower_exp ; try ( apply Zle_ge ; apply Zlt_le_weak ; assumption ).
+rewrite <- Zpower_exp ; try ( apply Z.le_ge ; apply Zlt_le_weak ; assumption ).
change 2%Z at 1 with (Zpower 2 1).
rewrite <- Zpower_exp.
now rewrite Zplus_comm.
discriminate.
-apply Zle_ge.
+apply Z.le_ge.
now apply Zplus_le_0_compat ; apply Zlt_le_weak.
apply Zdiv_le_lower_bound.
-try apply Hx. (* 8.2/8.3 compatibility *)
now apply Zmult_lt_0_compat.
now rewrite Zmult_1_l.
apply Zdiv_small.
@@ -213,7 +217,7 @@ Definition bits_of_binary_float (x : binary_float) :=
match x with
| B754_zero sx => join_bits sx 0 0
| B754_infinity sx => join_bits sx 0 (Zpower 2 ew - 1)
- | B754_nan sx (exist plx _) => join_bits sx (Zpos plx) (Zpower 2 ew - 1)
+ | B754_nan sx plx _ => join_bits sx (Zpos plx) (Zpower 2 ew - 1)
| B754_finite sx mx ex _ =>
let m := (Zpos mx - Zpower 2 mw)%Z in
if Zle_bool 0 m then
@@ -226,7 +230,7 @@ Definition split_bits_of_binary_float (x : binary_float) :=
match x with
| B754_zero sx => (sx, 0, 0)%Z
| B754_infinity sx => (sx, 0, Zpower 2 ew - 1)%Z
- | B754_nan sx (exist plx _) => (sx, Zpos plx, Zpower 2 ew - 1)%Z
+ | B754_nan sx plx _ => (sx, Zpos plx, Zpower 2 ew - 1)%Z
| B754_finite sx mx ex _ =>
let m := (Zpos mx - Zpower 2 mw)%Z in
if Zle_bool 0 m then
@@ -239,13 +243,14 @@ Theorem split_bits_of_binary_float_correct :
forall x,
split_bits (bits_of_binary_float x) = split_bits_of_binary_float x.
Proof.
-intros [sx|sx|sx [plx Hplx]|sx mx ex Hx] ;
- try ( simpl ; apply split_join_bits ; split ; try apply Zle_refl ; try apply Zlt_pred ; trivial ; omega ).
+intros [sx|sx|sx plx Hplx|sx mx ex Hx] ;
+ try ( simpl ; apply split_join_bits ; split ; try apply Z.le_refl ; try apply Zlt_pred ; trivial ; omega ).
simpl. apply split_join_bits; split; try (zify; omega).
destruct (digits2_Pnat_correct plx).
+unfold nan_pl in Hplx.
rewrite Zpos_digits2_pos, <- Z_of_nat_S_digits2_Pnat in Hplx.
rewrite Zpower_nat_Z in H0.
-eapply Zlt_le_trans. apply H0.
+eapply Z.lt_le_trans. apply H0.
change 2%Z with (radix_val radix2). apply Zpower_le.
rewrite Z.ltb_lt in Hplx.
unfold prec in *. zify; omega.
@@ -253,7 +258,7 @@ unfold prec in *. zify; omega.
unfold bits_of_binary_float, split_bits_of_binary_float.
assert (Hf: (emin <= ex /\ Zdigits radix2 (Zpos mx) <= prec)%Z).
destruct (andb_prop _ _ Hx) as (Hx', _).
-unfold canonic_mantissa in Hx'.
+unfold canonical_mantissa in Hx'.
rewrite Zpos_digits2_pos in Hx'.
generalize (Zeq_bool_eq _ _ Hx').
unfold FLT_exp.
@@ -271,7 +276,7 @@ apply (Zpower_gt_Zdigits radix2 _ (Zpos mx)).
apply Hf.
unfold prec.
rewrite Zplus_comm.
-apply Zpower_exp ; apply Zle_ge.
+apply Zpower_exp ; apply Z.le_ge.
discriminate.
now apply Zlt_le_weak.
(* *)
@@ -285,9 +290,9 @@ generalize (Zle_bool_imp_le _ _ Hx').
clear ; omega.
apply sym_eq.
rewrite (Zsucc_pred ew).
-unfold Zsucc.
+unfold Z.succ.
rewrite Zplus_comm.
-apply Zpower_exp ; apply Zle_ge.
+apply Zpower_exp ; apply Z.le_ge.
discriminate.
now apply Zlt_0_le_0_pred.
Qed.
@@ -296,7 +301,7 @@ Theorem bits_of_binary_float_range:
forall x, (0 <= bits_of_binary_float x < 2^(mw+ew+1))%Z.
Proof.
unfold bits_of_binary_float.
-intros [sx|sx|sx [pl pl_range]|sx mx ex H].
+intros [sx|sx|sx pl pl_range|sx mx ex H].
- apply join_bits_range ; now split.
- apply join_bits_range.
now split.
@@ -312,7 +317,7 @@ intros [sx|sx|sx [pl pl_range]|sx mx ex H].
- unfold bounded in H.
apply Bool.andb_true_iff in H ; destruct H as [A B].
apply Z.leb_le in B.
- unfold canonic_mantissa, FLT_exp in A. apply Zeq_bool_eq in A.
+ unfold canonical_mantissa, FLT_exp in A. apply Zeq_bool_eq in A.
case Zle_bool_spec ; intros H.
+ apply join_bits_range.
* split.
@@ -362,6 +367,10 @@ Lemma binary_float_of_bits_aux_correct :
Proof.
intros x.
unfold binary_float_of_bits_aux, split_bits.
+assert (Hnan: nan_pl prec 1 = true).
+ apply Z.ltb_lt.
+ simpl. unfold prec.
+ clear -Hmw ; omega.
case Zeq_bool_spec ; intros He1.
case_eq (x mod 2^mw)%Z ; try easy.
(* subnormal *)
@@ -371,11 +380,11 @@ apply Zdigits_le_Zpower.
simpl.
rewrite <- Hm.
eapply Z_mod_lt.
-now apply Zlt_gt.
-apply bounded_canonic_lt_emax ; try assumption.
-unfold canonic, canonic_exp.
+now apply Z.lt_gt.
+apply bounded_canonical_lt_emax ; try assumption.
+unfold canonical, cexp.
fold emin.
-rewrite ln_beta_F2R_Zdigits. 2: discriminate.
+rewrite mag_F2R_Zdigits. 2: discriminate.
unfold Fexp, FLT_exp.
apply sym_eq.
apply Zmax_right.
@@ -383,16 +392,15 @@ clear -H Hprec.
unfold prec ; omega.
apply Rnot_le_lt.
intros H0.
-refine (_ (ln_beta_le radix2 _ _ _ H0)).
-rewrite ln_beta_bpow.
-rewrite ln_beta_F2R_Zdigits. 2: discriminate.
+refine (_ (mag_le radix2 _ _ _ H0)).
+rewrite mag_bpow.
+rewrite mag_F2R_Zdigits. 2: discriminate.
unfold emin, prec.
apply Zlt_not_le.
cut (0 < emax)%Z. clear -H Hew ; omega.
apply (Zpower_gt_0 radix2).
clear -Hew ; omega.
apply bpow_gt_0.
-simpl. intros. rewrite Z.ltb_lt. unfold prec. zify; omega.
case Zeq_bool_spec ; intros He2.
case_eq (x mod 2 ^ mw)%Z; try easy.
(* nan *)
@@ -403,39 +411,37 @@ apply Zdigits_le_Zpower. simpl.
rewrite <- Eqplx. edestruct Z_mod_lt; eauto.
change 2%Z with (radix_val radix2).
apply Z.lt_gt, Zpower_gt_0. omega.
-simpl. intros. rewrite Z.ltb_lt. unfold prec. zify; omega.
case_eq (x mod 2^mw + 2^mw)%Z ; try easy.
-simpl. intros. rewrite Z.ltb_lt. unfold prec. zify; omega.
(* normal *)
intros px Hm.
assert (prec = Zdigits radix2 (Zpos px)).
(* . *)
-rewrite Zdigits_ln_beta. 2: discriminate.
+rewrite Zdigits_mag. 2: discriminate.
apply sym_eq.
-apply ln_beta_unique.
-rewrite <- Z2R_abs.
-unfold Zabs.
+apply mag_unique.
+rewrite <- abs_IZR.
+unfold Z.abs.
replace (prec - 1)%Z with mw by ( unfold prec ; ring ).
-rewrite <- Z2R_Zpower with (1 := Zlt_le_weak _ _ Hmw).
-rewrite <- Z2R_Zpower. 2: now apply Zlt_le_weak.
+rewrite <- IZR_Zpower with (1 := Zlt_le_weak _ _ Hmw).
+rewrite <- IZR_Zpower. 2: now apply Zlt_le_weak.
rewrite <- Hm.
split.
-apply Z2R_le.
+apply IZR_le.
change (radix2^mw)%Z with (0 + 2^mw)%Z.
apply Zplus_le_compat_r.
eapply Z_mod_lt.
-now apply Zlt_gt.
-apply Z2R_lt.
+now apply Z.lt_gt.
+apply IZR_lt.
unfold prec.
-rewrite Zpower_exp. 2: now apply Zle_ge ; apply Zlt_le_weak. 2: discriminate.
+rewrite Zpower_exp. 2: now apply Z.le_ge ; apply Zlt_le_weak. 2: discriminate.
rewrite <- Zplus_diag_eq_mult_2.
apply Zplus_lt_compat_r.
eapply Z_mod_lt.
-now apply Zlt_gt.
+now apply Z.lt_gt.
(* . *)
-apply bounded_canonic_lt_emax ; try assumption.
-unfold canonic, canonic_exp.
-rewrite ln_beta_F2R_Zdigits. 2: discriminate.
+apply bounded_canonical_lt_emax ; try assumption.
+unfold canonical, cexp.
+rewrite mag_F2R_Zdigits. 2: discriminate.
unfold Fexp, FLT_exp.
rewrite <- H.
set (ex := ((x / 2^mw) mod 2^ew)%Z).
@@ -448,14 +454,14 @@ cut (0 <= ex)%Z.
unfold emin.
clear ; intros H1 H2 ; omega.
eapply Z_mod_lt.
-apply Zlt_gt.
+apply Z.lt_gt.
apply (Zpower_gt_0 radix2).
now apply Zlt_le_weak.
apply Rnot_le_lt.
intros H0.
-refine (_ (ln_beta_le radix2 _ _ _ H0)).
-rewrite ln_beta_bpow.
-rewrite ln_beta_F2R_Zdigits. 2: discriminate.
+refine (_ (mag_le radix2 _ _ _ H0)).
+rewrite mag_bpow.
+rewrite mag_F2R_Zdigits. 2: discriminate.
rewrite <- H.
apply Zlt_not_le.
unfold emin.
@@ -472,11 +478,10 @@ apply refl_equal.
discriminate.
clear -Hew ; omega.
eapply Z_mod_lt.
-apply Zlt_gt.
+apply Z.lt_gt.
apply (Zpower_gt_0 radix2).
now apply Zlt_le_weak.
apply bpow_gt_0.
-simpl. intros. rewrite Z.ltb_lt. unfold prec. zify; omega.
Qed.
Definition binary_float_of_bits x :=
@@ -492,7 +497,7 @@ unfold binary_float_of_bits.
rewrite B2FF_FF2B.
unfold binary_float_of_bits_aux.
rewrite split_bits_of_binary_float_correct.
-destruct x as [sx|sx|sx [plx Hplx]|sx mx ex Bx].
+destruct x as [sx|sx|sx plx Hplx|sx mx ex Bx].
apply refl_equal.
(* *)
simpl.
@@ -563,7 +568,7 @@ intros (sx, mx) ex Sx.
assert (Bm: (0 <= mx < 2^mw)%Z).
inversion_clear Sx.
apply Z_mod_lt.
-now apply Zlt_gt.
+now apply Z.lt_gt.
case Zeq_bool_spec ; intros He1.
(* subnormal *)
case_eq mx.
@@ -604,41 +609,47 @@ End Binary_Bits.
(** Specialization for IEEE single precision operations *)
Section B32_Bits.
-Arguments B754_nan {prec emax} _ _.
+Arguments B754_nan {prec} {emax}.
Definition binary32 := binary_float 24 128.
Let Hprec : (0 < 24)%Z.
+Proof.
apply refl_equal.
Qed.
Let Hprec_emax : (24 < 128)%Z.
+Proof.
apply refl_equal.
Qed.
-Definition default_nan_pl32 : bool * nan_pl 24 :=
- (false, exist _ (iter_nat xO 22 xH) (refl_equal true)).
+Definition default_nan_pl32 : { nan : binary32 | is_nan 24 128 nan = true } :=
+ exist _ (@B754_nan 24 128 false (iter_nat xO 22 xH) (refl_equal true)) (refl_equal true).
-Definition unop_nan_pl32 (f : binary32) : bool * nan_pl 24 :=
- match f with
- | B754_nan s pl => (s, pl)
+Definition unop_nan_pl32 (f : binary32) : { nan : binary32 | is_nan 24 128 nan = true } :=
+ match f as f with
+ | B754_nan s pl Hpl => exist _ (B754_nan s pl Hpl) (refl_equal true)
| _ => default_nan_pl32
end.
-Definition binop_nan_pl32 (f1 f2 : binary32) : bool * nan_pl 24 :=
+Definition binop_nan_pl32 (f1 f2 : binary32) : { nan : binary32 | is_nan 24 128 nan = true } :=
match f1, f2 with
- | B754_nan s1 pl1, _ => (s1, pl1)
- | _, B754_nan s2 pl2 => (s2, pl2)
+ | B754_nan s1 pl1 Hpl1, _ => exist _ (B754_nan s1 pl1 Hpl1) (refl_equal true)
+ | _, B754_nan s2 pl2 Hpl2 => exist _ (B754_nan s2 pl2 Hpl2) (refl_equal true)
| _, _ => default_nan_pl32
end.
-Definition b32_opp := Bopp 24 128 pair.
-Definition b32_plus := Bplus _ _ Hprec Hprec_emax binop_nan_pl32.
-Definition b32_minus := Bminus _ _ Hprec Hprec_emax binop_nan_pl32.
-Definition b32_mult := Bmult _ _ Hprec Hprec_emax binop_nan_pl32.
-Definition b32_div := Bdiv _ _ Hprec Hprec_emax binop_nan_pl32.
-Definition b32_sqrt := Bsqrt _ _ Hprec Hprec_emax unop_nan_pl32.
+Definition b32_erase : binary32 -> binary32 := erase 24 128.
+Definition b32_opp : binary32 -> binary32 := Bopp 24 128 unop_nan_pl32.
+Definition b32_abs : binary32 -> binary32 := Babs 24 128 unop_nan_pl32.
+Definition b32_sqrt : mode -> binary32 -> binary32 := Bsqrt _ _ Hprec Hprec_emax unop_nan_pl32.
+
+Definition b32_plus : mode -> binary32 -> binary32 -> binary32 := Bplus _ _ Hprec Hprec_emax binop_nan_pl32.
+Definition b32_minus : mode -> binary32 -> binary32 -> binary32 := Bminus _ _ Hprec Hprec_emax binop_nan_pl32.
+Definition b32_mult : mode -> binary32 -> binary32 -> binary32 := Bmult _ _ Hprec Hprec_emax binop_nan_pl32.
+Definition b32_div : mode -> binary32 -> binary32 -> binary32 := Bdiv _ _ Hprec Hprec_emax binop_nan_pl32.
+Definition b32_compare : binary32 -> binary32 -> option comparison := Bcompare 24 128.
Definition b32_of_bits : Z -> binary32 := binary_float_of_bits 23 8 (refl_equal _) (refl_equal _) (refl_equal _).
Definition bits_of_b32 : binary32 -> Z := bits_of_binary_float 23 8.
@@ -647,41 +658,47 @@ End B32_Bits.
(** Specialization for IEEE double precision operations *)
Section B64_Bits.
-Arguments B754_nan {prec emax} _ _.
+Arguments B754_nan {prec} {emax}.
Definition binary64 := binary_float 53 1024.
Let Hprec : (0 < 53)%Z.
+Proof.
apply refl_equal.
Qed.
Let Hprec_emax : (53 < 1024)%Z.
+Proof.
apply refl_equal.
Qed.
-Definition default_nan_pl64 : bool * nan_pl 53 :=
- (false, exist _ (iter_nat xO 51 xH) (refl_equal true)).
+Definition default_nan_pl64 : { nan : binary64 | is_nan 53 1024 nan = true } :=
+ exist _ (@B754_nan 53 1024 false (iter_nat xO 51 xH) (refl_equal true)) (refl_equal true).
-Definition unop_nan_pl64 (f : binary64) : bool * nan_pl 53 :=
- match f with
- | B754_nan s pl => (s, pl)
+Definition unop_nan_pl64 (f : binary64) : { nan : binary64 | is_nan 53 1024 nan = true } :=
+ match f as f with
+ | B754_nan s pl Hpl => exist _ (B754_nan s pl Hpl) (refl_equal true)
| _ => default_nan_pl64
end.
-Definition binop_nan_pl64 (pl1 pl2 : binary64) : bool * nan_pl 53 :=
- match pl1, pl2 with
- | B754_nan s1 pl1, _ => (s1, pl1)
- | _, B754_nan s2 pl2 => (s2, pl2)
+Definition binop_nan_pl64 (f1 f2 : binary64) : { nan : binary64 | is_nan 53 1024 nan = true } :=
+ match f1, f2 with
+ | B754_nan s1 pl1 Hpl1, _ => exist _ (B754_nan s1 pl1 Hpl1) (refl_equal true)
+ | _, B754_nan s2 pl2 Hpl2 => exist _ (B754_nan s2 pl2 Hpl2) (refl_equal true)
| _, _ => default_nan_pl64
end.
-Definition b64_opp := Bopp 53 1024 pair.
-Definition b64_plus := Bplus _ _ Hprec Hprec_emax binop_nan_pl64.
-Definition b64_minus := Bminus _ _ Hprec Hprec_emax binop_nan_pl64.
-Definition b64_mult := Bmult _ _ Hprec Hprec_emax binop_nan_pl64.
-Definition b64_div := Bdiv _ _ Hprec Hprec_emax binop_nan_pl64.
-Definition b64_sqrt := Bsqrt _ _ Hprec Hprec_emax unop_nan_pl64.
+Definition b64_erase : binary64 -> binary64 := erase 53 1024.
+Definition b64_opp : binary64 -> binary64 := Bopp 53 1024 unop_nan_pl64.
+Definition b64_abs : binary64 -> binary64 := Babs 53 1024 unop_nan_pl64.
+Definition b64_sqrt : mode -> binary64 -> binary64 := Bsqrt _ _ Hprec Hprec_emax unop_nan_pl64.
+
+Definition b64_plus : mode -> binary64 -> binary64 -> binary64 := Bplus _ _ Hprec Hprec_emax binop_nan_pl64.
+Definition b64_minus : mode -> binary64 -> binary64 -> binary64 := Bminus _ _ Hprec Hprec_emax binop_nan_pl64.
+Definition b64_mult : mode -> binary64 -> binary64 -> binary64 := Bmult _ _ Hprec Hprec_emax binop_nan_pl64.
+Definition b64_div : mode -> binary64 -> binary64 -> binary64 := Bdiv _ _ Hprec Hprec_emax binop_nan_pl64.
+Definition b64_compare : binary64 -> binary64 -> option comparison := Bcompare 53 1024.
Definition b64_of_bits : Z -> binary64 := binary_float_of_bits 52 11 (refl_equal _) (refl_equal _) (refl_equal _).
Definition bits_of_b64 : binary64 -> Z := bits_of_binary_float 52 11.
diff --git a/flocq/Prop/Div_sqrt_error.v b/flocq/Prop/Div_sqrt_error.v
new file mode 100644
index 00000000..76c7af95
--- /dev/null
+++ b/flocq/Prop/Div_sqrt_error.v
@@ -0,0 +1,872 @@
+(**
+This file is part of the Flocq formalization of floating-point
+arithmetic in Coq: http://flocq.gforge.inria.fr/
+
+Copyright (C) 2010-2018 Sylvie Boldo
+#<br />#
+Copyright (C) 2010-2018 Guillaume Melquiond
+
+This library is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+This library is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+COPYING file for more details.
+*)
+
+(** * Remainder of the division and square root are in the FLX format *)
+
+Require Import Psatz.
+Require Import Core Operations Relative Sterbenz Mult_error.
+
+Section Fprop_divsqrt_error.
+
+Variable beta : radix.
+Notation bpow e := (bpow beta e).
+
+Variable prec : Z.
+
+Lemma generic_format_plus_prec :
+ forall fexp, (forall e, (fexp e <= e - prec)%Z) ->
+ forall x y (fx fy: float beta),
+ (x = F2R fx)%R -> (y = F2R fy)%R -> (Rabs (x+y) < bpow (prec+Fexp fx))%R ->
+ (Rabs (x+y) < bpow (prec+Fexp fy))%R ->
+ generic_format beta fexp (x+y)%R.
+Proof.
+intros fexp Hfexp x y fx fy Hx Hy H1 H2.
+case (Req_dec (x+y) 0); intros H.
+rewrite H; apply generic_format_0.
+rewrite Hx, Hy, <- F2R_plus.
+apply generic_format_F2R.
+intros _.
+case_eq (Fplus fx fy).
+intros mz ez Hz.
+rewrite <- Hz.
+apply Z.le_trans with (Z.min (Fexp fx) (Fexp fy)).
+rewrite F2R_plus, <- Hx, <- Hy.
+unfold cexp.
+apply Z.le_trans with (1:=Hfexp _).
+apply Zplus_le_reg_l with prec; ring_simplify.
+apply mag_le_bpow with (1 := H).
+now apply Z.min_case.
+rewrite <- Fexp_Fplus, Hz.
+apply Z.le_refl.
+Qed.
+
+Context { prec_gt_0_ : Prec_gt_0 prec }.
+
+Notation format := (generic_format beta (FLX_exp prec)).
+Notation cexp := (cexp beta (FLX_exp prec)).
+
+Variable choice : Z -> bool.
+
+
+(** Remainder of the division in FLX *)
+Theorem div_error_FLX :
+ forall rnd { Zrnd : Valid_rnd rnd } x y,
+ format x -> format y ->
+ format (x - round beta (FLX_exp prec) rnd (x/y) * y)%R.
+Proof with auto with typeclass_instances.
+intros rnd Zrnd x y Hx Hy.
+destruct (Req_dec y 0) as [Zy|Zy].
+now rewrite Zy, Rmult_0_r, Rminus_0_r.
+destruct (Req_dec (round beta (FLX_exp prec) rnd (x/y)) 0) as [Hr|Hr].
+rewrite Hr; ring_simplify (x-0*y)%R; assumption.
+assert (Zx: x <> R0).
+contradict Hr.
+rewrite Hr.
+unfold Rdiv.
+now rewrite Rmult_0_l, round_0.
+destruct (canonical_generic_format _ _ x Hx) as (fx,(Hx1,Hx2)).
+destruct (canonical_generic_format _ _ y Hy) as (fy,(Hy1,Hy2)).
+destruct (canonical_generic_format beta (FLX_exp prec) (round beta (FLX_exp prec) rnd (x / y))) as (fr,(Hr1,Hr2)).
+apply generic_format_round...
+unfold Rminus; apply generic_format_plus_prec with fx (Fopp (Fmult fr fy)); trivial.
+intros e; apply Z.le_refl.
+now rewrite F2R_opp, F2R_mult, <- Hr1, <- Hy1.
+(* *)
+destruct (relative_error_FLX_ex beta prec (prec_gt_0 prec) rnd (x / y)%R) as (eps,(Heps1,Heps2)).
+rewrite Heps2.
+rewrite <- Rabs_Ropp.
+replace (-(x + - (x / y * (1 + eps) * y)))%R with (x * eps)%R by now field.
+rewrite Rabs_mult.
+apply Rlt_le_trans with (Rabs x * 1)%R.
+apply Rmult_lt_compat_l.
+now apply Rabs_pos_lt.
+apply Rlt_le_trans with (1 := Heps1).
+change 1%R with (bpow 0).
+apply bpow_le.
+generalize (prec_gt_0 prec).
+clear ; omega.
+rewrite Rmult_1_r.
+rewrite Hx2, <- Hx1.
+unfold cexp.
+destruct (mag beta x) as (ex, Hex).
+simpl.
+specialize (Hex Zx).
+apply Rlt_le.
+apply Rlt_le_trans with (1 := proj2 Hex).
+apply bpow_le.
+unfold FLX_exp.
+ring_simplify.
+apply Z.le_refl.
+(* *)
+replace (Fexp (Fopp (Fmult fr fy))) with (Fexp fr + Fexp fy)%Z.
+2: unfold Fopp, Fmult; destruct fr; destruct fy; now simpl.
+replace (x + - (round beta (FLX_exp prec) rnd (x / y) * y))%R with
+ (y * (-(round beta (FLX_exp prec) rnd (x / y) - x/y)))%R.
+2: field; assumption.
+rewrite Rabs_mult.
+apply Rlt_le_trans with (Rabs y * bpow (Fexp fr))%R.
+apply Rmult_lt_compat_l.
+now apply Rabs_pos_lt.
+rewrite Rabs_Ropp.
+replace (bpow (Fexp fr)) with (ulp beta (FLX_exp prec) (F2R fr)).
+rewrite <- Hr1.
+apply error_lt_ulp_round...
+apply Rmult_integral_contrapositive_currified; try apply Rinv_neq_0_compat; assumption.
+rewrite ulp_neq_0.
+2: now rewrite <- Hr1.
+apply f_equal.
+now rewrite Hr2, <- Hr1.
+replace (prec+(Fexp fr+Fexp fy))%Z with ((prec+Fexp fy)+Fexp fr)%Z by ring.
+rewrite bpow_plus.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+rewrite Hy2, <- Hy1 ; unfold cexp, FLX_exp.
+ring_simplify (prec + (mag beta y - prec))%Z.
+destruct (mag beta y); simpl.
+left; now apply a.
+Qed.
+
+(** Remainder of the square in FLX (with p>1) and rounding to nearest *)
+Variable Hp1 : Z.lt 1 prec.
+
+Theorem sqrt_error_FLX_N :
+ forall x, format x ->
+ format (x - Rsqr (round beta (FLX_exp prec) (Znearest choice) (sqrt x)))%R.
+Proof with auto with typeclass_instances.
+intros x Hx.
+destruct (total_order_T x 0) as [[Hxz|Hxz]|Hxz].
+unfold sqrt.
+destruct (Rcase_abs x).
+rewrite round_0...
+unfold Rsqr.
+now rewrite Rmult_0_l, Rminus_0_r.
+elim (Rlt_irrefl 0).
+now apply Rgt_ge_trans with x.
+rewrite Hxz, sqrt_0, round_0...
+unfold Rsqr.
+rewrite Rmult_0_l, Rminus_0_r.
+apply generic_format_0.
+case (Req_dec (round beta (FLX_exp prec) (Znearest choice) (sqrt x)) 0); intros Hr.
+rewrite Hr; unfold Rsqr; ring_simplify (x-0*0)%R; assumption.
+destruct (canonical_generic_format _ _ x Hx) as (fx,(Hx1,Hx2)).
+destruct (canonical_generic_format beta (FLX_exp prec) (round beta (FLX_exp prec) (Znearest choice) (sqrt x))) as (fr,(Hr1,Hr2)).
+apply generic_format_round...
+unfold Rminus; apply generic_format_plus_prec with fx (Fopp (Fmult fr fr)); trivial.
+intros e; apply Z.le_refl.
+unfold Rsqr; now rewrite F2R_opp,F2R_mult, <- Hr1.
+(* *)
+apply Rle_lt_trans with x.
+apply Rabs_minus_le.
+apply Rle_0_sqr.
+destruct (relative_error_N_FLX_ex beta prec (prec_gt_0 prec) choice (sqrt x)) as (eps,(Heps1,Heps2)).
+rewrite Heps2.
+rewrite Rsqr_mult, Rsqr_sqrt, Rmult_comm. 2: now apply Rlt_le.
+apply Rmult_le_compat_r.
+now apply Rlt_le.
+apply Rle_trans with (5²/4²)%R.
+rewrite <- Rsqr_div.
+apply Rsqr_le_abs_1.
+apply Rle_trans with (1 := Rabs_triang _ _).
+rewrite Rabs_R1.
+apply Rplus_le_reg_l with (-1)%R.
+replace (-1 + (1 + Rabs eps))%R with (Rabs eps) by ring.
+apply Rle_trans with (1 := Heps1).
+rewrite Rabs_pos_eq.
+apply Rmult_le_reg_l with 2%R.
+now apply IZR_lt.
+rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l.
+apply Rle_trans with (bpow (-1)).
+apply bpow_le.
+omega.
+replace (2 * (-1 + 5 / 4))%R with (/2)%R by field.
+apply Rinv_le.
+now apply IZR_lt.
+apply IZR_le.
+unfold Zpower_pos. simpl.
+rewrite Zmult_1_r.
+apply Zle_bool_imp_le.
+apply beta.
+now apply IZR_neq.
+unfold Rdiv.
+apply Rmult_le_pos.
+now apply IZR_le.
+apply Rlt_le.
+apply Rinv_0_lt_compat.
+now apply IZR_lt.
+now apply IZR_neq.
+unfold Rsqr.
+replace (5 * 5 / (4 * 4))%R with (25 * /16)%R by field.
+apply Rmult_le_reg_r with 16%R.
+now apply IZR_lt.
+rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
+now apply (IZR_le _ 32).
+now apply IZR_neq.
+rewrite Hx2, <- Hx1; unfold cexp, FLX_exp.
+ring_simplify (prec + (mag beta x - prec))%Z.
+destruct (mag beta x); simpl.
+rewrite <- (Rabs_right x).
+apply a.
+now apply Rgt_not_eq.
+now apply Rgt_ge.
+(* *)
+replace (Fexp (Fopp (Fmult fr fr))) with (Fexp fr + Fexp fr)%Z.
+2: unfold Fopp, Fmult; destruct fr; now simpl.
+rewrite Hr1.
+replace (x + - Rsqr (F2R fr))%R with (-((F2R fr - sqrt x)*(F2R fr + sqrt x)))%R.
+2: rewrite <- (sqrt_sqrt x) at 3; auto.
+2: unfold Rsqr; ring.
+rewrite Rabs_Ropp, Rabs_mult.
+apply Rle_lt_trans with ((/2*bpow (Fexp fr))* Rabs (F2R fr + sqrt x))%R.
+apply Rmult_le_compat_r.
+apply Rabs_pos.
+apply Rle_trans with (/2*ulp beta (FLX_exp prec) (F2R fr))%R.
+rewrite <- Hr1.
+apply error_le_half_ulp_round...
+right; rewrite ulp_neq_0.
+2: now rewrite <- Hr1.
+apply f_equal.
+rewrite Hr2, <- Hr1; trivial.
+rewrite Rmult_assoc, Rmult_comm.
+replace (prec+(Fexp fr+Fexp fr))%Z with (Fexp fr + (prec+Fexp fr))%Z by ring.
+rewrite bpow_plus, Rmult_assoc.
+apply Rmult_lt_compat_l.
+apply bpow_gt_0.
+apply Rmult_lt_reg_l with (1 := Rlt_0_2).
+apply Rle_lt_trans with (Rabs (F2R fr + sqrt x)).
+right; field.
+apply Rle_lt_trans with (1:=Rabs_triang _ _).
+(* . *)
+assert (Rabs (F2R fr) < bpow (prec + Fexp fr))%R.
+rewrite Hr2.
+unfold cexp, FLX_exp.
+ring_simplify (prec + (mag beta (F2R fr) - prec))%Z.
+destruct (mag beta (F2R fr)); simpl.
+apply a.
+rewrite <- Hr1; auto.
+(* . *)
+apply Rlt_le_trans with (bpow (prec + Fexp fr)+ Rabs (sqrt x))%R.
+now apply Rplus_lt_compat_r.
+(* . *)
+replace (2 * bpow (prec + Fexp fr))%R with (bpow (prec + Fexp fr) + bpow (prec + Fexp fr))%R by ring.
+apply Rplus_le_compat_l.
+assert (sqrt x <> 0)%R.
+apply Rgt_not_eq.
+now apply sqrt_lt_R0.
+destruct (mag beta (sqrt x)) as (es,Es).
+specialize (Es H0).
+apply Rle_trans with (bpow es).
+now apply Rlt_le.
+apply bpow_le.
+case (Zle_or_lt es (prec + Fexp fr)) ; trivial.
+intros H1.
+absurd (Rabs (F2R fr) < bpow (es - 1))%R.
+apply Rle_not_lt.
+rewrite <- Hr1.
+apply abs_round_ge_generic...
+apply generic_format_bpow.
+unfold FLX_exp; omega.
+apply Es.
+apply Rlt_le_trans with (1:=H).
+apply bpow_le.
+omega.
+now apply Rlt_le.
+Qed.
+
+Lemma sqrt_error_N_FLX_aux1 x (Fx : format x) (Px : (0 < x)%R) :
+ exists (mu : R) (e : Z), (format mu /\ x = mu * bpow (2 * e) :> R
+ /\ 1 <= mu < bpow 2)%R.
+Proof.
+set (e := ((mag beta x - 1) / 2)%Z).
+set (mu := (x * bpow (-2 * e)%Z)%R).
+assert (Hbe : (bpow (-2 * e) * bpow (2 * e) = 1)%R).
+{ now rewrite <- bpow_plus; case e; simpl; [reflexivity| |]; intro p;
+ rewrite Z.pos_sub_diag. }
+assert (Fmu : format mu); [now apply mult_bpow_exact_FLX|].
+exists mu, e; split; [exact Fmu|split; [|split]].
+{ set (e2 := (2 * e)%Z); simpl; unfold mu; rewrite Rmult_assoc.
+ now unfold e2; rewrite Hbe, Rmult_1_r. }
+{ apply (Rmult_le_reg_r (bpow (2 * e))).
+ { apply bpow_gt_0. }
+ rewrite Rmult_1_l; set (e2 := (2 * e)%Z); simpl; unfold mu.
+ unfold e2; rewrite Rmult_assoc, Hbe, Rmult_1_r.
+ apply (Rle_trans _ (bpow (mag beta x - 1))).
+ { now apply bpow_le; unfold e; apply Z_mult_div_ge. }
+ set (l := mag _ _); rewrite <- (Rabs_pos_eq _ (Rlt_le _ _ Px)).
+ unfold l; apply bpow_mag_le.
+ intro Hx; revert Px; rewrite Hx; apply Rlt_irrefl. }
+simpl; unfold mu; change (IZR _) with (bpow 2).
+apply (Rmult_lt_reg_r (bpow (2 * e))); [now apply bpow_gt_0|].
+rewrite Rmult_assoc, Hbe, Rmult_1_r.
+apply (Rlt_le_trans _ (bpow (mag beta x))).
+{ rewrite <- (Rabs_pos_eq _ (Rlt_le _ _ Px)) at 1; apply bpow_mag_gt. }
+rewrite <- bpow_plus; apply bpow_le; unfold e; set (mxm1 := (_ - 1)%Z).
+replace (_ * _)%Z with (2 * (mxm1 / 2) + mxm1 mod 2 - mxm1 mod 2)%Z by ring.
+rewrite <- Z.div_mod; [|now simpl].
+apply (Zplus_le_reg_r _ _ (mxm1 mod 2 - mag beta x)%Z).
+unfold mxm1; destruct (Z.mod_bound_or (mag beta x - 1) 2); omega.
+Qed.
+
+Notation u_ro := (u_ro beta prec).
+
+Lemma sqrt_error_N_FLX_aux2 x (Fx : format x) :
+ (1 <= x)%R ->
+ (x = 1 :> R \/ x = 1 + 2 * u_ro :> R \/ 1 + 4 * u_ro <= x)%R.
+Proof.
+intro HxGe1.
+assert (Pu_ro : (0 <= u_ro)%R); [apply Rmult_le_pos; [lra|apply bpow_ge_0]|].
+destruct (Rle_or_lt x 1) as [HxLe1|HxGt1]; [now left; apply Rle_antisym|right].
+assert (F1 : format 1); [now apply generic_format_FLX_1|].
+assert (H2eps : (2 * u_ro = bpow (-prec + 1))%R).
+{ unfold u_ro; rewrite bpow_plus; field. }
+assert (HmuGe1p2eps : (1 + 2 * u_ro <= x)%R).
+{ rewrite H2eps, <- succ_FLX_1.
+ now apply succ_le_lt; [now apply FLX_exp_valid| | |]. }
+destruct (Rle_or_lt x (1 + 2 * u_ro)) as [HxLe1p2eps|HxGt1p2eps];
+ [now left; apply Rle_antisym|right].
+assert (Hulp1p2eps : (ulp beta (FLX_exp prec) (1 + 2 * u_ro) = 2 * u_ro)%R).
+{ destruct (ulp_succ_pos _ _ _ F1 Rlt_0_1) as [Hsucc|Hsucc].
+ { now rewrite H2eps, <- succ_FLX_1, <- ulp_FLX_1. }
+ exfalso; revert Hsucc; apply Rlt_not_eq.
+ rewrite succ_FLX_1, mag_1, bpow_1, <- H2eps; simpl.
+ apply (Rlt_le_trans _ 2); [apply Rplus_lt_compat_l|].
+ { unfold u_ro; rewrite <-Rmult_assoc, Rinv_r, Rmult_1_l; [|lra].
+ change R1 with (bpow 0); apply bpow_lt; omega. }
+ apply IZR_le, Zle_bool_imp_le, radix_prop. }
+assert (Hsucc1p2eps :
+ (succ beta (FLX_exp prec) (1 + 2 * u_ro) = 1 + 4 * u_ro)%R).
+{ unfold succ; rewrite Rle_bool_true; [rewrite Hulp1p2eps; ring|].
+ apply Rplus_le_le_0_compat; lra. }
+rewrite <- Hsucc1p2eps.
+apply succ_le_lt; [now apply FLX_exp_valid| |exact Fx|now simpl].
+rewrite H2eps, <- succ_FLX_1.
+now apply generic_format_succ; [apply FLX_exp_valid|].
+Qed.
+
+Lemma sqrt_error_N_FLX_aux3 :
+ (u_ro / sqrt (1 + 4 * u_ro) <= 1 - 1 / sqrt (1 + 2 * u_ro))%R.
+Proof.
+assert (Pu_ro : (0 <= u_ro)%R); [apply Rmult_le_pos; [lra|apply bpow_ge_0]|].
+unfold Rdiv; apply (Rplus_le_reg_r (/ sqrt (1 + 2 * u_ro))); ring_simplify.
+apply (Rmult_le_reg_r (sqrt (1 + 4 * u_ro) * sqrt (1 + 2 * u_ro))).
+{ apply Rmult_lt_0_compat; apply sqrt_lt_R0; lra. }
+field_simplify; [|split; apply Rgt_not_eq, Rlt_gt, sqrt_lt_R0; lra].
+unfold Rdiv; rewrite Rinv_1, !Rmult_1_r.
+apply Rsqr_incr_0_var; [|now apply Rmult_le_pos; apply sqrt_pos].
+rewrite <-sqrt_mult; [|lra|lra].
+rewrite Rsqr_sqrt; [|apply Rmult_le_pos; lra].
+unfold Rsqr; ring_simplify; unfold pow; rewrite !Rmult_1_r.
+rewrite !sqrt_def; [|lra|lra].
+apply (Rplus_le_reg_r (-u_ro * u_ro - 1 -4 * u_ro - 2 * u_ro ^ 3)).
+ring_simplify; apply Rsqr_incr_0_var.
+{ unfold Rsqr; ring_simplify.
+ unfold pow; rewrite !Rmult_1_r, !sqrt_def; [|lra|lra].
+ apply (Rplus_le_reg_r (-32 * u_ro ^ 4 - 24 * u_ro ^ 3 - 4 * u_ro ^ 2)).
+ ring_simplify.
+ replace (_ + _)%R
+ with (((4 * u_ro ^ 2 - 28 * u_ro + 9) * u_ro + 4) * u_ro ^ 3)%R by ring.
+ apply Rmult_le_pos; [|now apply pow_le].
+ assert (Heps_le_half : (u_ro <= 1 / 2)%R).
+ { unfold u_ro, Rdiv; rewrite Rmult_comm; apply Rmult_le_compat_r; [lra|].
+ change 1%R with (bpow 0); apply bpow_le; omega. }
+ apply (Rle_trans _ (-8 * u_ro + 4)); [lra|].
+ apply Rplus_le_compat_r, Rmult_le_compat_r; [apply Pu_ro|].
+ now assert (H : (0 <= u_ro ^ 2)%R); [apply pow2_ge_0|lra]. }
+assert (H : (u_ro ^ 3 <= u_ro ^ 2)%R).
+{ unfold pow; rewrite <-!Rmult_assoc, Rmult_1_r.
+ apply Rmult_le_compat_l; [now apply Rmult_le_pos; apply Pu_ro|].
+ now apply Rlt_le, u_ro_lt_1. }
+now assert (H' : (0 <= u_ro ^ 2)%R); [apply pow2_ge_0|lra].
+Qed.
+
+Lemma om1ds1p2u_ro_pos : (0 <= 1 - 1 / sqrt (1 + 2 * u_ro))%R.
+Proof.
+unfold Rdiv; rewrite Rmult_1_l, <-Rinv_1 at 1.
+apply Rle_0_minus, Rinv_le; [lra|].
+rewrite <- sqrt_1 at 1; apply sqrt_le_1_alt.
+assert (H := u_ro_pos beta prec); lra.
+Qed.
+
+Lemma om1ds1p2u_ro_le_u_rod1pu_ro :
+ (1 - 1 / sqrt (1 + 2 * u_ro) <= u_ro / (1 + u_ro))%R.
+Proof.
+assert (Pu_ro := u_ro_pos beta prec).
+apply (Rmult_le_reg_r (sqrt (1 + 2 * u_ro) * (1 + u_ro))).
+{ apply Rmult_lt_0_compat; [apply sqrt_lt_R0|]; lra. }
+field_simplify; [|lra|intro H; apply sqrt_eq_0 in H; lra].
+unfold Rdiv, Rminus; rewrite Rinv_1, !Rmult_1_r, !Rplus_assoc.
+rewrite <-(Rplus_0_r (sqrt _ * _)) at 2; apply Rplus_le_compat_l.
+apply (Rplus_le_reg_r (1 + u_ro)); ring_simplify.
+rewrite <-(sqrt_square (_ + 1)); [|lra]; apply sqrt_le_1_alt.
+assert (H : (0 <= u_ro * u_ro)%R); [apply Rmult_le_pos|]; lra.
+Qed.
+
+Lemma s1p2u_rom1_pos : (0 <= sqrt (1 + 2 * u_ro) - 1)%R.
+apply (Rplus_le_reg_r 1); ring_simplify.
+rewrite <-sqrt_1 at 1; apply sqrt_le_1_alt.
+assert (H := u_ro_pos beta prec); lra.
+Qed.
+
+Theorem sqrt_error_N_FLX x (Fx : format x) :
+ (Rabs (round beta (FLX_exp prec) (Znearest choice) (sqrt x) - sqrt x)
+ <= (1 - 1 / sqrt (1 + 2 * u_ro)) * Rabs (sqrt x))%R.
+Proof.
+assert (Peps := u_ro_pos beta prec).
+assert (Peps' : (0 < u_ro)%R).
+{ unfold u_ro; apply Rmult_lt_0_compat; [lra|apply bpow_gt_0]. }
+assert (Pb := om1ds1p2u_ro_pos).
+assert (Pb' := s1p2u_rom1_pos).
+destruct (Rle_or_lt x 0) as [Nx|Px].
+{ rewrite (sqrt_neg _ Nx), round_0, Rabs_R0, Rmult_0_r; [|apply valid_rnd_N].
+ now unfold Rminus; rewrite Rplus_0_l, Rabs_Ropp, Rabs_R0; right. }
+destruct (sqrt_error_N_FLX_aux1 _ Fx Px)
+ as (mu, (e, (Fmu, (Hmu, (HmuGe1, HmuLtsqradix))))).
+pose (t := sqrt x).
+set (rt := round _ _ _ _).
+assert (Ht : (t = sqrt mu * bpow e)%R).
+{ unfold t; rewrite Hmu, sqrt_mult_alt; [|now apply (Rle_trans _ _ _ Rle_0_1)].
+ now rewrite sqrt_bpow. }
+destruct (sqrt_error_N_FLX_aux2 _ Fmu HmuGe1) as [Hmu'|[Hmu'|Hmu']].
+{ unfold rt; fold t; rewrite Ht, Hmu', sqrt_1, Rmult_1_l.
+ rewrite round_generic; [|now apply valid_rnd_N|].
+ { rewrite Rminus_diag_eq, Rabs_R0; [|now simpl].
+ now apply Rmult_le_pos; [|apply Rabs_pos]. }
+ apply generic_format_bpow'; [now apply FLX_exp_valid|].
+ unfold FLX_exp; omega. }
+{ assert (Hsqrtmu : (1 <= sqrt mu < 1 + u_ro)%R); [rewrite Hmu'; split|].
+ { rewrite <- sqrt_1 at 1; apply sqrt_le_1_alt; lra. }
+ { rewrite <- sqrt_square; [|lra]; apply sqrt_lt_1_alt; split; [lra|].
+ ring_simplify; assert (0 < u_ro ^ 2)%R; [apply pow_lt|]; lra. }
+ assert (Fbpowe : generic_format beta (FLX_exp prec) (bpow e)).
+ { apply generic_format_bpow; unfold FLX_exp; omega. }
+ assert (Hrt : rt = bpow e :> R).
+ { unfold rt; fold t; rewrite Ht; simpl; apply Rle_antisym.
+ { apply round_N_le_midp; [now apply FLX_exp_valid|exact Fbpowe|].
+ apply (Rlt_le_trans _ ((1 + u_ro) * bpow e)).
+ { now apply Rmult_lt_compat_r; [apply bpow_gt_0|]. }
+ unfold succ; rewrite Rle_bool_true; [|now apply bpow_ge_0].
+ rewrite ulp_bpow; unfold FLX_exp.
+ unfold Z.sub, u_ro; rewrite !bpow_plus; right; field. }
+ apply round_ge_generic;
+ [now apply FLX_exp_valid|now apply valid_rnd_N|exact Fbpowe|].
+ rewrite <- (Rmult_1_l (bpow _)) at 1.
+ now apply Rmult_le_compat_r; [apply bpow_ge_0|]. }
+ fold t; rewrite Hrt, Ht, Hmu', <-(Rabs_pos_eq _ Pb), <-Rabs_mult.
+ rewrite Rabs_minus_sym; right; f_equal; field; lra. }
+assert (Hsqrtmu : (1 + u_ro < sqrt mu)%R).
+{ apply (Rlt_le_trans _ (sqrt (1 + 4 * u_ro))); [|now apply sqrt_le_1_alt].
+ assert (P1peps : (0 <= 1 + u_ro)%R)
+ by now apply Rplus_le_le_0_compat; [lra|apply Peps].
+ rewrite <- (sqrt_square (1 + u_ro)); [|lra].
+ apply sqrt_lt_1_alt; split; [now apply Rmult_le_pos|].
+ apply (Rplus_lt_reg_r (-1 - 2 * u_ro)); ring_simplify; simpl.
+ rewrite Rmult_1_r; apply Rmult_lt_compat_r; [apply Peps'|].
+ now apply (Rlt_le_trans _ 1); [apply u_ro_lt_1|lra]. }
+assert (Hulpt : (ulp beta (FLX_exp prec) t = 2 * u_ro * bpow e)%R).
+{ unfold ulp; rewrite Req_bool_false; [|apply Rgt_not_eq, Rlt_gt].
+ { unfold u_ro; rewrite <-Rmult_assoc, Rinv_r, Rmult_1_l, <-bpow_plus; [|lra].
+ f_equal; unfold cexp, FLX_exp.
+ assert (Hmagt : (mag beta t = 1 + e :> Z)%Z).
+ { apply mag_unique.
+ unfold t; rewrite (Rabs_pos_eq _ (Rlt_le _ _ (sqrt_lt_R0 _ Px))).
+ fold t; split.
+ { rewrite Ht; replace (_ - _)%Z with e by ring.
+ rewrite <- (Rmult_1_l (bpow _)) at 1; apply Rmult_le_compat_r.
+ { apply bpow_ge_0. }
+ now rewrite <- sqrt_1; apply sqrt_le_1_alt. }
+ rewrite bpow_plus, bpow_1, Ht; simpl.
+ apply Rmult_lt_compat_r; [now apply bpow_gt_0|].
+ rewrite <- sqrt_square.
+ { apply sqrt_lt_1_alt; split; [lra|].
+ apply (Rlt_le_trans _ _ _ HmuLtsqradix); right.
+ now unfold bpow, Z.pow_pos; simpl; rewrite Zmult_1_r, mult_IZR. }
+ apply IZR_le, (Z.le_trans _ 2), Zle_bool_imp_le, radix_prop; omega. }
+ rewrite Hmagt; ring. }
+ rewrite Ht; apply Rmult_lt_0_compat; [|now apply bpow_gt_0].
+ now apply (Rlt_le_trans _ 1); [lra|rewrite <- sqrt_1; apply sqrt_le_1_alt]. }
+assert (Pt : (0 < t)%R).
+{ rewrite Ht; apply Rmult_lt_0_compat; [lra|apply bpow_gt_0]. }
+assert (H : (Rabs ((rt - sqrt x) / sqrt x)
+ <= 1 - 1 / sqrt (1 + 2 * u_ro))%R).
+{ unfold Rdiv; rewrite Rabs_mult, (Rabs_pos_eq (/ _));
+ [|now left; apply Rinv_0_lt_compat].
+ apply (Rle_trans _ ((u_ro * bpow e) / t)).
+ { unfold Rdiv; apply Rmult_le_compat_r; [now left; apply Rinv_0_lt_compat|].
+ apply (Rle_trans _ _ _ (error_le_half_ulp _ _ _ _)).
+ fold t; rewrite Hulpt; right; field. }
+ apply (Rle_trans _ (u_ro / sqrt (1 + 4 * u_ro))).
+ { apply (Rle_trans _ (u_ro * bpow e / (sqrt (1 + 4 * u_ro) * bpow e))).
+ { unfold Rdiv; apply Rmult_le_compat_l;
+ [now apply Rmult_le_pos; [apply Peps|apply bpow_ge_0]|].
+ apply Rinv_le.
+ { apply Rmult_lt_0_compat; [apply sqrt_lt_R0; lra|apply bpow_gt_0]. }
+ now rewrite Ht; apply Rmult_le_compat_r;
+ [apply bpow_ge_0|apply sqrt_le_1_alt]. }
+ right; field; split; apply Rgt_not_eq, Rlt_gt;
+ [apply sqrt_lt_R0; lra|apply bpow_gt_0]. }
+ apply sqrt_error_N_FLX_aux3. }
+revert H; unfold Rdiv; rewrite Rabs_mult, Rabs_Rinv; [|fold t; lra]; intro H.
+apply (Rmult_le_reg_r (/ Rabs (sqrt x)));
+ [apply Rinv_0_lt_compat, Rabs_pos_lt; fold t; lra|].
+apply (Rle_trans _ _ _ H); right; field; split; [apply Rabs_no_R0;fold t|]; lra.
+Qed.
+
+Theorem sqrt_error_N_FLX_ex x (Fx : format x) :
+ exists eps,
+ (Rabs eps <= 1 - 1 / sqrt (1 + 2 * u_ro))%R /\
+ round beta (FLX_exp prec) (Znearest choice) (sqrt x)
+ = (sqrt x * (1 + eps))%R.
+Proof.
+now apply relative_error_le_conversion;
+ [apply valid_rnd_N|apply om1ds1p2u_ro_pos|apply sqrt_error_N_FLX].
+Qed.
+
+Lemma sqrt_error_N_round_ex_derive :
+ forall x rx,
+ (exists eps,
+ (Rabs eps <= 1 - 1 / sqrt (1 + 2 * u_ro))%R /\ rx = (x * (1 + eps))%R) ->
+ exists eps,
+ (Rabs eps <= sqrt (1 + 2 * u_ro) - 1)%R /\ x = (rx * (1 + eps))%R.
+Proof.
+intros x rx (d, (Bd, Hd)).
+assert (H := Rabs_le_inv _ _ Bd).
+assert (H' := om1ds1p2u_ro_le_u_rod1pu_ro).
+assert (H'' := u_rod1pu_ro_le_u_ro beta prec).
+assert (H''' := u_ro_lt_1 beta prec prec_gt_0_).
+assert (Hpos := s1p2u_rom1_pos).
+destruct (Req_dec rx 0) as [Zfx|Nzfx].
+{ exists 0%R; split; [now rewrite Rabs_R0|].
+ rewrite Rplus_0_r, Rmult_1_r, Zfx; rewrite Zfx in Hd.
+ destruct (Rmult_integral _ _ (sym_eq Hd)); lra. }
+destruct (Req_dec x 0) as [Zx|Nzx].
+{ now exfalso; revert Hd; rewrite Zx; rewrite Rmult_0_l. }
+set (d' := ((x - rx) / rx)%R).
+assert (Hd' : (Rabs d' <= sqrt (1 + 2 * u_ro) - 1)%R).
+{ unfold d'; rewrite Hd.
+ replace (_ / _)%R with (- d / (1 + d))%R; [|now field; split; lra].
+ unfold Rdiv; rewrite Rabs_mult, Rabs_Ropp.
+ rewrite (Rabs_pos_eq (/ _)); [|apply Rlt_le, Rinv_0_lt_compat; lra].
+ apply (Rmult_le_reg_r (1 + d)); [lra|].
+ rewrite Rmult_assoc, Rinv_l, Rmult_1_r; [|lra].
+ apply (Rle_trans _ _ _ Bd).
+ apply (Rle_trans _ ((sqrt (1 + 2 * u_ro) - 1) * (1/sqrt (1 + 2 * u_ro))));
+ [right; field|apply Rmult_le_compat_l]; lra. }
+now exists d'; split; [exact Hd'|]; unfold d'; field.
+Qed.
+
+(** sqrt(1 + 2 u_ro) - 1 <= u_ro *)
+Theorem sqrt_error_N_FLX_round_ex :
+ forall x,
+ format x ->
+ exists eps,
+ (Rabs eps <= sqrt (1 + 2 * u_ro) - 1)%R /\
+ sqrt x = (round beta (FLX_exp prec) (Znearest choice) (sqrt x) * (1 + eps))%R.
+Proof.
+now intros x Fx; apply sqrt_error_N_round_ex_derive, sqrt_error_N_FLX_ex.
+Qed.
+
+Variable emin : Z.
+Hypothesis Hemin : (emin <= 2 * (1 - prec))%Z.
+
+Theorem sqrt_error_N_FLT_ex :
+ forall x,
+ generic_format beta (FLT_exp emin prec) x ->
+ exists eps,
+ (Rabs eps <= 1 - 1 / sqrt (1 + 2 * u_ro))%R /\
+ round beta (FLT_exp emin prec) (Znearest choice) (sqrt x)
+ = (sqrt x * (1 + eps))%R.
+Proof.
+intros x Fx.
+assert (Heps := u_ro_pos).
+assert (Pb := om1ds1p2u_ro_pos).
+destruct (Rle_or_lt x 0) as [Nx|Px].
+{ exists 0%R; split; [now rewrite Rabs_R0|].
+ now rewrite (sqrt_neg x Nx), round_0, Rmult_0_l; [|apply valid_rnd_N]. }
+assert (Fx' := generic_format_FLX_FLT _ _ _ _ Fx).
+destruct (sqrt_error_N_FLX_ex _ Fx') as (d, (Bd, Hd)).
+exists d; split; [exact Bd|]; rewrite <-Hd; apply round_FLT_FLX.
+apply (Rle_trans _ (bpow (emin / 2)%Z)).
+{ apply bpow_le, Z.div_le_lower_bound; lia. }
+apply (Rle_trans _ _ _ (sqrt_bpow_ge _ _)).
+rewrite Rabs_pos_eq; [|now apply sqrt_pos]; apply sqrt_le_1_alt.
+revert Fx; apply generic_format_ge_bpow; [|exact Px].
+intro e; unfold FLT_exp; apply Z.le_max_r.
+Qed.
+
+(** sqrt(1 + 2 u_ro) - 1 <= u_ro *)
+Theorem sqrt_error_N_FLT_round_ex :
+ forall x,
+ generic_format beta (FLT_exp emin prec) x ->
+ exists eps,
+ (Rabs eps <= sqrt (1 + 2 * u_ro) - 1)%R /\
+ sqrt x
+ = (round beta (FLT_exp emin prec) (Znearest choice) (sqrt x) * (1 + eps))%R.
+Proof.
+now intros x Fx; apply sqrt_error_N_round_ex_derive, sqrt_error_N_FLT_ex.
+Qed.
+
+End Fprop_divsqrt_error.
+
+Section format_REM_aux.
+
+Variable beta : radix.
+Notation bpow e := (bpow beta e).
+
+Variable fexp : Z -> Z.
+Context { valid_exp : Valid_exp fexp }.
+Context { monotone_exp : Monotone_exp fexp }.
+
+Variable rnd : R -> Z.
+Context { valid_rnd : Valid_rnd rnd }.
+
+Notation format := (generic_format beta fexp).
+
+Lemma format_REM_aux:
+ forall x y : R,
+ format x -> format y -> (0 <= x)%R -> (0 < y)%R ->
+ ((0 < x/y < /2)%R -> rnd (x/y) = 0%Z) ->
+ format (x - IZR (rnd (x/y))*y).
+Proof with auto with typeclass_instances.
+intros x y Fx Fy Hx Hy rnd_small.
+pose (n:=rnd (x / y)).
+assert (Hn:(IZR n = round beta (FIX_exp 0) rnd (x/y))%R).
+unfold round, FIX_exp, cexp, scaled_mantissa, F2R; simpl.
+now rewrite 2!Rmult_1_r.
+assert (H:(0 <= n)%Z).
+apply le_IZR; rewrite Hn; simpl.
+apply Rle_trans with (round beta (FIX_exp 0) rnd 0).
+right; apply sym_eq, round_0...
+apply round_le...
+apply Fourier_util.Rle_mult_inv_pos; assumption.
+case (Zle_lt_or_eq 0 n); try exact H.
+clear H; intros H.
+case (Zle_lt_or_eq 1 n).
+omega.
+clear H; intros H.
+set (ex := cexp beta fexp x).
+set (ey := cexp beta fexp y).
+set (mx := Ztrunc (scaled_mantissa beta fexp x)).
+set (my := Ztrunc (scaled_mantissa beta fexp y)).
+case (Zle_or_lt ey ex); intros Hexy.
+(* ey <= ex *)
+assert (H0:(x-IZR n *y = F2R (Float beta (mx*beta^(ex-ey) - n*my) ey))%R).
+unfold Rminus; rewrite Rplus_comm.
+replace (IZR n) with (F2R (Float beta n 0)).
+rewrite Fx, Fy.
+fold mx my ex ey.
+rewrite <- F2R_mult.
+rewrite <- F2R_opp.
+rewrite <- F2R_plus.
+unfold Fplus. simpl.
+rewrite Zle_imp_le_bool with (1 := Hexy).
+f_equal; f_equal; ring.
+unfold F2R; simpl; ring.
+fold n; rewrite H0.
+apply generic_format_F2R.
+rewrite <- H0; intros H3.
+apply monotone_exp.
+apply mag_le_abs.
+rewrite H0; apply F2R_neq_0; easy.
+apply Rmult_le_reg_l with (/Rabs y)%R.
+apply Rinv_0_lt_compat.
+apply Rabs_pos_lt.
+now apply Rgt_not_eq.
+rewrite Rinv_l.
+2: apply Rgt_not_eq, Rabs_pos_lt.
+2: now apply Rgt_not_eq.
+rewrite <- Rabs_Rinv.
+2: now apply Rgt_not_eq.
+rewrite <- Rabs_mult.
+replace (/y * (x - IZR n *y))%R with (-(IZR n - x/y))%R.
+rewrite Rabs_Ropp.
+rewrite Hn.
+apply Rle_trans with (1:= error_le_ulp beta (FIX_exp 0) _ _).
+rewrite ulp_FIX.
+simpl; apply Rle_refl.
+field.
+now apply Rgt_not_eq.
+(* ex < ey: impossible as 1 < n *)
+absurd (1 < n)%Z; try easy.
+apply Zle_not_lt.
+apply le_IZR; simpl; rewrite Hn.
+apply round_le_generic...
+apply generic_format_FIX.
+exists (Float beta 1 0); try easy.
+unfold F2R; simpl; ring.
+apply Rmult_le_reg_r with y; try easy.
+unfold Rdiv; rewrite Rmult_assoc.
+rewrite Rinv_l, Rmult_1_r, Rmult_1_l.
+2: now apply Rgt_not_eq.
+assert (mag beta x < mag beta y)%Z.
+case (Zle_or_lt (mag beta y) (mag beta x)); try easy.
+intros J; apply monotone_exp in J; clear -J Hexy.
+unfold ex, ey, cexp in Hexy; omega.
+left; apply lt_mag with beta; easy.
+(* n = 1 -> Sterbenz + rnd_small *)
+intros Hn'; fold n; rewrite <- Hn'.
+rewrite Rmult_1_l.
+case Hx; intros Hx'.
+assert (J:(0 < x/y)%R).
+apply Fourier_util.Rlt_mult_inv_pos; assumption.
+apply sterbenz...
+assert (H0:(Rabs (1 - x/y) < 1)%R).
+rewrite Hn', Hn.
+apply Rlt_le_trans with (ulp beta (FIX_exp 0) (round beta (FIX_exp 0) rnd (x / y)))%R.
+apply error_lt_ulp_round...
+now apply Rgt_not_eq.
+rewrite ulp_FIX.
+rewrite <- Hn, <- Hn'.
+apply Rle_refl.
+apply Rabs_lt_inv in H0.
+split; apply Rmult_le_reg_l with (/y)%R; try now apply Rinv_0_lt_compat.
+unfold Rdiv; rewrite <- Rmult_assoc.
+rewrite Rinv_l.
+2: now apply Rgt_not_eq.
+rewrite Rmult_1_l, Rmult_comm; fold (x/y)%R.
+case (Rle_or_lt (/2) (x/y)); try easy.
+intros K.
+elim Zlt_not_le with (1 := H).
+apply Zeq_le.
+apply rnd_small.
+now split.
+apply Ropp_le_cancel; apply Rplus_le_reg_l with 1%R.
+apply Rle_trans with (1-x/y)%R.
+2: right; unfold Rdiv; ring.
+left; apply Rle_lt_trans with (2:=proj1 H0).
+right; field.
+now apply Rgt_not_eq.
+rewrite <- Hx', Rminus_0_l.
+now apply generic_format_opp.
+(* n = 0 *)
+clear H; intros H; fold n; rewrite <- H.
+now rewrite Rmult_0_l, Rminus_0_r.
+Qed.
+
+End format_REM_aux.
+
+Section format_REM.
+
+Variable beta : radix.
+Notation bpow e := (bpow beta e).
+
+Variable fexp : Z -> Z.
+Context { valid_exp : Valid_exp fexp }.
+Context { monotone_exp : Monotone_exp fexp }.
+
+Notation format := (generic_format beta fexp).
+
+Theorem format_REM :
+ forall rnd : R -> Z, Valid_rnd rnd ->
+ forall x y : R,
+ ((Rabs (x/y) < /2)%R -> rnd (x/y)%R = 0%Z) ->
+ format x -> format y ->
+ format (x - IZR (rnd (x/y)%R) * y).
+Proof with auto with typeclass_instances.
+(* assume 0 < y *)
+assert (H: forall rnd : R -> Z, Valid_rnd rnd ->
+ forall x y : R,
+ ((Rabs (x/y) < /2)%R -> rnd (x/y)%R = 0%Z) ->
+ format x -> format y -> (0 < y)%R ->
+ format (x - IZR (rnd (x/y)%R) * y)).
+intros rnd valid_rnd x y Hrnd Fx Fy Hy.
+case (Rle_or_lt 0 x); intros Hx.
+apply format_REM_aux; try easy.
+intros K.
+apply Hrnd.
+rewrite Rabs_pos_eq.
+apply K.
+apply Rlt_le, K.
+replace (x - IZR (rnd (x/y)) * y)%R with
+ (- (-x - IZR (Zrnd_opp rnd (-x/y)) * y))%R.
+apply generic_format_opp.
+apply format_REM_aux; try easy...
+now apply generic_format_opp.
+apply Ropp_le_cancel; rewrite Ropp_0, Ropp_involutive; now left.
+replace (- x / y)%R with (- (x/y))%R by (unfold Rdiv; ring).
+intros K.
+unfold Zrnd_opp.
+rewrite Ropp_involutive, Hrnd.
+easy.
+rewrite Rabs_left.
+apply K.
+apply Ropp_lt_cancel.
+now rewrite Ropp_0.
+unfold Zrnd_opp.
+replace (- (- x / y))%R with (x / y)%R by (unfold Rdiv; ring).
+rewrite opp_IZR.
+ring.
+(* *)
+intros rnd valid_rnd x y Hrnd Fx Fy.
+case (Rle_or_lt 0 y); intros Hy.
+destruct Hy as [Hy|Hy].
+now apply H.
+now rewrite <- Hy, Rmult_0_r, Rminus_0_r.
+replace (IZR (rnd (x/y)) * y)%R with
+ (IZR ((Zrnd_opp rnd) ((x / -y))) * -y)%R.
+apply H; try easy...
+replace (x / - y)%R with (- (x/y))%R.
+intros K.
+unfold Zrnd_opp.
+rewrite Ropp_involutive, Hrnd.
+easy.
+now rewrite <- Rabs_Ropp.
+field; now apply Rlt_not_eq.
+now apply generic_format_opp.
+apply Ropp_lt_cancel; now rewrite Ropp_0, Ropp_involutive.
+unfold Zrnd_opp.
+replace (- (x / - y))%R with (x/y)%R.
+rewrite opp_IZR.
+ring.
+field; now apply Rlt_not_eq.
+Qed.
+
+Theorem format_REM_ZR:
+ forall x y : R,
+ format x -> format y ->
+ format (x - IZR (Ztrunc (x/y)) * y).
+Proof with auto with typeclass_instances.
+intros x y Fx Fy.
+apply format_REM; try easy...
+intros K.
+apply Z.abs_0_iff.
+rewrite <- Ztrunc_abs.
+rewrite Ztrunc_floor by apply Rabs_pos.
+apply Zle_antisym.
+replace 0%Z with (Zfloor (/2)).
+apply Zfloor_le.
+now apply Rlt_le.
+apply Zfloor_imp.
+simpl ; lra.
+apply Zfloor_lub.
+apply Rabs_pos.
+Qed.
+
+Theorem format_REM_N :
+ forall choice,
+ forall x y : R,
+ format x -> format y ->
+ format (x - IZR (Znearest choice (x/y)) * y).
+Proof with auto with typeclass_instances.
+intros choice x y Fx Fy.
+apply format_REM; try easy...
+intros K.
+apply Znearest_imp.
+now rewrite Rminus_0_r.
+Qed.
+
+End format_REM.
diff --git a/flocq/Appli/Fappli_double_round.v b/flocq/Prop/Double_rounding.v
index 82f61da3..055409bb 100644
--- a/flocq/Appli/Fappli_double_round.v
+++ b/flocq/Prop/Double_rounding.v
@@ -1,13 +1,28 @@
-(** * Conditions for innocuous double rounding. *)
+(**
+This file is part of the Flocq formalization of floating-point
+arithmetic in Coq: http://flocq.gforge.inria.fr/
+
+Copyright (C) 2014-2018 Sylvie Boldo
+#<br />#
+Copyright (C) 2014-2018 Guillaume Melquiond
+#<br />#
+Copyright (C) 2014-2018 Pierre Roux
+
+This library is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+This library is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+COPYING file for more details.
+*)
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_generic_fmt.
-Require Import Fcalc_ops.
-Require Import Fcore_ulp.
-Require Fcore_FLX Fcore_FLT Fcore_FTZ.
+(** * Conditions for innocuous double rounding. *)
Require Import Psatz.
+Require Import Raux Defs Generic_fmt Operations Ulp FLX FLT FTZ.
Open Scope R_scope.
@@ -15,9 +30,9 @@ Section Double_round.
Variable beta : radix.
Notation bpow e := (bpow beta e).
-Notation ln_beta x := (ln_beta beta x).
+Notation mag x := (mag beta x).
-Definition double_round_eq fexp1 fexp2 choice1 choice2 x :=
+Definition round_round_eq fexp1 fexp2 choice1 choice2 x :=
round beta fexp1 (Znearest choice1) (round beta fexp2 (Znearest choice2) x)
= round beta fexp1 (Znearest choice1) x.
@@ -26,22 +41,22 @@ Ltac bpow_simplify :=
(* bpow ex * bpow ey ~~> bpow (ex + ey) *)
repeat
match goal with
- | |- context [(Fcore_Raux.bpow _ _ * Fcore_Raux.bpow _ _)] =>
+ | |- context [(Raux.bpow _ _ * Raux.bpow _ _)] =>
rewrite <- bpow_plus
- | |- context [(?X1 * Fcore_Raux.bpow _ _ * Fcore_Raux.bpow _ _)] =>
+ | |- context [(?X1 * Raux.bpow _ _ * Raux.bpow _ _)] =>
rewrite (Rmult_assoc X1); rewrite <- bpow_plus
- | |- context [(?X1 * (?X2 * Fcore_Raux.bpow _ _) * Fcore_Raux.bpow _ _)] =>
+ | |- context [(?X1 * (?X2 * Raux.bpow _ _) * Raux.bpow _ _)] =>
rewrite <- (Rmult_assoc X1 X2); rewrite (Rmult_assoc (X1 * X2));
rewrite <- bpow_plus
end;
(* ring_simplify arguments of bpow *)
repeat
match goal with
- | |- context [(Fcore_Raux.bpow _ ?X)] =>
+ | |- context [(Raux.bpow _ ?X)] =>
progress ring_simplify X
end;
(* bpow 0 ~~> 1 *)
- change (Fcore_Raux.bpow _ 0) with 1;
+ change (Raux.bpow _ 0) with 1;
repeat
match goal with
| |- context [(_ * 1)] =>
@@ -54,26 +69,26 @@ Definition midp (fexp : Z -> Z) (x : R) :=
Definition midp' (fexp : Z -> Z) (x : R) :=
round beta fexp Zceil x - / 2 * ulp beta fexp x.
-Lemma double_round_lt_mid_further_place' :
+Lemma round_round_lt_mid_further_place' :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
forall x,
0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- x < bpow (ln_beta x) - / 2 * ulp beta fexp2 x ->
+ (fexp2 (mag x) <= fexp1 (mag x) - 1)%Z ->
+ x < bpow (mag x) - / 2 * ulp beta fexp2 x ->
x < midp fexp1 x - / 2 * ulp beta fexp2 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
+ round_round_eq fexp1 fexp2 choice1 choice2 x.
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hx1.
-unfold double_round_eq.
+unfold round_round_eq.
set (x' := round beta fexp1 Zfloor x).
intro Hx2'.
assert (Hx2 : x - round beta fexp1 Zfloor x
< / 2 * (ulp beta fexp1 x - ulp beta fexp2 x)).
{ now apply (Rplus_lt_reg_r (round beta fexp1 Zfloor x)); ring_simplify. }
set (x'' := round beta fexp2 (Znearest choice2) x).
-assert (Hr1 : Rabs (x'' - x) <= / 2 * bpow (fexp2 (ln_beta x))).
+assert (Hr1 : Rabs (x'' - x) <= / 2 * bpow (fexp2 (mag x))).
apply Rle_trans with (/ 2 * ulp beta fexp2 x).
now unfold x''; apply error_le_half_ulp...
rewrite ulp_neq_0;[now right|now apply Rgt_not_eq].
@@ -82,12 +97,12 @@ assert (Pxx' : 0 <= x - x').
apply round_DN_pt.
exact Vfexp1. }
rewrite 2!ulp_neq_0 in Hx2; try (apply Rgt_not_eq; assumption).
-assert (Hr2 : Rabs (x'' - x') < / 2 * bpow (fexp1 (ln_beta x))).
+assert (Hr2 : Rabs (x'' - x') < / 2 * bpow (fexp1 (mag x))).
{ replace (x'' - x') with (x'' - x + (x - x')) by ring.
apply (Rle_lt_trans _ _ _ (Rabs_triang _ _)).
- replace (/ 2 * _) with (/ 2 * bpow (fexp2 (ln_beta x))
- + (/ 2 * (bpow (fexp1 (ln_beta x))
- - bpow (fexp2 (ln_beta x))))) by ring.
+ replace (/ 2 * _) with (/ 2 * bpow (fexp2 (mag x))
+ + (/ 2 * (bpow (fexp1 (mag x))
+ - bpow (fexp2 (mag x))))) by ring.
apply Rplus_le_lt_compat.
- exact Hr1.
- now rewrite Rabs_right; [|now apply Rle_ge]; apply Hx2. }
@@ -95,9 +110,9 @@ destruct (Req_dec x'' 0) as [Zx''|Nzx''].
- (* x'' = 0 *)
rewrite Zx'' in Hr1 |- *.
rewrite round_0; [|now apply valid_rnd_N].
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ unfold round, F2R, scaled_mantissa, cexp; simpl.
rewrite (Znearest_imp _ _ 0); [now simpl; rewrite Rmult_0_l|].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x)))); [now apply bpow_gt_0|].
rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
[|now apply Rle_ge; apply bpow_ge_0].
rewrite <- Rabs_mult; rewrite Rmult_minus_distr_r.
@@ -109,25 +124,25 @@ destruct (Req_dec x'' 0) as [Zx''|Nzx''].
apply bpow_lt.
omega.
- (* x'' <> 0 *)
- assert (Lx'' : ln_beta x'' = ln_beta x :> Z).
+ assert (Lx'' : mag x'' = mag x :> Z).
{ apply Zle_antisym.
- - apply ln_beta_le_bpow; [exact Nzx''|].
+ - apply mag_le_bpow; [exact Nzx''|].
replace x'' with (x'' - x + x) by ring.
apply (Rle_lt_trans _ _ _ (Rabs_triang _ _)).
- replace (bpow _) with (/ 2 * bpow (fexp2 (ln_beta x))
- + (bpow (ln_beta x)
- - / 2 * bpow (fexp2 (ln_beta x)))) by ring.
+ replace (bpow _) with (/ 2 * bpow (fexp2 (mag x))
+ + (bpow (mag x)
+ - / 2 * bpow (fexp2 (mag x)))) by ring.
apply Rplus_le_lt_compat; [exact Hr1|].
rewrite ulp_neq_0 in Hx1;[idtac| now apply Rgt_not_eq].
now rewrite Rabs_right; [|apply Rle_ge; apply Rlt_le].
- unfold x'' in Nzx'' |- *.
- now apply ln_beta_round_ge; [|apply valid_rnd_N|]. }
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ now apply mag_round_ge; [|apply valid_rnd_N|]. }
+ unfold round, F2R, scaled_mantissa, cexp; simpl.
rewrite Lx''.
rewrite (Znearest_imp _ _ (Zfloor (scaled_mantissa beta fexp1 x))).
+ rewrite (Znearest_imp _ _ (Zfloor (scaled_mantissa beta fexp1 x)));
[reflexivity|].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x)))); [now apply bpow_gt_0|].
rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
[|now apply Rle_ge; apply bpow_ge_0].
rewrite <- Rabs_mult.
@@ -137,9 +152,9 @@ destruct (Req_dec x'' 0) as [Zx''|Nzx''].
rewrite Rabs_right; [|now apply Rle_ge].
apply (Rlt_le_trans _ _ _ Hx2).
apply Rmult_le_compat_l; [lra|].
- generalize (bpow_ge_0 beta (fexp2 (ln_beta x))).
- unfold ulp, canonic_exp; lra.
- + apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ generalize (bpow_ge_0 beta (fexp2 (mag x))).
+ unfold ulp, cexp; lra.
+ + apply (Rmult_lt_reg_r (bpow (fexp1 (mag x)))); [now apply bpow_gt_0|].
rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
[|now apply Rle_ge; apply bpow_ge_0].
rewrite <- Rabs_mult.
@@ -148,16 +163,16 @@ destruct (Req_dec x'' 0) as [Zx''|Nzx''].
now bpow_simplify.
Qed.
-Lemma double_round_lt_mid_further_place :
+Lemma round_round_lt_mid_further_place :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
forall x,
0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- (fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ (fexp2 (mag x) <= fexp1 (mag x) - 1)%Z ->
+ (fexp1 (mag x) <= mag x)%Z ->
x < midp fexp1 x - / 2 * ulp beta fexp2 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
+ round_round_eq fexp1 fexp2 choice1 choice2 x.
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1.
intro Hx2'.
@@ -165,15 +180,15 @@ assert (Hx2 : x - round beta fexp1 Zfloor x
< / 2 * (ulp beta fexp1 x - ulp beta fexp2 x)).
{ now apply (Rplus_lt_reg_r (round beta fexp1 Zfloor x)); ring_simplify. }
revert Hx2.
-unfold double_round_eq.
+unfold round_round_eq.
set (x' := round beta fexp1 Zfloor x).
intro Hx2.
assert (Pxx' : 0 <= x - x').
{ apply Rle_0_minus.
apply round_DN_pt.
exact Vfexp1. }
-assert (x < bpow (ln_beta x) - / 2 * bpow (fexp2 (ln_beta x)));
- [|apply double_round_lt_mid_further_place'; try assumption]...
+assert (x < bpow (mag x) - / 2 * bpow (fexp2 (mag x)));
+ [|apply round_round_lt_mid_further_place'; try assumption]...
2: rewrite ulp_neq_0;[assumption|now apply Rgt_not_eq].
destruct (Req_dec x' 0) as [Zx'|Nzx'].
- (* x' = 0 *)
@@ -182,10 +197,10 @@ destruct (Req_dec x' 0) as [Zx'|Nzx'].
rewrite Rmult_minus_distr_l.
rewrite 2!ulp_neq_0;[idtac|now apply Rgt_not_eq|now apply Rgt_not_eq].
apply Rplus_le_compat_r.
- apply (Rmult_le_reg_r (bpow (- ln_beta x))); [now apply bpow_gt_0|].
- unfold ulp, canonic_exp; bpow_simplify.
+ apply (Rmult_le_reg_r (bpow (- mag x))); [now apply bpow_gt_0|].
+ unfold ulp, cexp; bpow_simplify.
apply Rmult_le_reg_l with (1 := Rlt_0_2).
- replace (2 * (/ 2 * _)) with (bpow (fexp1 (ln_beta x) - ln_beta x)) by field.
+ replace (2 * (/ 2 * _)) with (bpow (fexp1 (mag x) - mag x)) by field.
apply Rle_trans with 1; [|lra].
change 1 with (bpow 0); apply bpow_le.
omega.
@@ -193,16 +208,16 @@ destruct (Req_dec x' 0) as [Zx'|Nzx'].
assert (Px' : 0 < x').
{ assert (0 <= x'); [|lra].
unfold x'.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ apply (Rmult_le_reg_r (bpow (- fexp1 (mag x))));
[now apply bpow_gt_0|].
rewrite Rmult_0_l.
- unfold round, F2R, canonic_exp; simpl; bpow_simplify.
- change 0 with (Z2R 0); apply Z2R_le.
+ unfold round, F2R, cexp; simpl; bpow_simplify.
+ apply IZR_le.
apply Zfloor_lub.
rewrite <- (Rabs_right x); [|now apply Rle_ge; apply Rlt_le].
rewrite scaled_mantissa_abs.
apply Rabs_pos. }
- assert (Hx' : x' <= bpow (ln_beta x) - ulp beta fexp1 x).
+ assert (Hx' : x' <= bpow (mag x) - ulp beta fexp1 x).
{ apply (Rplus_le_reg_r (ulp beta fexp1 x)); ring_simplify.
rewrite <- ulp_DN.
- change (round _ _ _ _) with x'.
@@ -213,10 +228,10 @@ destruct (Req_dec x' 0) as [Zx'|Nzx'].
+ apply Rle_lt_trans with x.
* now apply round_DN_pt.
* rewrite <- (Rabs_right x) at 1; [|now apply Rle_ge; apply Rlt_le].
- apply bpow_ln_beta_gt.
+ apply bpow_mag_gt.
- exact Vfexp1.
- - exact Px'. }
- fold (canonic_exp beta fexp2 x); fold (ulp beta fexp2 x).
+ - now apply Rlt_le. }
+ fold (cexp beta fexp2 x); fold (ulp beta fexp2 x).
assert (/ 2 * ulp beta fexp1 x <= ulp beta fexp1 x).
rewrite <- (Rmult_1_l (ulp _ _ _)) at 2.
apply Rmult_le_compat_r; [|lra].
@@ -227,39 +242,39 @@ destruct (Req_dec x' 0) as [Zx'|Nzx'].
lra.
Qed.
-Lemma double_round_lt_mid_same_place :
+Lemma round_round_lt_mid_same_place :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 ->
forall (choice1 choice2 : Z -> bool),
forall x,
0 < x ->
- (fexp2 (ln_beta x) = fexp1 (ln_beta x))%Z ->
+ (fexp2 (mag x) = fexp1 (mag x))%Z ->
x < midp fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
+ round_round_eq fexp1 fexp2 choice1 choice2 x.
Proof.
intros fexp1 fexp2 Vfexp1 choice1 choice2 x Px Hf2f1.
intro Hx'.
assert (Hx : x - round beta fexp1 Zfloor x < / 2 * ulp beta fexp1 x).
{ now apply (Rplus_lt_reg_r (round beta fexp1 Zfloor x)); ring_simplify. }
revert Hx.
-unfold double_round_eq.
+unfold round_round_eq.
set (x' := round beta fexp1 Zfloor x).
intro Hx.
assert (Pxx' : 0 <= x - x').
{ apply Rle_0_minus.
apply round_DN_pt.
exact Vfexp1. }
-assert (H : Rabs (x * bpow (- fexp1 (ln_beta x)) -
- Z2R (Zfloor (x * bpow (- fexp1 (ln_beta x))))) < / 2).
-{ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- unfold scaled_mantissa, canonic_exp in Hx.
+assert (H : Rabs (x * bpow (- fexp1 (mag x)) -
+ IZR (Zfloor (x * bpow (- fexp1 (mag x))))) < / 2).
+{ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x)))); [now apply bpow_gt_0|].
+ unfold scaled_mantissa, cexp in Hx.
rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
[|now apply Rle_ge; apply bpow_ge_0].
rewrite <- Rabs_mult.
rewrite Rmult_minus_distr_r.
bpow_simplify.
apply Rabs_lt.
- change (Z2R _ * _) with x'.
+ change (IZR _ * _) with x'.
split.
- apply Rlt_le_trans with 0; [|exact Pxx'].
rewrite <- Ropp_0.
@@ -269,55 +284,54 @@ assert (H : Rabs (x * bpow (- fexp1 (ln_beta x)) -
apply bpow_gt_0.
- rewrite ulp_neq_0 in Hx;try apply Rgt_not_eq; assumption. }
unfold round at 2.
-unfold F2R, scaled_mantissa, canonic_exp; simpl.
+unfold F2R, scaled_mantissa, cexp; simpl.
rewrite Hf2f1.
-rewrite (Znearest_imp _ _ (Zfloor (scaled_mantissa beta fexp1 x))).
-- rewrite round_generic.
- + unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
- now rewrite (Znearest_imp _ _ (Zfloor (x * bpow (- fexp1 (ln_beta x))))).
+rewrite (Znearest_imp _ _ (Zfloor (scaled_mantissa beta fexp1 x)) H).
+rewrite round_generic.
+ + unfold round, F2R, scaled_mantissa, cexp; simpl.
+ now rewrite (Znearest_imp _ _ (Zfloor (x * bpow (- fexp1 (mag x))))).
+ now apply valid_rnd_N.
- + fold (canonic_exp beta fexp1 x).
- change (Z2R _ * bpow _) with (round beta fexp1 Zfloor x).
+ + fold (cexp beta fexp1 x).
+ change (IZR _ * bpow _) with (round beta fexp1 Zfloor x).
apply generic_format_round.
exact Vfexp1.
now apply valid_rnd_DN.
-- now unfold scaled_mantissa, canonic_exp.
Qed.
-Lemma double_round_lt_mid :
+Lemma round_round_lt_mid :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
forall x,
0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z ->
- (fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ (fexp2 (mag x) <= fexp1 (mag x))%Z ->
+ (fexp1 (mag x) <= mag x)%Z ->
x < midp fexp1 x ->
- ((fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
+ ((fexp2 (mag x) <= fexp1 (mag x) - 1)%Z ->
x < midp fexp1 x - / 2 * ulp beta fexp2 x) ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
+ round_round_eq fexp1 fexp2 choice1 choice2 x.
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1 Hx Hx'.
-destruct (Zle_or_lt (fexp1 (ln_beta x)) (fexp2 (ln_beta x))) as [Hf2'|Hf2'].
-- (* fexp1 (ln_beta x) <= fexp2 (ln_beta x) *)
- assert (Hf2'' : (fexp2 (ln_beta x) = fexp1 (ln_beta x) :> Z)%Z); [omega|].
- now apply double_round_lt_mid_same_place.
-- (* fexp2 (ln_beta x) < fexp1 (ln_beta x) *)
- assert (Hf2'' : (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z); [omega|].
+destruct (Zle_or_lt (fexp1 (mag x)) (fexp2 (mag x))) as [Hf2'|Hf2'].
+- (* fexp1 (mag x) <= fexp2 (mag x) *)
+ assert (Hf2'' : (fexp2 (mag x) = fexp1 (mag x) :> Z)%Z); [omega|].
+ now apply round_round_lt_mid_same_place.
+- (* fexp2 (mag x) < fexp1 (mag x) *)
+ assert (Hf2'' : (fexp2 (mag x) <= fexp1 (mag x) - 1)%Z); [omega|].
generalize (Hx' Hf2''); intro Hx''.
- now apply double_round_lt_mid_further_place.
+ now apply round_round_lt_mid_further_place.
Qed.
-Lemma double_round_gt_mid_further_place' :
+Lemma round_round_gt_mid_further_place' :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
forall x,
0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- round beta fexp2 (Znearest choice2) x < bpow (ln_beta x) ->
+ (fexp2 (mag x) <= fexp1 (mag x) - 1)%Z ->
+ round beta fexp2 (Znearest choice2) x < bpow (mag x) ->
midp' fexp1 x + / 2 * ulp beta fexp2 x < x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
+ round_round_eq fexp1 fexp2 choice1 choice2 x.
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1.
intros Hx1 Hx2'.
@@ -327,11 +341,11 @@ assert (Hx2 : round beta fexp1 Zceil x - x
+ / 2 * ulp beta fexp2 x)); ring_simplify.
now unfold midp' in Hx2'. }
revert Hx1 Hx2.
-unfold double_round_eq.
+unfold round_round_eq.
set (x' := round beta fexp1 Zceil x).
set (x'' := round beta fexp2 (Znearest choice2) x).
intros Hx1 Hx2.
-assert (Hr1 : Rabs (x'' - x) <= / 2 * bpow (fexp2 (ln_beta x))).
+assert (Hr1 : Rabs (x'' - x) <= / 2 * bpow (fexp2 (mag x))).
apply Rle_trans with (/2* ulp beta fexp2 x).
now unfold x''; apply error_le_half_ulp...
rewrite ulp_neq_0;[now right|now apply Rgt_not_eq].
@@ -339,12 +353,12 @@ assert (Px'x : 0 <= x' - x).
{ apply Rle_0_minus.
apply round_UP_pt.
exact Vfexp1. }
-assert (Hr2 : Rabs (x'' - x') < / 2 * bpow (fexp1 (ln_beta x))).
+assert (Hr2 : Rabs (x'' - x') < / 2 * bpow (fexp1 (mag x))).
{ replace (x'' - x') with (x'' - x + (x - x')) by ring.
apply (Rle_lt_trans _ _ _ (Rabs_triang _ _)).
- replace (/ 2 * _) with (/ 2 * bpow (fexp2 (ln_beta x))
- + (/ 2 * (bpow (fexp1 (ln_beta x))
- - bpow (fexp2 (ln_beta x))))) by ring.
+ replace (/ 2 * _) with (/ 2 * bpow (fexp2 (mag x))
+ + (/ 2 * (bpow (fexp1 (mag x))
+ - bpow (fexp2 (mag x))))) by ring.
apply Rplus_le_lt_compat.
- exact Hr1.
- rewrite Rabs_minus_sym.
@@ -354,9 +368,9 @@ destruct (Req_dec x'' 0) as [Zx''|Nzx''].
- (* x'' = 0 *)
rewrite Zx'' in Hr1 |- *.
rewrite round_0; [|now apply valid_rnd_N].
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ unfold round, F2R, scaled_mantissa, cexp; simpl.
rewrite (Znearest_imp _ _ 0); [now simpl; rewrite Rmult_0_l|].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x)))); [now apply bpow_gt_0|].
rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
[|now apply Rle_ge; apply bpow_ge_0].
rewrite <- Rabs_mult; rewrite Rmult_minus_distr_r.
@@ -368,9 +382,9 @@ destruct (Req_dec x'' 0) as [Zx''|Nzx''].
apply bpow_lt.
omega.
- (* x'' <> 0 *)
- assert (Lx'' : ln_beta x'' = ln_beta x :> Z).
+ assert (Lx'' : mag x'' = mag x :> Z).
{ apply Zle_antisym.
- - apply ln_beta_le_bpow; [exact Nzx''|].
+ - apply mag_le_bpow; [exact Nzx''|].
rewrite Rabs_right; [exact Hx1|apply Rle_ge].
apply round_ge_generic.
+ exact Vfexp2.
@@ -378,13 +392,13 @@ destruct (Req_dec x'' 0) as [Zx''|Nzx''].
+ apply generic_format_0.
+ now apply Rlt_le.
- unfold x'' in Nzx'' |- *.
- now apply ln_beta_round_ge; [|apply valid_rnd_N|]. }
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ now apply mag_round_ge; [|apply valid_rnd_N|]. }
+ unfold round, F2R, scaled_mantissa, cexp; simpl.
rewrite Lx''.
rewrite (Znearest_imp _ _ (Zceil (scaled_mantissa beta fexp1 x))).
+ rewrite (Znearest_imp _ _ (Zceil (scaled_mantissa beta fexp1 x)));
[reflexivity|].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x)))); [now apply bpow_gt_0|].
rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
[|now apply Rle_ge; apply bpow_ge_0].
rewrite <- Rabs_mult.
@@ -395,10 +409,10 @@ destruct (Req_dec x'' 0) as [Zx''|Nzx''].
rewrite Rabs_right; [|now apply Rle_ge].
apply (Rlt_le_trans _ _ _ Hx2).
apply Rmult_le_compat_l; [lra|].
- generalize (bpow_ge_0 beta (fexp2 (ln_beta x))).
+ generalize (bpow_ge_0 beta (fexp2 (mag x))).
rewrite 2!ulp_neq_0; try (apply Rgt_not_eq; assumption).
- unfold canonic_exp; lra.
- + apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ unfold cexp; lra.
+ + apply (Rmult_lt_reg_r (bpow (fexp1 (mag x)))); [now apply bpow_gt_0|].
rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
[|now apply Rle_ge; apply bpow_ge_0].
rewrite <- Rabs_mult.
@@ -407,16 +421,16 @@ destruct (Req_dec x'' 0) as [Zx''|Nzx''].
now bpow_simplify.
Qed.
-Lemma double_round_gt_mid_further_place :
+Lemma round_round_gt_mid_further_place :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
forall x,
0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- (fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ (fexp2 (mag x) <= fexp1 (mag x) - 1)%Z ->
+ (fexp1 (mag x) <= mag x)%Z ->
midp' fexp1 x + / 2 * ulp beta fexp2 x < x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
+ round_round_eq fexp1 fexp2 choice1 choice2 x.
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1 Hx2'.
assert (Hx2 : round beta fexp1 Zceil x - x
@@ -425,15 +439,15 @@ assert (Hx2 : round beta fexp1 Zceil x - x
+ / 2 * ulp beta fexp2 x)); ring_simplify.
now unfold midp' in Hx2'. }
revert Hx2.
-unfold double_round_eq.
+unfold round_round_eq.
set (x' := round beta fexp1 Zfloor x).
intro Hx2.
set (x'' := round beta fexp2 (Znearest choice2) x).
-destruct (Rlt_or_le x'' (bpow (ln_beta x))) as [Hx''|Hx''];
- [now apply double_round_gt_mid_further_place'|].
-(* bpow (ln_beta x) <= x'' *)
-assert (Hx''pow : x'' = bpow (ln_beta x)).
-{ assert (H'x'' : x'' < bpow (ln_beta x) + / 2 * ulp beta fexp2 x).
+destruct (Rlt_or_le x'' (bpow (mag x))) as [Hx''|Hx''];
+ [now apply round_round_gt_mid_further_place'|].
+(* bpow (mag x) <= x'' *)
+assert (Hx''pow : x'' = bpow (mag x)).
+{ assert (H'x'' : x'' < bpow (mag x) + / 2 * ulp beta fexp2 x).
{ apply Rle_lt_trans with (x + / 2 * ulp beta fexp2 x).
- apply (Rplus_le_reg_r (- x)); ring_simplify.
apply Rabs_le_inv.
@@ -441,22 +455,22 @@ assert (Hx''pow : x'' = bpow (ln_beta x)).
exact Vfexp2.
- apply Rplus_lt_compat_r.
rewrite <- Rabs_right at 1; [|now apply Rle_ge; apply Rlt_le].
- apply bpow_ln_beta_gt. }
+ apply bpow_mag_gt. }
apply Rle_antisym; [|exact Hx''].
- unfold x'', round, F2R, scaled_mantissa, canonic_exp; simpl.
- apply (Rmult_le_reg_r (bpow (- fexp2 (ln_beta x)))); [now apply bpow_gt_0|].
+ unfold x'', round, F2R, scaled_mantissa, cexp; simpl.
+ apply (Rmult_le_reg_r (bpow (- fexp2 (mag x)))); [now apply bpow_gt_0|].
bpow_simplify.
- rewrite <- (Z2R_Zpower _ (_ - _)); [|omega].
- apply Z2R_le.
+ rewrite <- (IZR_Zpower _ (_ - _)); [|omega].
+ apply IZR_le.
apply Zlt_succ_le; unfold Z.succ.
- apply lt_Z2R.
- rewrite Z2R_plus; rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (fexp2 (ln_beta x)))); [now apply bpow_gt_0|].
+ apply lt_IZR.
+ rewrite plus_IZR; rewrite IZR_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (fexp2 (mag x)))); [now apply bpow_gt_0|].
rewrite Rmult_plus_distr_r; rewrite Rmult_1_l.
bpow_simplify.
apply (Rlt_le_trans _ _ _ H'x'').
apply Rplus_le_compat_l.
- rewrite <- (Rmult_1_l (Fcore_Raux.bpow _ _)).
+ rewrite <- (Rmult_1_l (Raux.bpow _ _)).
rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq].
apply Rmult_le_compat_r; [now apply bpow_ge_0|].
lra. }
@@ -467,26 +481,26 @@ assert (Hr : Rabs (x - x'') < / 2 * ulp beta fexp1 x).
exact Vfexp2.
- apply Rmult_lt_compat_l; [lra|].
rewrite 2!ulp_neq_0; try now apply Rgt_not_eq.
- unfold canonic_exp; apply bpow_lt.
+ unfold cexp; apply bpow_lt.
omega. }
-unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
-assert (Hf : (0 <= ln_beta x - fexp1 (ln_beta x''))%Z).
+unfold round, F2R, scaled_mantissa, cexp; simpl.
+assert (Hf : (0 <= mag x - fexp1 (mag x''))%Z).
{ rewrite Hx''pow.
- rewrite ln_beta_bpow.
- assert (fexp1 (ln_beta x + 1) <= ln_beta x)%Z; [|omega].
- destruct (Zle_or_lt (ln_beta x) (fexp1 (ln_beta x))) as [Hle|Hlt];
+ rewrite mag_bpow.
+ assert (fexp1 (mag x + 1) <= mag x)%Z; [|omega].
+ destruct (Zle_or_lt (mag x) (fexp1 (mag x))) as [Hle|Hlt];
[|now apply Vfexp1].
- assert (H : (ln_beta x = fexp1 (ln_beta x) :> Z)%Z);
+ assert (H : (mag x = fexp1 (mag x) :> Z)%Z);
[now apply Zle_antisym|].
rewrite H.
now apply Vfexp1. }
-rewrite (Znearest_imp _ _ (beta ^ (ln_beta x - fexp1 (ln_beta x'')))%Z).
-- rewrite (Znearest_imp _ _ (beta ^ (ln_beta x - fexp1 (ln_beta x)))%Z).
- + rewrite Z2R_Zpower; [|exact Hf].
- rewrite Z2R_Zpower; [|omega].
+rewrite (Znearest_imp _ _ (beta ^ (mag x - fexp1 (mag x'')))%Z).
+- rewrite (Znearest_imp _ _ (beta ^ (mag x - fexp1 (mag x)))%Z).
+ + rewrite IZR_Zpower; [|exact Hf].
+ rewrite IZR_Zpower; [|omega].
now bpow_simplify.
- + rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ + rewrite IZR_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x)))); [now apply bpow_gt_0|].
rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
[|now apply Rle_ge; apply bpow_ge_0].
rewrite <- Rabs_mult.
@@ -494,8 +508,8 @@ rewrite (Znearest_imp _ _ (beta ^ (ln_beta x - fexp1 (ln_beta x'')))%Z).
bpow_simplify.
rewrite ulp_neq_0 in Hr;[idtac|now apply Rgt_not_eq].
rewrite <- Hx''pow; exact Hr.
-- rewrite Z2R_Zpower; [|exact Hf].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x'')))); [now apply bpow_gt_0|].
+- rewrite IZR_Zpower; [|exact Hf].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x'')))); [now apply bpow_gt_0|].
rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
[|now apply Rle_ge; apply bpow_ge_0].
rewrite <- Rabs_mult.
@@ -507,24 +521,24 @@ rewrite (Znearest_imp _ _ (beta ^ (ln_beta x - fexp1 (ln_beta x'')))%Z).
apply Rmult_lt_compat_l; [lra|apply bpow_gt_0].
Qed.
-Lemma double_round_gt_mid_same_place :
+Lemma round_round_gt_mid_same_place :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 ->
forall (choice1 choice2 : Z -> bool),
forall x,
0 < x ->
- (fexp2 (ln_beta x) = fexp1 (ln_beta x))%Z ->
+ (fexp2 (mag x) = fexp1 (mag x))%Z ->
midp' fexp1 x < x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
+ round_round_eq fexp1 fexp2 choice1 choice2 x.
Proof.
intros fexp1 fexp2 Vfexp1 choice1 choice2 x Px Hf2f1 Hx'.
assert (Hx : round beta fexp1 Zceil x - x < / 2 * ulp beta fexp1 x).
{ apply (Rplus_lt_reg_r (- / 2 * ulp beta fexp1 x + x)); ring_simplify.
now unfold midp' in Hx'. }
-assert (H : Rabs (Z2R (Zceil (x * bpow (- fexp1 (ln_beta x))))
- - x * bpow (- fexp1 (ln_beta x))) < / 2).
-{ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- unfold scaled_mantissa, canonic_exp in Hx.
+assert (H : Rabs (IZR (Zceil (x * bpow (- fexp1 (mag x))))
+ - x * bpow (- fexp1 (mag x))) < / 2).
+{ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x)))); [now apply bpow_gt_0|].
+ unfold scaled_mantissa, cexp in Hx.
rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
[|now apply Rle_ge; apply bpow_ge_0].
rewrite <- Rabs_mult.
@@ -541,67 +555,67 @@ assert (H : Rabs (Z2R (Zceil (x * bpow (- fexp1 (ln_beta x))))
apply round_UP_pt.
exact Vfexp1.
- rewrite ulp_neq_0 in Hx;[exact Hx|now apply Rgt_not_eq]. }
-unfold double_round_eq, round at 2.
-unfold F2R, scaled_mantissa, canonic_exp; simpl.
+unfold round_round_eq, round at 2.
+unfold F2R, scaled_mantissa, cexp; simpl.
rewrite Hf2f1.
rewrite (Znearest_imp _ _ (Zceil (scaled_mantissa beta fexp1 x))).
- rewrite round_generic.
- + unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
- now rewrite (Znearest_imp _ _ (Zceil (x * bpow (- fexp1 (ln_beta x)))));
+ + unfold round, F2R, scaled_mantissa, cexp; simpl.
+ now rewrite (Znearest_imp _ _ (Zceil (x * bpow (- fexp1 (mag x)))));
[|rewrite Rabs_minus_sym].
+ now apply valid_rnd_N.
- + fold (canonic_exp beta fexp1 x).
- change (Z2R _ * bpow _) with (round beta fexp1 Zceil x).
+ + fold (cexp beta fexp1 x).
+ change (IZR _ * bpow _) with (round beta fexp1 Zceil x).
apply generic_format_round.
exact Vfexp1.
now apply valid_rnd_UP.
- now rewrite Rabs_minus_sym.
Qed.
-Lemma double_round_gt_mid :
+Lemma round_round_gt_mid :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
forall x,
0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z ->
- (fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ (fexp2 (mag x) <= fexp1 (mag x))%Z ->
+ (fexp1 (mag x) <= mag x)%Z ->
midp' fexp1 x < x ->
- ((fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
+ ((fexp2 (mag x) <= fexp1 (mag x) - 1)%Z ->
midp' fexp1 x + / 2 * ulp beta fexp2 x < x) ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
+ round_round_eq fexp1 fexp2 choice1 choice2 x.
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1 Hx Hx'.
-destruct (Zle_or_lt (fexp1 (ln_beta x)) (fexp2 (ln_beta x))) as [Hf2'|Hf2'].
-- (* fexp1 (ln_beta x) <= fexp2 (ln_beta x) *)
- assert (Hf2'' : (fexp2 (ln_beta x) = fexp1 (ln_beta x) :> Z)%Z); [omega|].
- now apply double_round_gt_mid_same_place.
-- (* fexp2 (ln_beta x) < fexp1 (ln_beta x) *)
- assert (Hf2'' : (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z); [omega|].
+destruct (Zle_or_lt (fexp1 (mag x)) (fexp2 (mag x))) as [Hf2'|Hf2'].
+- (* fexp1 (mag x) <= fexp2 (mag x) *)
+ assert (Hf2'' : (fexp2 (mag x) = fexp1 (mag x) :> Z)%Z); [omega|].
+ now apply round_round_gt_mid_same_place.
+- (* fexp2 (mag x) < fexp1 (mag x) *)
+ assert (Hf2'' : (fexp2 (mag x) <= fexp1 (mag x) - 1)%Z); [omega|].
generalize (Hx' Hf2''); intro Hx''.
- now apply double_round_gt_mid_further_place.
+ now apply round_round_gt_mid_further_place.
Qed.
Section Double_round_mult.
-Lemma ln_beta_mult_disj :
+Lemma mag_mult_disj :
forall x y,
x <> 0 -> y <> 0 ->
- ((ln_beta (x * y) = (ln_beta x + ln_beta y - 1)%Z :> Z)
- \/ (ln_beta (x * y) = (ln_beta x + ln_beta y)%Z :> Z)).
+ ((mag (x * y) = (mag x + mag y - 1)%Z :> Z)
+ \/ (mag (x * y) = (mag x + mag y)%Z :> Z)).
Proof.
intros x y Zx Zy.
-destruct (ln_beta_mult beta x y Zx Zy).
+destruct (mag_mult beta x y Zx Zy).
omega.
Qed.
-Definition double_round_mult_hyp fexp1 fexp2 :=
+Definition round_round_mult_hyp fexp1 fexp2 :=
(forall ex ey, (fexp2 (ex + ey) <= fexp1 ex + fexp1 ey)%Z)
/\ (forall ex ey, (fexp2 (ex + ey - 1) <= fexp1 ex + fexp1 ey)%Z).
-Lemma double_round_mult_aux :
+Lemma round_round_mult_aux :
forall (fexp1 fexp2 : Z -> Z),
- double_round_mult_hyp fexp1 fexp2 ->
+ round_round_mult_hyp fexp1 fexp2 ->
forall x y,
generic_format beta fexp1 x -> generic_format beta fexp1 y ->
generic_format beta fexp2 (x * y).
@@ -621,31 +635,31 @@ destruct (Req_dec x 0) as [Zx|Zx].
+ (* y <> 0 *)
revert Fx Fy.
unfold generic_format.
- unfold canonic_exp.
+ unfold cexp.
set (mx := Ztrunc (scaled_mantissa beta fexp1 x)).
set (my := Ztrunc (scaled_mantissa beta fexp1 y)).
unfold F2R; simpl.
intros Fx Fy.
- set (fxy := Float beta (mx * my) (fexp1 (ln_beta x) + fexp1 (ln_beta y))).
+ set (fxy := Float beta (mx * my) (fexp1 (mag x) + fexp1 (mag y))).
assert (Hxy : x * y = F2R fxy).
{ unfold fxy, F2R; simpl.
rewrite bpow_plus.
- rewrite Z2R_mult.
+ rewrite mult_IZR.
rewrite Fx, Fy at 1.
ring. }
apply generic_format_F2R' with (f := fxy); [now rewrite Hxy|].
intros _.
- unfold canonic_exp, fxy; simpl.
+ unfold cexp, fxy; simpl.
destruct Hfexp as (Hfexp1, Hfexp2).
- now destruct (ln_beta_mult_disj x y Zx Zy) as [Lxy|Lxy]; rewrite Lxy.
+ now destruct (mag_mult_disj x y Zx Zy) as [Lxy|Lxy]; rewrite Lxy.
Qed.
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
-Theorem double_round_mult :
+Theorem round_round_mult :
forall (fexp1 fexp2 : Z -> Z),
- double_round_mult_hyp fexp1 fexp2 ->
+ round_round_mult_hyp fexp1 fexp2 ->
forall x y,
generic_format beta fexp1 x -> generic_format beta fexp1 y ->
round beta fexp1 rnd (round beta fexp2 rnd (x * y))
@@ -654,21 +668,19 @@ Proof.
intros fexp1 fexp2 Hfexp x y Fx Fy.
assert (Hxy : round beta fexp2 rnd (x * y) = x * y).
{ apply round_generic; [assumption|].
- now apply (double_round_mult_aux fexp1 fexp2). }
+ now apply (round_round_mult_aux fexp1 fexp2). }
now rewrite Hxy at 1.
Qed.
Section Double_round_mult_FLX.
-Import Fcore_FLX.
-
Variable prec : Z.
Variable prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Theorem double_round_mult_FLX :
+Theorem round_round_mult_FLX :
(2 * prec <= prec')%Z ->
forall x y,
FLX_format beta prec x -> FLX_format beta prec y ->
@@ -676,9 +688,9 @@ Theorem double_round_mult_FLX :
= round beta (FLX_exp prec) rnd (x * y).
Proof.
intros Hprec x y Fx Fy.
-apply double_round_mult;
+apply round_round_mult;
[|now apply generic_format_FLX|now apply generic_format_FLX].
-unfold double_round_mult_hyp; split; intros ex ey; unfold FLX_exp;
+unfold round_round_mult_hyp; split; intros ex ey; unfold FLX_exp;
omega.
Qed.
@@ -686,16 +698,13 @@ End Double_round_mult_FLX.
Section Double_round_mult_FLT.
-Import Fcore_FLX.
-Import Fcore_FLT.
-
Variable emin prec : Z.
Variable emin' prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Theorem double_round_mult_FLT :
+Theorem round_round_mult_FLT :
(emin' <= 2 * emin)%Z -> (2 * prec <= prec')%Z ->
forall x y,
FLT_format beta emin prec x -> FLT_format beta emin prec y ->
@@ -704,9 +713,9 @@ Theorem double_round_mult_FLT :
= round beta (FLT_exp emin prec) rnd (x * y).
Proof.
intros Hemin Hprec x y Fx Fy.
-apply double_round_mult;
+apply round_round_mult;
[|now apply generic_format_FLT|now apply generic_format_FLT].
-unfold double_round_mult_hyp; split; intros ex ey;
+unfold round_round_mult_hyp; split; intros ex ey;
unfold FLT_exp;
generalize (Zmax_spec (ex + ey - prec') emin');
generalize (Zmax_spec (ex + ey - 1 - prec') emin');
@@ -719,16 +728,13 @@ End Double_round_mult_FLT.
Section Double_round_mult_FTZ.
-Import Fcore_FLX.
-Import Fcore_FTZ.
-
Variable emin prec : Z.
Variable emin' prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Theorem double_round_mult_FTZ :
+Theorem round_round_mult_FTZ :
(emin' + prec' <= 2 * emin + prec)%Z ->
(2 * prec <= prec')%Z ->
forall x y,
@@ -738,9 +744,9 @@ Theorem double_round_mult_FTZ :
= round beta (FTZ_exp emin prec) rnd (x * y).
Proof.
intros Hemin Hprec x y Fx Fy.
-apply double_round_mult;
+apply round_round_mult;
[|now apply generic_format_FTZ|now apply generic_format_FTZ].
-unfold double_round_mult_hyp; split; intros ex ey;
+unfold round_round_mult_hyp; split; intros ex ey;
unfold FTZ_exp;
unfold Prec_gt_0 in *;
destruct (Z.ltb_spec (ex + ey - prec') emin');
@@ -756,83 +762,77 @@ End Double_round_mult.
Section Double_round_plus.
-Lemma ln_beta_plus_disj :
+Lemma mag_plus_disj :
forall x y,
0 < y -> y <= x ->
- ((ln_beta (x + y) = ln_beta x :> Z)
- \/ (ln_beta (x + y) = (ln_beta x + 1)%Z :> Z)).
+ ((mag (x + y) = mag x :> Z)
+ \/ (mag (x + y) = (mag x + 1)%Z :> Z)).
Proof.
intros x y Py Hxy.
-destruct (ln_beta_plus beta x y Py Hxy).
+destruct (mag_plus beta x y Py Hxy).
omega.
Qed.
-Lemma ln_beta_plus_separated :
+Lemma mag_plus_separated :
forall fexp : Z -> Z,
forall x y,
0 < x -> 0 <= y ->
generic_format beta fexp x ->
- (ln_beta y <= fexp (ln_beta x))%Z ->
- (ln_beta (x + y) = ln_beta x :> Z).
+ (mag y <= fexp (mag x))%Z ->
+ (mag (x + y) = mag x :> Z).
Proof.
intros fexp x y Px Nny Fx Hsep.
-destruct (Req_dec y 0) as [Zy|Nzy].
-- (* y = 0 *)
- now rewrite Zy; rewrite Rplus_0_r.
-- (* y <> 0 *)
- apply (ln_beta_plus_eps beta fexp); [assumption|assumption|].
- split; [assumption|].
- rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq].
- unfold canonic_exp.
- destruct (ln_beta y) as (ey, Hey); simpl in *.
- apply Rlt_le_trans with (bpow ey).
- + now rewrite <- (Rabs_right y); [apply Hey|apply Rle_ge].
- + now apply bpow_le.
+apply mag_plus_eps with (1 := Px) (2 := Fx).
+apply (conj Nny).
+rewrite <- Rabs_pos_eq with (1 := Nny).
+apply Rlt_le_trans with (1 := bpow_mag_gt beta _).
+rewrite ulp_neq_0 by now apply Rgt_not_eq.
+now apply bpow_le.
Qed.
-Lemma ln_beta_minus_disj :
+Lemma mag_minus_disj :
forall x y,
0 < x -> 0 < y ->
- (ln_beta y <= ln_beta x - 2)%Z ->
- ((ln_beta (x - y) = ln_beta x :> Z)
- \/ (ln_beta (x - y) = (ln_beta x - 1)%Z :> Z)).
+ (mag y <= mag x - 2)%Z ->
+ ((mag (x - y) = mag x :> Z)
+ \/ (mag (x - y) = (mag x - 1)%Z :> Z)).
Proof.
intros x y Px Py Hln.
-assert (Hxy : y < x); [now apply (ln_beta_lt_pos beta); [ |omega]|].
-generalize (ln_beta_minus beta x y Py Hxy); intro Hln2.
-generalize (ln_beta_minus_lb beta x y Px Py Hln); intro Hln3.
+assert (Hxy : y < x); [now apply (lt_mag beta); [ |omega]|].
+generalize (mag_minus beta x y Py Hxy); intro Hln2.
+generalize (mag_minus_lb beta x y Px Py Hln); intro Hln3.
omega.
Qed.
-Lemma ln_beta_minus_separated :
+Lemma mag_minus_separated :
forall fexp : Z -> Z, Valid_exp fexp ->
forall x y,
0 < x -> 0 < y -> y < x ->
- bpow (ln_beta x - 1) < x ->
- generic_format beta fexp x -> (ln_beta y <= fexp (ln_beta x))%Z ->
- (ln_beta (x - y) = ln_beta x :> Z).
+ bpow (mag x - 1) < x ->
+ generic_format beta fexp x -> (mag y <= fexp (mag x))%Z ->
+ (mag (x - y) = mag x :> Z).
Proof.
intros fexp Vfexp x y Px Py Yltx Xgtpow Fx Ly.
-apply ln_beta_unique.
+apply mag_unique.
split.
- apply Rabs_ge; right.
- assert (Hy : y < ulp beta fexp (bpow (ln_beta x - 1))).
+ assert (Hy : y < ulp beta fexp (bpow (mag x - 1))).
{ rewrite ulp_bpow.
- replace (_ + _)%Z with (ln_beta x : Z) by ring.
+ replace (_ + _)%Z with (mag x : Z) by ring.
rewrite <- (Rabs_right y); [|now apply Rle_ge; apply Rlt_le].
- apply Rlt_le_trans with (bpow (ln_beta y)).
- - apply bpow_ln_beta_gt.
+ apply Rlt_le_trans with (bpow (mag y)).
+ - apply bpow_mag_gt.
- now apply bpow_le. }
apply (Rplus_le_reg_r y); ring_simplify.
- apply Rle_trans with (bpow (ln_beta x - 1)
- + ulp beta fexp (bpow (ln_beta x - 1))).
+ apply Rle_trans with (bpow (mag x - 1)
+ + ulp beta fexp (bpow (mag x - 1))).
+ now apply Rplus_le_compat_l; apply Rlt_le.
+ rewrite <- succ_eq_pos;[idtac|apply bpow_ge_0].
apply succ_le_lt; [apply Vfexp|idtac|exact Fx|assumption].
- apply (generic_format_bpow beta fexp (ln_beta x - 1)).
- replace (_ + _)%Z with (ln_beta x : Z) by ring.
- assert (fexp (ln_beta x) < ln_beta x)%Z; [|omega].
- now apply ln_beta_generic_gt; [|now apply Rgt_not_eq|].
+ apply (generic_format_bpow beta fexp (mag x - 1)).
+ replace (_ + _)%Z with (mag x : Z) by ring.
+ assert (fexp (mag x) < mag x)%Z; [|omega].
+ now apply mag_generic_gt; [|now apply Rgt_not_eq|].
- rewrite Rabs_right.
+ apply Rlt_trans with x.
* rewrite <- (Rplus_0_r x) at 2.
@@ -840,22 +840,22 @@ split.
rewrite <- Ropp_0.
now apply Ropp_lt_contravar.
* apply Rabs_lt_inv.
- apply bpow_ln_beta_gt.
+ apply bpow_mag_gt.
+ lra.
Qed.
-Definition double_round_plus_hyp fexp1 fexp2 :=
+Definition round_round_plus_hyp fexp1 fexp2 :=
(forall ex ey, (fexp1 (ex + 1) - 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
/\ (forall ex ey, (fexp1 (ex - 1) + 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
/\ (forall ex ey, (fexp1 ex - 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
/\ (forall ex ey, (ex - 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z).
-Lemma double_round_plus_aux0_aux_aux :
+Lemma round_round_plus_aux0_aux_aux :
forall (fexp1 fexp2 : Z -> Z),
forall x y,
- (fexp1 (ln_beta x) <= fexp1 (ln_beta y))%Z ->
- (fexp2 (ln_beta (x + y))%Z <= fexp1 (ln_beta x))%Z ->
- (fexp2 (ln_beta (x + y))%Z <= fexp1 (ln_beta y))%Z ->
+ (fexp1 (mag x) <= fexp1 (mag y))%Z ->
+ (fexp2 (mag (x + y))%Z <= fexp1 (mag x))%Z ->
+ (fexp2 (mag (x + y))%Z <= fexp1 (mag y))%Z ->
generic_format beta fexp1 x -> generic_format beta fexp1 y ->
generic_format beta fexp2 (x + y).
Proof.
@@ -863,224 +863,224 @@ intros fexp1 fexp2 x y Oxy Hlnx Hlny Fx Fy.
destruct (Req_dec x 0) as [Zx|Nzx].
- (* x = 0 *)
rewrite Zx, Rplus_0_l in Hlny |- *.
- now apply (generic_inclusion_ln_beta beta fexp1).
+ now apply (generic_inclusion_mag beta fexp1).
- (* x <> 0 *)
destruct (Req_dec y 0) as [Zy|Nzy].
+ (* y = 0 *)
rewrite Zy, Rplus_0_r in Hlnx |- *.
- now apply (generic_inclusion_ln_beta beta fexp1).
+ now apply (generic_inclusion_mag beta fexp1).
+ (* y <> 0 *)
revert Fx Fy.
- unfold generic_format at -3, canonic_exp, F2R; simpl.
+ unfold generic_format at -3, cexp, F2R; simpl.
set (mx := Ztrunc (scaled_mantissa beta fexp1 x)).
set (my := Ztrunc (scaled_mantissa beta fexp1 y)).
intros Fx Fy.
- set (fxy := Float beta (mx + my * (beta ^ (fexp1 (ln_beta y)
- - fexp1 (ln_beta x))))
- (fexp1 (ln_beta x))).
+ set (fxy := Float beta (mx + my * (beta ^ (fexp1 (mag y)
+ - fexp1 (mag x))))
+ (fexp1 (mag x))).
assert (Hxy : x + y = F2R fxy).
{ unfold fxy, F2R; simpl.
- rewrite Z2R_plus.
+ rewrite plus_IZR.
rewrite Rmult_plus_distr_r.
rewrite <- Fx.
- rewrite Z2R_mult.
- rewrite Z2R_Zpower; [|omega].
+ rewrite mult_IZR.
+ rewrite IZR_Zpower; [|omega].
bpow_simplify.
now rewrite <- Fy. }
apply generic_format_F2R' with (f := fxy); [now rewrite Hxy|].
intros _.
- now unfold canonic_exp, fxy; simpl.
+ now unfold cexp, fxy; simpl.
Qed.
-Lemma double_round_plus_aux0_aux :
+Lemma round_round_plus_aux0_aux :
forall (fexp1 fexp2 : Z -> Z),
forall x y,
- (fexp2 (ln_beta (x + y))%Z <= fexp1 (ln_beta x))%Z ->
- (fexp2 (ln_beta (x + y))%Z <= fexp1 (ln_beta y))%Z ->
+ (fexp2 (mag (x + y))%Z <= fexp1 (mag x))%Z ->
+ (fexp2 (mag (x + y))%Z <= fexp1 (mag y))%Z ->
generic_format beta fexp1 x -> generic_format beta fexp1 y ->
generic_format beta fexp2 (x + y).
Proof.
intros fexp1 fexp2 x y Hlnx Hlny Fx Fy.
-destruct (Z.le_gt_cases (fexp1 (ln_beta x)) (fexp1 (ln_beta y))) as [Hle|Hgt].
-- now apply (double_round_plus_aux0_aux_aux fexp1).
+destruct (Z.le_gt_cases (fexp1 (mag x)) (fexp1 (mag y))) as [Hle|Hgt].
+- now apply (round_round_plus_aux0_aux_aux fexp1).
- rewrite Rplus_comm in Hlnx, Hlny |- *.
- now apply (double_round_plus_aux0_aux_aux fexp1); [omega| | | |].
+ now apply (round_round_plus_aux0_aux_aux fexp1); [omega| | | |].
Qed.
-(* fexp1 (ln_beta x) - 1 <= ln_beta y :
+(* fexp1 (mag x) - 1 <= mag y :
* addition is exact in the largest precision (fexp2). *)
-Lemma double_round_plus_aux0 :
+Lemma round_round_plus_aux0 :
forall (fexp1 fexp2 : Z -> Z), Valid_exp fexp1 ->
- double_round_plus_hyp fexp1 fexp2 ->
+ round_round_plus_hyp fexp1 fexp2 ->
forall x y,
(0 < x)%R -> (0 < y)%R -> (y <= x)%R ->
- (fexp1 (ln_beta x) - 1 <= ln_beta y)%Z ->
+ (fexp1 (mag x) - 1 <= mag y)%Z ->
generic_format beta fexp1 x -> generic_format beta fexp1 y ->
generic_format beta fexp2 (x + y).
Proof.
intros fexp1 fexp2 Vfexp1 Hexp x y Px Py Hyx Hln Fx Fy.
assert (Nny : (0 <= y)%R); [now apply Rlt_le|].
destruct Hexp as (_,(Hexp2,(Hexp3,Hexp4))).
-destruct (Z.le_gt_cases (ln_beta y) (fexp1 (ln_beta x))) as [Hle|Hgt].
-- (* ln_beta y <= fexp1 (ln_beta x) *)
- assert (Lxy : ln_beta (x + y) = ln_beta x :> Z);
- [now apply (ln_beta_plus_separated fexp1)|].
- apply (double_round_plus_aux0_aux fexp1);
+destruct (Z.le_gt_cases (mag y) (fexp1 (mag x))) as [Hle|Hgt].
+- (* mag y <= fexp1 (mag x) *)
+ assert (Lxy : mag (x + y) = mag x :> Z);
+ [now apply (mag_plus_separated fexp1)|].
+ apply (round_round_plus_aux0_aux fexp1);
[| |assumption|assumption]; rewrite Lxy.
+ now apply Hexp4; omega.
+ now apply Hexp3; omega.
-- (* fexp1 (ln_beta x) < ln_beta y *)
- apply (double_round_plus_aux0_aux fexp1); [| |assumption|assumption].
- destruct (ln_beta_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
+- (* fexp1 (mag x) < mag y *)
+ apply (round_round_plus_aux0_aux fexp1); [| |assumption|assumption].
+ destruct (mag_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
+ now apply Hexp4; omega.
- + apply Hexp2; apply (ln_beta_le beta y x Py) in Hyx.
- replace (_ - _)%Z with (ln_beta x : Z) by ring.
+ + apply Hexp2; apply (mag_le beta y x Py) in Hyx.
+ replace (_ - _)%Z with (mag x : Z) by ring.
omega.
- + destruct (ln_beta_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
+ + destruct (mag_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
* now apply Hexp3; omega.
* apply Hexp2.
- replace (_ - _)%Z with (ln_beta x : Z) by ring.
+ replace (_ - _)%Z with (mag x : Z) by ring.
omega.
Qed.
-Lemma double_round_plus_aux1_aux :
+Lemma round_round_plus_aux1_aux :
forall k, (0 < k)%Z ->
forall (fexp : Z -> Z),
forall x y,
0 < x -> 0 < y ->
- (ln_beta y <= fexp (ln_beta x) - k)%Z ->
- (ln_beta (x + y) = ln_beta x :> Z) ->
+ (mag y <= fexp (mag x) - k)%Z ->
+ (mag (x + y) = mag x :> Z) ->
generic_format beta fexp x ->
- 0 < (x + y) - round beta fexp Zfloor (x + y) < bpow (fexp (ln_beta x) - k).
+ 0 < (x + y) - round beta fexp Zfloor (x + y) < bpow (fexp (mag x) - k).
Proof.
assert (Hbeta : (2 <= beta)%Z).
{ destruct beta as (beta_val,beta_prop).
now apply Zle_bool_imp_le. }
intros k Hk fexp x y Px Py Hln Hlxy Fx.
revert Fx.
-unfold round, generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
+unfold round, generic_format, F2R, scaled_mantissa, cexp; simpl.
rewrite Hlxy.
-set (mx := Ztrunc (x * bpow (- fexp (ln_beta x)))).
+set (mx := Ztrunc (x * bpow (- fexp (mag x)))).
intros Fx.
-assert (R : (x + y) * bpow (- fexp (ln_beta x))
- = Z2R mx + y * bpow (- fexp (ln_beta x))).
+assert (R : (x + y) * bpow (- fexp (mag x))
+ = IZR mx + y * bpow (- fexp (mag x))).
{ rewrite Fx at 1.
rewrite Rmult_plus_distr_r.
now bpow_simplify. }
rewrite R.
-assert (LB : 0 < y * bpow (- fexp (ln_beta x))).
+assert (LB : 0 < y * bpow (- fexp (mag x))).
{ rewrite <- (Rmult_0_r y).
now apply Rmult_lt_compat_l; [|apply bpow_gt_0]. }
-assert (UB : y * bpow (- fexp (ln_beta x)) < / Z2R (beta ^ k)).
-{ apply Rlt_le_trans with (bpow (ln_beta y) * bpow (- fexp (ln_beta x))).
+assert (UB : y * bpow (- fexp (mag x)) < / IZR (beta ^ k)).
+{ apply Rlt_le_trans with (bpow (mag y) * bpow (- fexp (mag x))).
- apply Rmult_lt_compat_r; [now apply bpow_gt_0|].
rewrite <- (Rabs_right y) at 1; [|now apply Rle_ge; apply Rlt_le].
- apply bpow_ln_beta_gt.
- - apply Rle_trans with (bpow (fexp (ln_beta x) - k)
- * bpow (- fexp (ln_beta x)))%R.
+ apply bpow_mag_gt.
+ - apply Rle_trans with (bpow (fexp (mag x) - k)
+ * bpow (- fexp (mag x)))%R.
+ apply Rmult_le_compat_r; [now apply bpow_ge_0|].
now apply bpow_le.
+ bpow_simplify.
rewrite bpow_opp.
destruct k.
* omega.
- * simpl; unfold Fcore_Raux.bpow, Z.pow_pos.
+ * simpl; unfold Raux.bpow, Z.pow_pos.
now apply Rle_refl.
- * casetype False; apply (Zlt_irrefl 0).
- apply (Zlt_trans _ _ _ Hk).
+ * casetype False; apply (Z.lt_irrefl 0).
+ apply (Z.lt_trans _ _ _ Hk).
apply Zlt_neg_0. }
rewrite (Zfloor_imp mx).
{ split; ring_simplify.
- - apply (Rmult_lt_reg_r (bpow (- fexp (ln_beta x)))); [now apply bpow_gt_0|].
+ - apply (Rmult_lt_reg_r (bpow (- fexp (mag x)))); [now apply bpow_gt_0|].
rewrite Rmult_minus_distr_r, Rmult_0_l.
bpow_simplify.
rewrite R; ring_simplify.
now apply Rmult_lt_0_compat; [|apply bpow_gt_0].
- - apply (Rmult_lt_reg_r (bpow (- fexp (ln_beta x)))); [now apply bpow_gt_0|].
+ - apply (Rmult_lt_reg_r (bpow (- fexp (mag x)))); [now apply bpow_gt_0|].
rewrite Rmult_minus_distr_r.
bpow_simplify.
rewrite R; ring_simplify.
apply (Rlt_le_trans _ _ _ UB).
rewrite bpow_opp.
apply Rinv_le; [now apply bpow_gt_0|].
- now rewrite Z2R_Zpower; [right|omega]. }
+ now rewrite IZR_Zpower; [right|omega]. }
split.
- rewrite <- Rplus_0_r at 1; apply Rplus_le_compat_l.
now apply Rlt_le.
-- rewrite Z2R_plus; apply Rplus_lt_compat_l.
- apply (Rmult_lt_reg_r (bpow (fexp (ln_beta x)))); [now apply bpow_gt_0|].
+- rewrite plus_IZR; apply Rplus_lt_compat_l.
+ apply (Rmult_lt_reg_r (bpow (fexp (mag x)))); [now apply bpow_gt_0|].
rewrite Rmult_1_l.
bpow_simplify.
- apply Rlt_trans with (bpow (ln_beta y)).
+ apply Rlt_trans with (bpow (mag y)).
+ rewrite <- Rabs_right at 1; [|now apply Rle_ge; apply Rlt_le].
- apply bpow_ln_beta_gt.
+ apply bpow_mag_gt.
+ apply bpow_lt; omega.
Qed.
-(* ln_beta y <= fexp1 (ln_beta x) - 2 : double_round_lt_mid applies. *)
-Lemma double_round_plus_aux1 :
+(* mag y <= fexp1 (mag x) - 2 : round_round_lt_mid applies. *)
+Lemma round_round_plus_aux1 :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
+ round_round_plus_hyp fexp1 fexp2 ->
forall x y,
0 < x -> 0 < y ->
- (ln_beta y <= fexp1 (ln_beta x) - 2)%Z ->
+ (mag y <= fexp1 (mag x) - 2)%Z ->
generic_format beta fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x + y).
Proof.
assert (Hbeta : (2 <= beta)%Z).
{ destruct beta as (beta_val,beta_prop).
now apply Zle_bool_imp_le. }
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Hly Fx.
-assert (Lxy : ln_beta (x + y) = ln_beta x :> Z);
- [now apply (ln_beta_plus_separated fexp1); [|apply Rlt_le| |omega]|].
+assert (Lxy : mag (x + y) = mag x :> Z);
+ [now apply (mag_plus_separated fexp1); [|apply Rlt_le| |omega]|].
destruct Hexp as (_,(_,(_,Hexp4))).
-assert (Hf2 : (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z);
+assert (Hf2 : (fexp2 (mag x) <= fexp1 (mag x))%Z);
[now apply Hexp4; omega|].
assert (Bpow2 : bpow (- 2) <= / 2 * / 2).
{ replace (/2 * /2) with (/4) by field.
rewrite (bpow_opp _ 2).
apply Rinv_le; [lra|].
- apply (Z2R_le (2 * 2) (beta * (beta * 1))).
+ apply (IZR_le (2 * 2) (beta * (beta * 1))).
rewrite Zmult_1_r.
now apply Zmult_le_compat; omega. }
assert (P2 : (0 < 2)%Z) by omega.
-unfold double_round_eq.
-apply double_round_lt_mid.
+unfold round_round_eq.
+apply round_round_lt_mid.
- exact Vfexp1.
- exact Vfexp2.
- lra.
- now rewrite Lxy.
- rewrite Lxy.
- assert (fexp1 (ln_beta x) < ln_beta x)%Z; [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+ assert (fexp1 (mag x) < mag x)%Z; [|omega].
+ now apply mag_generic_gt; [|apply Rgt_not_eq|].
- unfold midp.
apply (Rplus_lt_reg_r (- round beta fexp1 Zfloor (x + y))).
- apply (Rlt_le_trans _ _ _ (proj2 (double_round_plus_aux1_aux 2 P2 fexp1 x y Px
+ apply (Rlt_le_trans _ _ _ (proj2 (round_round_plus_aux1_aux 2 P2 fexp1 x y Px
Py Hly Lxy Fx))).
ring_simplify.
rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rplus_lt_0_compat].
- unfold canonic_exp; rewrite Lxy.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ unfold cexp; rewrite Lxy.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (mag x)))); [now apply bpow_gt_0|].
bpow_simplify.
apply (Rle_trans _ _ _ Bpow2).
rewrite <- (Rmult_1_r (/ 2)) at 3.
apply Rmult_le_compat_l; lra.
- rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rplus_lt_0_compat].
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl; rewrite Lxy.
+ unfold round, F2R, scaled_mantissa, cexp; simpl; rewrite Lxy.
intro Hf2'.
- apply (Rmult_lt_reg_r (bpow (- fexp1 (ln_beta x))));
+ apply (Rmult_lt_reg_r (bpow (- fexp1 (mag x))));
[now apply bpow_gt_0|].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x)))); [now apply bpow_gt_0|].
bpow_simplify.
apply (Rplus_lt_reg_r (- round beta fexp1 Zfloor (x + y))).
unfold midp; ring_simplify.
- apply (Rlt_le_trans _ _ _ (proj2 (double_round_plus_aux1_aux 2 P2 fexp1 x y Px
+ apply (Rlt_le_trans _ _ _ (proj2 (round_round_plus_aux1_aux 2 P2 fexp1 x y Px
Py Hly Lxy Fx))).
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ apply (Rmult_le_reg_r (bpow (- fexp1 (mag x)))); [now apply bpow_gt_0|].
rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rplus_lt_0_compat].
- unfold canonic_exp; rewrite Lxy, Rmult_minus_distr_r; bpow_simplify.
+ unfold cexp; rewrite Lxy, Rmult_minus_distr_r; bpow_simplify.
apply (Rle_trans _ _ _ Bpow2).
rewrite <- (Rmult_1_r (/ 2)) at 3; rewrite <- Rmult_minus_distr_l.
apply Rmult_le_compat_l; [lra|].
@@ -1089,49 +1089,49 @@ apply double_round_lt_mid.
apply Ropp_le_contravar.
{ apply Rle_trans with (bpow (- 1)).
- apply bpow_le; omega.
- - unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ - unfold Raux.bpow, Z.pow_pos; simpl.
apply Rinv_le; [lra|].
- change 2 with (Z2R 2); apply Z2R_le; omega. }
+ apply IZR_le; omega. }
Qed.
-(* double_round_plus_aux{0,1} together *)
-Lemma double_round_plus_aux2 :
+(* round_round_plus_aux{0,1} together *)
+Lemma round_round_plus_aux2 :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
+ round_round_plus_hyp fexp1 fexp2 ->
forall x y,
0 < x -> 0 < y -> y <= x ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x + y).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Hyx Fx Fy.
-unfold double_round_eq.
-destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta x) - 2)) as [Hly|Hly].
-- (* ln_beta y <= fexp1 (ln_beta x) - 2 *)
- now apply double_round_plus_aux1.
-- (* fexp1 (ln_beta x) - 2 < ln_beta y *)
+unfold round_round_eq.
+destruct (Zle_or_lt (mag y) (fexp1 (mag x) - 2)) as [Hly|Hly].
+- (* mag y <= fexp1 (mag x) - 2 *)
+ now apply round_round_plus_aux1.
+- (* fexp1 (mag x) - 2 < mag y *)
rewrite (round_generic beta fexp2).
+ reflexivity.
+ now apply valid_rnd_N.
- + assert (Hf1 : (fexp1 (ln_beta x) - 1 <= ln_beta y)%Z); [omega|].
- now apply (double_round_plus_aux0 fexp1).
+ + assert (Hf1 : (fexp1 (mag x) - 1 <= mag y)%Z); [omega|].
+ now apply (round_round_plus_aux0 fexp1).
Qed.
-Lemma double_round_plus_aux :
+Lemma round_round_plus_aux :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
+ round_round_plus_hyp fexp1 fexp2 ->
forall x y,
0 <= x -> 0 <= y ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x + y).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Nnx Nny Fx Fy.
-unfold double_round_eq.
+unfold round_round_eq.
destruct (Req_dec x 0) as [Zx|Nzx].
- (* x = 0 *)
destruct Hexp as (_,(_,(_,Hexp4))).
@@ -1139,7 +1139,7 @@ destruct (Req_dec x 0) as [Zx|Nzx].
rewrite (round_generic beta fexp2).
+ reflexivity.
+ now apply valid_rnd_N.
- + apply (generic_inclusion_ln_beta beta fexp1).
+ + apply (generic_inclusion_mag beta fexp1).
now intros _; apply Hexp4; omega.
exact Fy.
- (* x <> 0 *)
@@ -1150,7 +1150,7 @@ destruct (Req_dec x 0) as [Zx|Nzx].
rewrite (round_generic beta fexp2).
* reflexivity.
* now apply valid_rnd_N.
- * apply (generic_inclusion_ln_beta beta fexp1).
+ * apply (generic_inclusion_mag beta fexp1).
now intros _; apply Hexp4; omega.
exact Fx.
+ (* y <> 0 *)
@@ -1160,118 +1160,118 @@ destruct (Req_dec x 0) as [Zx|Nzx].
* (* x < y *)
apply Rlt_le in H.
rewrite Rplus_comm.
- now apply double_round_plus_aux2.
- * now apply double_round_plus_aux2.
+ now apply round_round_plus_aux2.
+ * now apply round_round_plus_aux2.
Qed.
-Lemma double_round_minus_aux0_aux :
+Lemma round_round_minus_aux0_aux :
forall (fexp1 fexp2 : Z -> Z),
forall x y,
- (fexp2 (ln_beta (x - y))%Z <= fexp1 (ln_beta x))%Z ->
- (fexp2 (ln_beta (x - y))%Z <= fexp1 (ln_beta y))%Z ->
+ (fexp2 (mag (x - y))%Z <= fexp1 (mag x))%Z ->
+ (fexp2 (mag (x - y))%Z <= fexp1 (mag y))%Z ->
generic_format beta fexp1 x -> generic_format beta fexp1 y ->
generic_format beta fexp2 (x - y).
Proof.
intros fexp1 fexp2 x y.
replace (x - y)%R with (x + (- y))%R; [|ring].
intros Hlnx Hlny Fx Fy.
-rewrite <- (ln_beta_opp beta y) in Hlny.
+rewrite <- (mag_opp beta y) in Hlny.
apply generic_format_opp in Fy.
-now apply (double_round_plus_aux0_aux fexp1).
+now apply (round_round_plus_aux0_aux fexp1).
Qed.
-(* fexp1 (ln_beta x) - 1 <= ln_beta y :
+(* fexp1 (mag x) - 1 <= mag y :
* substraction is exact in the largest precision (fexp2). *)
-Lemma double_round_minus_aux0 :
+Lemma round_round_minus_aux0 :
forall (fexp1 fexp2 : Z -> Z),
- double_round_plus_hyp fexp1 fexp2 ->
+ round_round_plus_hyp fexp1 fexp2 ->
forall x y,
0 < y -> y < x ->
- (fexp1 (ln_beta x) - 1 <= ln_beta y)%Z ->
+ (fexp1 (mag x) - 1 <= mag y)%Z ->
generic_format beta fexp1 x -> generic_format beta fexp1 y ->
generic_format beta fexp2 (x - y).
Proof.
intros fexp1 fexp2 Hexp x y Py Hyx Hln Fx Fy.
assert (Px := Rlt_trans 0 y x Py Hyx).
destruct Hexp as (Hexp1,(_,(Hexp3,Hexp4))).
-assert (Lyx : (ln_beta y <= ln_beta x)%Z);
- [now apply ln_beta_le; [|apply Rlt_le]|].
-destruct (Z.lt_ge_cases (ln_beta x - 2) (ln_beta y)) as [Hlt|Hge].
-- (* ln_beta x - 2 < ln_beta y *)
- assert (Hor : (ln_beta y = ln_beta x :> Z)
- \/ (ln_beta y = ln_beta x - 1 :> Z)%Z); [omega|].
+assert (Lyx : (mag y <= mag x)%Z);
+ [now apply mag_le; [|apply Rlt_le]|].
+destruct (Z.lt_ge_cases (mag x - 2) (mag y)) as [Hlt|Hge].
+- (* mag x - 2 < mag y *)
+ assert (Hor : (mag y = mag x :> Z)
+ \/ (mag y = mag x - 1 :> Z)%Z); [omega|].
destruct Hor as [Heq|Heqm1].
- + (* ln_beta y = ln_beta x *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+ + (* mag y = mag x *)
+ apply (round_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
* apply Hexp4.
- apply Zle_trans with (ln_beta (x - y)); [omega|].
- now apply ln_beta_minus.
+ apply Z.le_trans with (mag (x - y)); [omega|].
+ now apply mag_minus.
* rewrite Heq.
apply Hexp4.
- apply Zle_trans with (ln_beta (x - y)); [omega|].
- now apply ln_beta_minus.
- + (* ln_beta y = ln_beta x - 1 *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+ apply Z.le_trans with (mag (x - y)); [omega|].
+ now apply mag_minus.
+ + (* mag y = mag x - 1 *)
+ apply (round_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
* apply Hexp4.
- apply Zle_trans with (ln_beta (x - y)); [omega|].
- now apply ln_beta_minus.
+ apply Z.le_trans with (mag (x - y)); [omega|].
+ now apply mag_minus.
* rewrite Heqm1.
apply Hexp4.
apply Zplus_le_compat_r.
- now apply ln_beta_minus.
-- (* ln_beta y <= ln_beta x - 2 *)
- destruct (ln_beta_minus_disj x y Px Py Hge) as [Lxmy|Lxmy].
- + (* ln_beta (x - y) = ln_beta x *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+ now apply mag_minus.
+- (* mag y <= mag x - 2 *)
+ destruct (mag_minus_disj x y Px Py Hge) as [Lxmy|Lxmy].
+ + (* mag (x - y) = mag x *)
+ apply (round_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
* apply Hexp4.
omega.
* now rewrite Lxmy; apply Hexp3.
- + (* ln_beta (x - y) = ln_beta x - 1 *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy];
+ + (* mag (x - y) = mag x - 1 *)
+ apply (round_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy];
rewrite Lxmy.
* apply Hexp1.
- replace (_ + _)%Z with (ln_beta x : Z); [|ring].
- now apply Zle_trans with (ln_beta y).
+ replace (_ + _)%Z with (mag x : Z); [|ring].
+ now apply Z.le_trans with (mag y).
* apply Hexp1.
- now replace (_ + _)%Z with (ln_beta x : Z); [|ring].
+ now replace (_ + _)%Z with (mag x : Z); [|ring].
Qed.
-(* ln_beta y <= fexp1 (ln_beta x) - 2,
- * fexp1 (ln_beta (x - y)) - 1 <= ln_beta y :
+(* mag y <= fexp1 (mag x) - 2,
+ * fexp1 (mag (x - y)) - 1 <= mag y :
* substraction is exact in the largest precision (fexp2). *)
-Lemma double_round_minus_aux1 :
+Lemma round_round_minus_aux1 :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
- double_round_plus_hyp fexp1 fexp2 ->
+ round_round_plus_hyp fexp1 fexp2 ->
forall x y,
0 < y -> y < x ->
- (ln_beta y <= fexp1 (ln_beta x) - 2)%Z ->
- (fexp1 (ln_beta (x - y)) - 1 <= ln_beta y)%Z ->
+ (mag y <= fexp1 (mag x) - 2)%Z ->
+ (fexp1 (mag (x - y)) - 1 <= mag y)%Z ->
generic_format beta fexp1 x -> generic_format beta fexp1 y ->
generic_format beta fexp2 (x - y).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 Hexp x y Py Hyx Hln Hln' Fx Fy.
assert (Px := Rlt_trans 0 y x Py Hyx).
destruct Hexp as (Hexp1,(Hexp2,(Hexp3,Hexp4))).
-assert (Lyx : (ln_beta y <= ln_beta x)%Z);
- [now apply ln_beta_le; [|apply Rlt_le]|].
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
-- apply Zle_trans with (fexp1 (ln_beta (x - y))).
+assert (Lyx : (mag y <= mag x)%Z);
+ [now apply mag_le; [|apply Rlt_le]|].
+assert (Hfx : (fexp1 (mag x) < mag x)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfy : (fexp1 (mag y) < mag y)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
+apply (round_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+- apply Z.le_trans with (fexp1 (mag (x - y))).
+ apply Hexp4; omega.
+ omega.
- now apply Hexp3.
Qed.
-Lemma double_round_minus_aux2_aux :
+Lemma round_round_minus_aux2_aux :
forall (fexp : Z -> Z),
Valid_exp fexp ->
forall x y,
0 < y -> y < x ->
- (ln_beta y <= fexp (ln_beta x) - 1)%Z ->
+ (mag y <= fexp (mag x) - 1)%Z ->
generic_format beta fexp x ->
generic_format beta fexp y ->
round beta fexp Zceil (x - y) - (x - y) <= y.
@@ -1279,19 +1279,19 @@ Proof.
intros fexp Vfexp x y Py Hxy Hly Fx Fy.
assert (Px := Rlt_trans 0 y x Py Hxy).
revert Fx.
-unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
-set (mx := Ztrunc (x * bpow (- fexp (ln_beta x)))).
+unfold generic_format, F2R, scaled_mantissa, cexp; simpl.
+set (mx := Ztrunc (x * bpow (- fexp (mag x)))).
intro Fx.
-assert (Hfx : (fexp (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Hfy : (fexp (ln_beta y) < ln_beta y)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-destruct (Rlt_or_le (bpow (ln_beta x - 1)) x) as [Hx|Hx].
-- (* bpow (ln_beta x - 1) < x *)
- assert (Lxy : ln_beta (x - y) = ln_beta x :> Z);
- [now apply (ln_beta_minus_separated fexp); [| | | | | |omega]|].
+assert (Hfx : (fexp (mag x) < mag x)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfy : (fexp (mag y) < mag y)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
+destruct (Rlt_or_le (bpow (mag x - 1)) x) as [Hx|Hx].
+- (* bpow (mag x - 1) < x *)
+ assert (Lxy : mag (x - y) = mag x :> Z);
+ [now apply (mag_minus_separated fexp); [| | | | | |omega]|].
assert (Rxy : round beta fexp Zceil (x - y) = x).
- { unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ { unfold round, F2R, scaled_mantissa, cexp; simpl.
rewrite Lxy.
apply eq_sym; rewrite Fx at 1; apply eq_sym.
apply Rmult_eq_compat_r.
@@ -1301,18 +1301,18 @@ destruct (Rlt_or_le (bpow (ln_beta x - 1)) x) as [Hx|Hx].
bpow_simplify.
apply Zceil_imp.
split.
- - unfold Zminus; rewrite Z2R_plus.
+ - unfold Zminus; rewrite plus_IZR.
apply Rplus_lt_compat_l.
apply Ropp_lt_contravar; simpl.
- apply (Rmult_lt_reg_r (bpow (fexp (ln_beta x))));
+ apply (Rmult_lt_reg_r (bpow (fexp (mag x))));
[now apply bpow_gt_0|].
rewrite Rmult_1_l; bpow_simplify.
- apply Rlt_le_trans with (bpow (ln_beta y)).
+ apply Rlt_le_trans with (bpow (mag y)).
+ rewrite <- Rabs_right at 1; [|now apply Rle_ge; apply Rlt_le].
- apply bpow_ln_beta_gt.
+ apply bpow_mag_gt.
+ apply bpow_le.
omega.
- - rewrite <- (Rplus_0_r (Z2R _)) at 2.
+ - rewrite <- (Rplus_0_r (IZR _)) at 2.
apply Rplus_le_compat_l.
rewrite <- Ropp_0; apply Ropp_le_contravar.
rewrite <- (Rmult_0_r y).
@@ -1320,34 +1320,34 @@ destruct (Rlt_or_le (bpow (ln_beta x - 1)) x) as [Hx|Hx].
now apply bpow_ge_0. }
rewrite Rxy; ring_simplify.
apply Rle_refl.
-- (* x <= bpow (ln_beta x - 1) *)
- assert (Xpow : x = bpow (ln_beta x - 1)).
+- (* x <= bpow (mag x - 1) *)
+ assert (Xpow : x = bpow (mag x - 1)).
{ apply Rle_antisym; [exact Hx|].
- destruct (ln_beta x) as (ex, Hex); simpl.
+ destruct (mag x) as (ex, Hex); simpl.
rewrite <- (Rabs_right x); [|now apply Rle_ge; apply Rlt_le].
apply Hex.
now apply Rgt_not_eq. }
- assert (Lxy : (ln_beta (x - y) = ln_beta x - 1 :> Z)%Z).
+ assert (Lxy : (mag (x - y) = mag x - 1 :> Z)%Z).
{ apply Zle_antisym.
- - apply ln_beta_le_bpow.
+ - apply mag_le_bpow.
+ apply Rminus_eq_contra.
now intro Hx'; rewrite Hx' in Hxy; apply (Rlt_irrefl y).
+ rewrite Rabs_right; lra.
- - apply (ln_beta_minus_lb beta x y Px Py).
+ - apply (mag_minus_lb beta x y Px Py).
omega. }
- assert (Hfx1 : (fexp (ln_beta x - 1) < ln_beta x - 1)%Z);
- [now apply (valid_exp_large fexp (ln_beta y)); [|omega]|].
+ assert (Hfx1 : (fexp (mag x - 1) < mag x - 1)%Z);
+ [now apply (valid_exp_large fexp (mag y)); [|omega]|].
assert (Rxy : round beta fexp Zceil (x - y) <= x).
{ rewrite Xpow at 2.
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ unfold round, F2R, scaled_mantissa, cexp; simpl.
rewrite Lxy.
- apply (Rmult_le_reg_r (bpow (- fexp (ln_beta x - 1)%Z)));
+ apply (Rmult_le_reg_r (bpow (- fexp (mag x - 1)%Z)));
[now apply bpow_gt_0|].
bpow_simplify.
- rewrite <- (Z2R_Zpower beta (_ - _ - _)); [|omega].
- apply Z2R_le.
+ rewrite <- (IZR_Zpower beta (_ - _ - _)); [|omega].
+ apply IZR_le.
apply Zceil_glb.
- rewrite Z2R_Zpower; [|omega].
+ rewrite IZR_Zpower; [|omega].
rewrite Xpow at 1.
rewrite Rmult_minus_distr_r.
bpow_simplify.
@@ -1360,21 +1360,21 @@ destruct (Rlt_or_le (bpow (ln_beta x - 1)) x) as [Hx|Hx].
lra.
Qed.
-(* ln_beta y <= fexp1 (ln_beta x) - 2 :
- * ln_beta y <= fexp1 (ln_beta (x - y)) - 2 :
- * double_round_gt_mid applies. *)
-Lemma double_round_minus_aux2 :
+(* mag y <= fexp1 (mag x) - 2 :
+ * mag y <= fexp1 (mag (x - y)) - 2 :
+ * round_round_gt_mid applies. *)
+Lemma round_round_minus_aux2 :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
+ round_round_plus_hyp fexp1 fexp2 ->
forall x y,
0 < y -> y < x ->
- (ln_beta y <= fexp1 (ln_beta x) - 2)%Z ->
- (ln_beta y <= fexp1 (ln_beta (x - y)) - 2)%Z ->
+ (mag y <= fexp1 (mag x) - 2)%Z ->
+ (mag y <= fexp1 (mag (x - y)) - 2)%Z ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x - y).
Proof.
assert (Hbeta : (2 <= beta)%Z).
{ destruct beta as (beta_val,beta_prop).
@@ -1382,52 +1382,52 @@ assert (Hbeta : (2 <= beta)%Z).
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hxy Hly Hly' Fx Fy.
assert (Px := Rlt_trans 0 y x Py Hxy).
destruct Hexp as (_,(_,(_,Hexp4))).
-assert (Hf2 : (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z);
+assert (Hf2 : (fexp2 (mag x) <= fexp1 (mag x))%Z);
[now apply Hexp4; omega|].
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfx : (fexp1 (mag x) < mag x)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
assert (Bpow2 : bpow (- 2) <= / 2 * / 2).
{ replace (/2 * /2) with (/4) by field.
rewrite (bpow_opp _ 2).
apply Rinv_le; [lra|].
- apply (Z2R_le (2 * 2) (beta * (beta * 1))).
+ apply (IZR_le (2 * 2) (beta * (beta * 1))).
rewrite Zmult_1_r.
now apply Zmult_le_compat; omega. }
-assert (Ly : y < bpow (ln_beta y)).
+assert (Ly : y < bpow (mag y)).
{ apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
-unfold double_round_eq.
-apply double_round_gt_mid.
+ apply bpow_mag_gt. }
+unfold round_round_eq.
+apply round_round_gt_mid.
- exact Vfexp1.
- exact Vfexp2.
- lra.
- apply Hexp4; omega.
-- assert (fexp1 (ln_beta (x - y)) < ln_beta (x - y))%Z; [|omega].
- apply (valid_exp_large fexp1 (ln_beta x - 1)).
- + apply (valid_exp_large fexp1 (ln_beta y)); [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
- + now apply ln_beta_minus_lb; [| |omega].
+- assert (fexp1 (mag (x - y)) < mag (x - y))%Z; [|omega].
+ apply (valid_exp_large fexp1 (mag x - 1)).
+ + apply (valid_exp_large fexp1 (mag y)); [|omega].
+ now apply mag_generic_gt; [|apply Rgt_not_eq|].
+ + now apply mag_minus_lb; [| |omega].
- unfold midp'.
apply (Rplus_lt_reg_r (/ 2 * ulp beta fexp1 (x - y) - (x - y))).
ring_simplify.
replace (_ + _) with (round beta fexp1 Zceil (x - y) - (x - y)) by ring.
- apply Rlt_le_trans with (bpow (fexp1 (ln_beta (x - y)) - 2)).
+ apply Rlt_le_trans with (bpow (fexp1 (mag (x - y)) - 2)).
+ apply Rle_lt_trans with y;
- [now apply double_round_minus_aux2_aux; try assumption; omega|].
+ [now apply round_round_minus_aux2_aux; try assumption; omega|].
apply (Rlt_le_trans _ _ _ Ly).
now apply bpow_le.
+ rewrite ulp_neq_0;[idtac|now apply sym_not_eq, Rlt_not_eq, Rgt_minus].
- unfold canonic_exp.
- replace (_ - 2)%Z with (fexp1 (ln_beta (x - y)) - 1 - 1)%Z by ring.
+ unfold cexp.
+ replace (_ - 2)%Z with (fexp1 (mag (x - y)) - 1 - 1)%Z by ring.
unfold Zminus at 1; rewrite bpow_plus.
rewrite Rmult_comm.
apply Rmult_le_compat.
* now apply bpow_ge_0.
* now apply bpow_ge_0.
- * unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ * unfold Raux.bpow, Z.pow_pos; simpl.
rewrite Zmult_1_r; apply Rinv_le.
lra.
- now change 2 with (Z2R 2); apply Z2R_le.
+ now apply IZR_le.
* apply bpow_le; omega.
- intro Hf2'.
unfold midp'.
@@ -1436,53 +1436,53 @@ apply double_round_gt_mid.
ring_simplify.
replace (_ + _) with (round beta fexp1 Zceil (x - y) - (x - y)) by ring.
apply Rle_lt_trans with y;
- [now apply double_round_minus_aux2_aux; try assumption; omega|].
+ [now apply round_round_minus_aux2_aux; try assumption; omega|].
apply (Rlt_le_trans _ _ _ Ly).
- apply Rle_trans with (bpow (fexp1 (ln_beta (x - y)) - 2));
+ apply Rle_trans with (bpow (fexp1 (mag (x - y)) - 2));
[now apply bpow_le|].
- replace (_ - 2)%Z with (fexp1 (ln_beta (x - y)) - 1 - 1)%Z by ring.
+ replace (_ - 2)%Z with (fexp1 (mag (x - y)) - 1 - 1)%Z by ring.
unfold Zminus at 1; rewrite bpow_plus.
rewrite <- Rmult_minus_distr_l.
rewrite Rmult_comm; apply Rmult_le_compat.
+ apply bpow_ge_0.
+ apply bpow_ge_0.
- + unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ + unfold Raux.bpow, Z.pow_pos; simpl.
rewrite Zmult_1_r; apply Rinv_le; [lra|].
- now change 2 with (Z2R 2); apply Z2R_le.
+ now apply IZR_le.
+ rewrite 2!ulp_neq_0; try now apply Rgt_not_eq, Rgt_minus.
- unfold canonic_exp.
- apply (Rplus_le_reg_r (bpow (fexp2 (ln_beta (x - y))))); ring_simplify.
- apply Rle_trans with (2 * bpow (fexp1 (ln_beta (x - y)) - 1)).
- * replace (2 * bpow (fexp1 (ln_beta (x - y)) - 1)) with (bpow (fexp1 (ln_beta (x - y)) - 1) + bpow (fexp1 (ln_beta (x - y)) - 1)) by ring.
+ unfold cexp.
+ apply (Rplus_le_reg_r (bpow (fexp2 (mag (x - y))))); ring_simplify.
+ apply Rle_trans with (2 * bpow (fexp1 (mag (x - y)) - 1)).
+ * rewrite double.
apply Rplus_le_compat_l.
now apply bpow_le.
* unfold Zminus; rewrite bpow_plus.
rewrite Rmult_comm; rewrite Rmult_assoc.
rewrite <- Rmult_1_r.
apply Rmult_le_compat_l; [now apply bpow_ge_0|].
- unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ unfold Raux.bpow, Z.pow_pos; simpl.
rewrite Zmult_1_r.
- apply Z2R_le, Rinv_le in Hbeta.
+ apply IZR_le, Rinv_le in Hbeta.
simpl in Hbeta.
lra.
apply Rlt_0_2.
Qed.
-(* double_round_minus_aux{0,1,2} together *)
-Lemma double_round_minus_aux3 :
+(* round_round_minus_aux{0,1,2} together *)
+Lemma round_round_minus_aux3 :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
+ round_round_plus_hyp fexp1 fexp2 ->
forall x y,
0 < y -> y <= x ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x - y).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hyx Fx Fy.
assert (Px := Rlt_le_trans 0 y x Py Hyx).
-unfold double_round_eq.
+unfold round_round_eq.
destruct (Req_dec y x) as [Hy|Hy].
- (* y = x *)
rewrite Hy; replace (x - x) with 0 by ring.
@@ -1491,38 +1491,38 @@ destruct (Req_dec y x) as [Hy|Hy].
+ now apply valid_rnd_N.
- (* y < x *)
assert (Hyx' : y < x); [lra|].
- destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta x) - 2)) as [Hly|Hly].
- + (* ln_beta y <= fexp1 (ln_beta x) - 2 *)
- destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta (x - y)) - 2))
+ destruct (Zle_or_lt (mag y) (fexp1 (mag x) - 2)) as [Hly|Hly].
+ + (* mag y <= fexp1 (mag x) - 2 *)
+ destruct (Zle_or_lt (mag y) (fexp1 (mag (x - y)) - 2))
as [Hly'|Hly'].
- * (* ln_beta y <= fexp1 (ln_beta (x - y)) - 2 *)
- now apply double_round_minus_aux2.
- * (* fexp1 (ln_beta (x - y)) - 2 < ln_beta y *)
+ * (* mag y <= fexp1 (mag (x - y)) - 2 *)
+ now apply round_round_minus_aux2.
+ * (* fexp1 (mag (x - y)) - 2 < mag y *)
{ rewrite (round_generic beta fexp2).
- reflexivity.
- now apply valid_rnd_N.
- - assert (Hf1 : (fexp1 (ln_beta (x - y)) - 1 <= ln_beta y)%Z); [omega|].
- now apply (double_round_minus_aux1 fexp1). }
+ - assert (Hf1 : (fexp1 (mag (x - y)) - 1 <= mag y)%Z); [omega|].
+ now apply (round_round_minus_aux1 fexp1). }
+ rewrite (round_generic beta fexp2).
* reflexivity.
* now apply valid_rnd_N.
- * assert (Hf1 : (fexp1 (ln_beta x) - 1 <= ln_beta y)%Z); [omega|].
- now apply (double_round_minus_aux0 fexp1).
+ * assert (Hf1 : (fexp1 (mag x) - 1 <= mag y)%Z); [omega|].
+ now apply (round_round_minus_aux0 fexp1).
Qed.
-Lemma double_round_minus_aux :
+Lemma round_round_minus_aux :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
+ round_round_plus_hyp fexp1 fexp2 ->
forall x y,
0 <= x -> 0 <= y ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x - y).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Nnx Nny Fx Fy.
-unfold double_round_eq.
+unfold round_round_eq.
destruct (Req_dec x 0) as [Zx|Nzx].
- (* x = 0 *)
rewrite Zx; unfold Rminus; rewrite Rplus_0_l.
@@ -1530,7 +1530,7 @@ destruct (Req_dec x 0) as [Zx|Nzx].
rewrite (round_generic beta fexp2).
* reflexivity.
* now apply valid_rnd_N.
- * apply (generic_inclusion_ln_beta beta fexp1).
+ * apply (generic_inclusion_mag beta fexp1).
destruct Hexp as (_,(_,(_,Hexp4))).
now intros _; apply Hexp4; omega.
exact Fy.
@@ -1541,7 +1541,7 @@ destruct (Req_dec x 0) as [Zx|Nzx].
rewrite (round_generic beta fexp2).
* reflexivity.
* now apply valid_rnd_N.
- * apply (generic_inclusion_ln_beta beta fexp1).
+ * apply (generic_inclusion_mag beta fexp1).
destruct Hexp as (_,(_,(_,Hexp4))).
now intros _; apply Hexp4; omega.
exact Fx.
@@ -1554,23 +1554,23 @@ destruct (Req_dec x 0) as [Zx|Nzx].
replace (x - y) with (- (y - x)) by ring.
do 3 rewrite round_N_opp.
apply Ropp_eq_compat.
- now apply double_round_minus_aux3.
+ now apply round_round_minus_aux3.
* (* y <= x *)
- now apply double_round_minus_aux3.
+ now apply round_round_minus_aux3.
Qed.
-Lemma double_round_plus :
+Lemma round_round_plus :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
+ round_round_plus_hyp fexp1 fexp2 ->
forall x y,
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x + y).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Fx Fy.
-unfold double_round_eq.
+unfold round_round_eq.
destruct (Rlt_or_le x 0) as [Sx|Sx]; destruct (Rlt_or_le y 0) as [Sy|Sy].
- (* x < 0, y < 0 *)
replace (x + y) with (- (- x - y)); [|ring].
@@ -1580,87 +1580,85 @@ destruct (Rlt_or_le x 0) as [Sx|Sx]; destruct (Rlt_or_le y 0) as [Sy|Sy].
assert (Py : 0 <= - y); [lra|].
apply generic_format_opp in Fx.
apply generic_format_opp in Fy.
- now apply double_round_plus_aux.
+ now apply round_round_plus_aux.
- (* x < 0, 0 <= y *)
replace (x + y) with (y - (- x)); [|ring].
assert (Px : 0 <= - x); [lra|].
apply generic_format_opp in Fx.
- now apply double_round_minus_aux.
+ now apply round_round_minus_aux.
- (* 0 <= x, y < 0 *)
replace (x + y) with (x - (- y)); [|ring].
assert (Py : 0 <= - y); [lra|].
apply generic_format_opp in Fy.
- now apply double_round_minus_aux.
+ now apply round_round_minus_aux.
- (* 0 <= x, 0 <= y *)
- now apply double_round_plus_aux.
+ now apply round_round_plus_aux.
Qed.
-Lemma double_round_minus :
+Lemma round_round_minus :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
+ round_round_plus_hyp fexp1 fexp2 ->
forall x y,
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x - y).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Fx Fy.
unfold Rminus.
apply generic_format_opp in Fy.
-now apply double_round_plus.
+now apply round_round_plus.
Qed.
Section Double_round_plus_FLX.
-Import Fcore_FLX.
-
Variable prec : Z.
Variable prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FLX_double_round_plus_hyp :
+Lemma FLX_round_round_plus_hyp :
(2 * prec + 1 <= prec')%Z ->
- double_round_plus_hyp (FLX_exp prec) (FLX_exp prec').
+ round_round_plus_hyp (FLX_exp prec) (FLX_exp prec').
Proof.
intros Hprec.
unfold FLX_exp.
-unfold double_round_plus_hyp; split; [|split; [|split]];
+unfold round_round_plus_hyp; split; [|split; [|split]];
intros ex ey; try omega.
unfold Prec_gt_0 in prec_gt_0_.
omega.
Qed.
-Theorem double_round_plus_FLX :
+Theorem round_round_plus_FLX :
forall choice1 choice2,
(2 * prec + 1 <= prec')%Z ->
forall x y,
FLX_format beta prec x -> FLX_format beta prec y ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x + y).
+ round_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x + y).
Proof.
intros choice1 choice2 Hprec x y Fx Fy.
-apply double_round_plus.
+apply round_round_plus.
- now apply FLX_exp_valid.
- now apply FLX_exp_valid.
-- now apply FLX_double_round_plus_hyp.
+- now apply FLX_round_round_plus_hyp.
- now apply generic_format_FLX.
- now apply generic_format_FLX.
Qed.
-Theorem double_round_minus_FLX :
+Theorem round_round_minus_FLX :
forall choice1 choice2,
(2 * prec + 1 <= prec')%Z ->
forall x y,
FLX_format beta prec x -> FLX_format beta prec y ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x - y).
+ round_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x - y).
Proof.
intros choice1 choice2 Hprec x y Fx Fy.
-apply double_round_minus.
+apply round_round_minus.
- now apply FLX_exp_valid.
- now apply FLX_exp_valid.
-- now apply FLX_double_round_plus_hyp.
+- now apply FLX_round_round_plus_hyp.
- now apply generic_format_FLX.
- now apply generic_format_FLX.
Qed.
@@ -1669,22 +1667,19 @@ End Double_round_plus_FLX.
Section Double_round_plus_FLT.
-Import Fcore_FLX.
-Import Fcore_FLT.
-
Variable emin prec : Z.
Variable emin' prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FLT_double_round_plus_hyp :
+Lemma FLT_round_round_plus_hyp :
(emin' <= emin)%Z -> (2 * prec + 1 <= prec')%Z ->
- double_round_plus_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
+ round_round_plus_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
Proof.
intros Hemin Hprec.
unfold FLT_exp.
-unfold double_round_plus_hyp; split; [|split; [|split]]; intros ex ey.
+unfold round_round_plus_hyp; split; [|split; [|split]]; intros ex ey.
- generalize (Zmax_spec (ex + 1 - prec) emin).
generalize (Zmax_spec (ex - prec') emin').
generalize (Zmax_spec (ey - prec) emin).
@@ -1703,36 +1698,36 @@ unfold double_round_plus_hyp; split; [|split; [|split]]; intros ex ey.
omega.
Qed.
-Theorem double_round_plus_FLT :
+Theorem round_round_plus_FLT :
forall choice1 choice2,
(emin' <= emin)%Z -> (2 * prec + 1 <= prec')%Z ->
forall x y,
FLT_format beta emin prec x -> FLT_format beta emin prec y ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ round_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
choice1 choice2 (x + y).
Proof.
intros choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_plus.
+apply round_round_plus.
- now apply FLT_exp_valid.
- now apply FLT_exp_valid.
-- now apply FLT_double_round_plus_hyp.
+- now apply FLT_round_round_plus_hyp.
- now apply generic_format_FLT.
- now apply generic_format_FLT.
Qed.
-Theorem double_round_minus_FLT :
+Theorem round_round_minus_FLT :
forall choice1 choice2,
(emin' <= emin)%Z -> (2 * prec + 1 <= prec')%Z ->
forall x y,
FLT_format beta emin prec x -> FLT_format beta emin prec y ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ round_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
choice1 choice2 (x - y).
Proof.
intros choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_minus.
+apply round_round_minus.
- now apply FLT_exp_valid.
- now apply FLT_exp_valid.
-- now apply FLT_double_round_plus_hyp.
+- now apply FLT_round_round_plus_hyp.
- now apply generic_format_FLT.
- now apply generic_format_FLT.
Qed.
@@ -1741,23 +1736,20 @@ End Double_round_plus_FLT.
Section Double_round_plus_FTZ.
-Import Fcore_FLX.
-Import Fcore_FTZ.
-
Variable emin prec : Z.
Variable emin' prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FTZ_double_round_plus_hyp :
+Lemma FTZ_round_round_plus_hyp :
(emin' + prec' <= emin + 1)%Z -> (2 * prec + 1 <= prec')%Z ->
- double_round_plus_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
+ round_round_plus_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
Proof.
intros Hemin Hprec.
unfold FTZ_exp.
unfold Prec_gt_0 in *.
-unfold double_round_plus_hyp; split; [|split; [|split]]; intros ex ey.
+unfold round_round_plus_hyp; split; [|split; [|split]]; intros ex ey.
- destruct (Z.ltb_spec (ex + 1 - prec) emin);
destruct (Z.ltb_spec (ex - prec') emin');
destruct (Z.ltb_spec (ey - prec) emin);
@@ -1775,58 +1767,58 @@ unfold double_round_plus_hyp; split; [|split; [|split]]; intros ex ey.
omega.
Qed.
-Theorem double_round_plus_FTZ :
+Theorem round_round_plus_FTZ :
forall choice1 choice2,
(emin' + prec' <= emin + 1)%Z -> (2 * prec + 1 <= prec')%Z ->
forall x y,
FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ round_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
choice1 choice2 (x + y).
Proof.
intros choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_plus.
+apply round_round_plus.
- now apply FTZ_exp_valid.
- now apply FTZ_exp_valid.
-- now apply FTZ_double_round_plus_hyp.
+- now apply FTZ_round_round_plus_hyp.
- now apply generic_format_FTZ.
- now apply generic_format_FTZ.
Qed.
-Theorem double_round_minus_FTZ :
+Theorem round_round_minus_FTZ :
forall choice1 choice2,
(emin' + prec' <= emin + 1)%Z -> (2 * prec + 1 <= prec')%Z ->
forall x y,
FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ round_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
choice1 choice2 (x - y).
Proof.
intros choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_minus.
+apply round_round_minus.
- now apply FTZ_exp_valid.
- now apply FTZ_exp_valid.
-- now apply FTZ_double_round_plus_hyp.
+- now apply FTZ_round_round_plus_hyp.
- now apply generic_format_FTZ.
- now apply generic_format_FTZ.
Qed.
End Double_round_plus_FTZ.
-Section Double_round_plus_beta_ge_3.
+Section Double_round_plus_radix_ge_3.
-Definition double_round_plus_beta_ge_3_hyp fexp1 fexp2 :=
+Definition round_round_plus_radix_ge_3_hyp fexp1 fexp2 :=
(forall ex ey, (fexp1 (ex + 1) <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
/\ (forall ex ey, (fexp1 (ex - 1) + 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
/\ (forall ex ey, (fexp1 ex <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
/\ (forall ex ey, (ex - 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z).
-(* fexp1 (ln_beta x) <= ln_beta y :
+(* fexp1 (mag x) <= mag y :
* addition is exact in the largest precision (fexp2). *)
-Lemma double_round_plus_beta_ge_3_aux0 :
+Lemma round_round_plus_radix_ge_3_aux0 :
forall (fexp1 fexp2 : Z -> Z), Valid_exp fexp1 ->
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ round_round_plus_radix_ge_3_hyp fexp1 fexp2 ->
forall x y,
(0 < y)%R -> (y <= x)%R ->
- (fexp1 (ln_beta x) <= ln_beta y)%Z ->
+ (fexp1 (mag x) <= mag y)%Z ->
generic_format beta fexp1 x -> generic_format beta fexp1 y ->
generic_format beta fexp2 (x + y).
Proof.
@@ -1834,84 +1826,84 @@ intros fexp1 fexp2 Vfexp1 Hexp x y Py Hyx Hln Fx Fy.
assert (Px := Rlt_le_trans 0 y x Py Hyx).
assert (Nny : (0 <= y)%R); [now apply Rlt_le|].
destruct Hexp as (_,(Hexp2,(Hexp3,Hexp4))).
-destruct (Z.le_gt_cases (ln_beta y) (fexp1 (ln_beta x))) as [Hle|Hgt].
-- (* ln_beta y <= fexp1 (ln_beta x) *)
- assert (Lxy : ln_beta (x + y) = ln_beta x :> Z);
- [now apply (ln_beta_plus_separated fexp1)|].
- apply (double_round_plus_aux0_aux fexp1);
+destruct (Z.le_gt_cases (mag y) (fexp1 (mag x))) as [Hle|Hgt].
+- (* mag y <= fexp1 (mag x) *)
+ assert (Lxy : mag (x + y) = mag x :> Z);
+ [now apply (mag_plus_separated fexp1)|].
+ apply (round_round_plus_aux0_aux fexp1);
[| |assumption|assumption]; rewrite Lxy.
+ now apply Hexp4; omega.
+ now apply Hexp3; omega.
-- (* fexp1 (ln_beta x) < ln_beta y *)
- apply (double_round_plus_aux0_aux fexp1); [| |assumption|assumption].
- destruct (ln_beta_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
+- (* fexp1 (mag x) < mag y *)
+ apply (round_round_plus_aux0_aux fexp1); [| |assumption|assumption].
+ destruct (mag_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
+ now apply Hexp4; omega.
- + apply Hexp2; apply (ln_beta_le beta y x Py) in Hyx.
- replace (_ - _)%Z with (ln_beta x : Z) by ring.
+ + apply Hexp2; apply (mag_le beta y x Py) in Hyx.
+ replace (_ - _)%Z with (mag x : Z) by ring.
omega.
- + destruct (ln_beta_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
+ + destruct (mag_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
* now apply Hexp3; omega.
* apply Hexp2.
- replace (_ - _)%Z with (ln_beta x : Z) by ring.
+ replace (_ - _)%Z with (mag x : Z) by ring.
omega.
Qed.
-(* ln_beta y <= fexp1 (ln_beta x) - 1 : double_round_lt_mid applies. *)
-Lemma double_round_plus_beta_ge_3_aux1 :
+(* mag y <= fexp1 (mag x) - 1 : round_round_lt_mid applies. *)
+Lemma round_round_plus_radix_ge_3_aux1 :
(3 <= beta)%Z ->
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ round_round_plus_radix_ge_3_hyp fexp1 fexp2 ->
forall x y,
0 < x -> 0 < y ->
- (ln_beta y <= fexp1 (ln_beta x) - 1)%Z ->
+ (mag y <= fexp1 (mag x) - 1)%Z ->
generic_format beta fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x + y).
Proof.
intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Hly Fx.
-assert (Lxy : ln_beta (x + y) = ln_beta x :> Z);
- [now apply (ln_beta_plus_separated fexp1); [|apply Rlt_le| |omega]|].
+assert (Lxy : mag (x + y) = mag x :> Z);
+ [now apply (mag_plus_separated fexp1); [|apply Rlt_le| |omega]|].
destruct Hexp as (_,(_,(_,Hexp4))).
-assert (Hf2 : (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z);
+assert (Hf2 : (fexp2 (mag x) <= fexp1 (mag x))%Z);
[now apply Hexp4; omega|].
assert (Bpow3 : bpow (- 1) <= / 3).
-{ unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+{ unfold Raux.bpow, Z.pow_pos; simpl.
rewrite Zmult_1_r.
apply Rinv_le; [lra|].
- now change 3 with (Z2R 3); apply Z2R_le. }
+ now apply IZR_le. }
assert (P1 : (0 < 1)%Z) by omega.
-unfold double_round_eq.
-apply double_round_lt_mid.
+unfold round_round_eq.
+apply round_round_lt_mid.
- exact Vfexp1.
- exact Vfexp2.
- lra.
- now rewrite Lxy.
- rewrite Lxy.
- assert (fexp1 (ln_beta x) < ln_beta x)%Z; [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+ assert (fexp1 (mag x) < mag x)%Z; [|omega].
+ now apply mag_generic_gt; [|apply Rgt_not_eq|].
- unfold midp.
apply (Rplus_lt_reg_r (- round beta fexp1 Zfloor (x + y))).
- apply (Rlt_le_trans _ _ _ (proj2 (double_round_plus_aux1_aux 1 P1 fexp1 x y Px
+ apply (Rlt_le_trans _ _ _ (proj2 (round_round_plus_aux1_aux 1 P1 fexp1 x y Px
Py Hly Lxy Fx))).
ring_simplify.
rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rplus_lt_0_compat].
- unfold canonic_exp; rewrite Lxy.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ unfold cexp; rewrite Lxy.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (mag x))));
[now apply bpow_gt_0|].
bpow_simplify.
apply (Rle_trans _ _ _ Bpow3); lra.
- rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rplus_lt_0_compat].
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl; rewrite Lxy.
+ unfold round, F2R, scaled_mantissa, cexp; simpl; rewrite Lxy.
intro Hf2'.
unfold midp.
apply (Rplus_lt_reg_r (- round beta fexp1 Zfloor (x + y))); ring_simplify.
rewrite <- Rmult_minus_distr_l.
- apply (Rlt_le_trans _ _ _ (proj2 (double_round_plus_aux1_aux 1 P1 fexp1 x y Px
+ apply (Rlt_le_trans _ _ _ (proj2 (round_round_plus_aux1_aux 1 P1 fexp1 x y Px
Py Hly Lxy Fx))).
rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rplus_lt_0_compat].
- unfold canonic_exp; rewrite Lxy.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ unfold cexp; rewrite Lxy.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (mag x))));
[now apply bpow_gt_0|].
rewrite (Rmult_assoc (/ 2)).
rewrite Rmult_minus_distr_r.
@@ -1925,47 +1917,47 @@ apply double_round_lt_mid.
now apply Rle_trans with (bpow (- 1)); [apply bpow_le; omega|].
Qed.
-(* double_round_plus_beta_ge_3_aux{0,1} together *)
-Lemma double_round_plus_beta_ge_3_aux2 :
+(* round_round_plus_radix_ge_3_aux{0,1} together *)
+Lemma round_round_plus_radix_ge_3_aux2 :
(3 <= beta)%Z ->
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ round_round_plus_radix_ge_3_hyp fexp1 fexp2 ->
forall x y,
0 < y -> y <= x ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x + y).
Proof.
intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hyx Fx Fy.
assert (Px := Rlt_le_trans 0 y x Py Hyx).
-unfold double_round_eq.
-destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta x) - 1)) as [Hly|Hly].
-- (* ln_beta y <= fexp1 (ln_beta x) - 1 *)
- now apply double_round_plus_beta_ge_3_aux1.
-- (* fexp1 (ln_beta x) - 1 < ln_beta y *)
+unfold round_round_eq.
+destruct (Zle_or_lt (mag y) (fexp1 (mag x) - 1)) as [Hly|Hly].
+- (* mag y <= fexp1 (mag x) - 1 *)
+ now apply round_round_plus_radix_ge_3_aux1.
+- (* fexp1 (mag x) - 1 < mag y *)
rewrite (round_generic beta fexp2).
+ reflexivity.
+ now apply valid_rnd_N.
- + assert (Hf1 : (fexp1 (ln_beta x) <= ln_beta y)%Z); [omega|].
- now apply (double_round_plus_beta_ge_3_aux0 fexp1).
+ + assert (Hf1 : (fexp1 (mag x) <= mag y)%Z); [omega|].
+ now apply (round_round_plus_radix_ge_3_aux0 fexp1).
Qed.
-Lemma double_round_plus_beta_ge_3_aux :
+Lemma round_round_plus_radix_ge_3_aux :
(3 <= beta)%Z ->
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ round_round_plus_radix_ge_3_hyp fexp1 fexp2 ->
forall x y,
0 <= x -> 0 <= y ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x + y).
Proof.
intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Nnx Nny Fx Fy.
-unfold double_round_eq.
+unfold round_round_eq.
destruct (Req_dec x 0) as [Zx|Nzx].
- (* x = 0 *)
destruct Hexp as (_,(_,(_,Hexp4))).
@@ -1973,7 +1965,7 @@ destruct (Req_dec x 0) as [Zx|Nzx].
rewrite (round_generic beta fexp2).
+ reflexivity.
+ now apply valid_rnd_N.
- + apply (generic_inclusion_ln_beta beta fexp1).
+ + apply (generic_inclusion_mag beta fexp1).
now intros _; apply Hexp4; omega.
exact Fy.
- (* x <> 0 *)
@@ -1984,7 +1976,7 @@ destruct (Req_dec x 0) as [Zx|Nzx].
rewrite (round_generic beta fexp2).
* reflexivity.
* now apply valid_rnd_N.
- * apply (generic_inclusion_ln_beta beta fexp1).
+ * apply (generic_inclusion_mag beta fexp1).
now intros _; apply Hexp4; omega.
exact Fx.
+ (* y <> 0 *)
@@ -1994,156 +1986,156 @@ destruct (Req_dec x 0) as [Zx|Nzx].
* (* x < y *)
apply Rlt_le in H.
rewrite Rplus_comm.
- now apply double_round_plus_beta_ge_3_aux2.
- * now apply double_round_plus_beta_ge_3_aux2.
+ now apply round_round_plus_radix_ge_3_aux2.
+ * now apply round_round_plus_radix_ge_3_aux2.
Qed.
-(* fexp1 (ln_beta x) <= ln_beta y :
+(* fexp1 (mag x) <= mag y :
* substraction is exact in the largest precision (fexp2). *)
-Lemma double_round_minus_beta_ge_3_aux0 :
+Lemma round_round_minus_radix_ge_3_aux0 :
forall (fexp1 fexp2 : Z -> Z),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ round_round_plus_radix_ge_3_hyp fexp1 fexp2 ->
forall x y,
0 < y -> y < x ->
- (fexp1 (ln_beta x) <= ln_beta y)%Z ->
+ (fexp1 (mag x) <= mag y)%Z ->
generic_format beta fexp1 x -> generic_format beta fexp1 y ->
generic_format beta fexp2 (x - y).
Proof.
intros fexp1 fexp2 Hexp x y Py Hyx Hln Fx Fy.
assert (Px := Rlt_trans 0 y x Py Hyx).
destruct Hexp as (Hexp1,(_,(Hexp3,Hexp4))).
-assert (Lyx : (ln_beta y <= ln_beta x)%Z);
- [now apply ln_beta_le; [|apply Rlt_le]|].
-destruct (Z.lt_ge_cases (ln_beta x - 2) (ln_beta y)) as [Hlt|Hge].
-- (* ln_beta x - 2 < ln_beta y *)
- assert (Hor : (ln_beta y = ln_beta x :> Z)
- \/ (ln_beta y = ln_beta x - 1 :> Z)%Z); [omega|].
+assert (Lyx : (mag y <= mag x)%Z);
+ [now apply mag_le; [|apply Rlt_le]|].
+destruct (Z.lt_ge_cases (mag x - 2) (mag y)) as [Hlt|Hge].
+- (* mag x - 2 < mag y *)
+ assert (Hor : (mag y = mag x :> Z)
+ \/ (mag y = mag x - 1 :> Z)%Z); [omega|].
destruct Hor as [Heq|Heqm1].
- + (* ln_beta y = ln_beta x *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+ + (* mag y = mag x *)
+ apply (round_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
* apply Hexp4.
- apply Zle_trans with (ln_beta (x - y)); [omega|].
- now apply ln_beta_minus.
+ apply Z.le_trans with (mag (x - y)); [omega|].
+ now apply mag_minus.
* rewrite Heq.
apply Hexp4.
- apply Zle_trans with (ln_beta (x - y)); [omega|].
- now apply ln_beta_minus.
- + (* ln_beta y = ln_beta x - 1 *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+ apply Z.le_trans with (mag (x - y)); [omega|].
+ now apply mag_minus.
+ + (* mag y = mag x - 1 *)
+ apply (round_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
* apply Hexp4.
- apply Zle_trans with (ln_beta (x - y)); [omega|].
- now apply ln_beta_minus.
+ apply Z.le_trans with (mag (x - y)); [omega|].
+ now apply mag_minus.
* rewrite Heqm1.
apply Hexp4.
apply Zplus_le_compat_r.
- now apply ln_beta_minus.
-- (* ln_beta y <= ln_beta x - 2 *)
- destruct (ln_beta_minus_disj x y Px Py Hge) as [Lxmy|Lxmy].
- + (* ln_beta (x - y) = ln_beta x *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+ now apply mag_minus.
+- (* mag y <= mag x - 2 *)
+ destruct (mag_minus_disj x y Px Py Hge) as [Lxmy|Lxmy].
+ + (* mag (x - y) = mag x *)
+ apply (round_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
* apply Hexp4.
omega.
* now rewrite Lxmy; apply Hexp3.
- + (* ln_beta (x - y) = ln_beta x - 1 *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy];
+ + (* mag (x - y) = mag x - 1 *)
+ apply (round_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy];
rewrite Lxmy.
* apply Hexp1.
- replace (_ + _)%Z with (ln_beta x : Z); [|ring].
- now apply Zle_trans with (ln_beta y).
+ replace (_ + _)%Z with (mag x : Z); [|ring].
+ now apply Z.le_trans with (mag y).
* apply Hexp1.
- now replace (_ + _)%Z with (ln_beta x : Z); [|ring].
+ now replace (_ + _)%Z with (mag x : Z); [|ring].
Qed.
-(* ln_beta y <= fexp1 (ln_beta x) - 1,
- * fexp1 (ln_beta (x - y)) <= ln_beta y :
+(* mag y <= fexp1 (mag x) - 1,
+ * fexp1 (mag (x - y)) <= mag y :
* substraction is exact in the largest precision (fexp2). *)
-Lemma double_round_minus_beta_ge_3_aux1 :
+Lemma round_round_minus_radix_ge_3_aux1 :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ round_round_plus_radix_ge_3_hyp fexp1 fexp2 ->
forall x y,
0 < y -> y < x ->
- (ln_beta y <= fexp1 (ln_beta x) - 1)%Z ->
- (fexp1 (ln_beta (x - y)) <= ln_beta y)%Z ->
+ (mag y <= fexp1 (mag x) - 1)%Z ->
+ (fexp1 (mag (x - y)) <= mag y)%Z ->
generic_format beta fexp1 x -> generic_format beta fexp1 y ->
generic_format beta fexp2 (x - y).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 Hexp x y Py Hyx Hln Hln' Fx Fy.
assert (Px := Rlt_trans 0 y x Py Hyx).
destruct Hexp as (Hexp1,(Hexp2,(Hexp3,Hexp4))).
-assert (Lyx : (ln_beta y <= ln_beta x)%Z);
- [now apply ln_beta_le; [|apply Rlt_le]|].
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
-- apply Zle_trans with (fexp1 (ln_beta (x - y))).
+assert (Lyx : (mag y <= mag x)%Z);
+ [now apply mag_le; [|apply Rlt_le]|].
+assert (Hfx : (fexp1 (mag x) < mag x)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfy : (fexp1 (mag y) < mag y)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
+apply (round_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
+- apply Z.le_trans with (fexp1 (mag (x - y))).
+ apply Hexp4; omega.
+ omega.
- now apply Hexp3.
Qed.
-(* ln_beta y <= fexp1 (ln_beta x) - 1 :
- * ln_beta y <= fexp1 (ln_beta (x - y)) - 1 :
- * double_round_gt_mid applies. *)
-Lemma double_round_minus_beta_ge_3_aux2 :
+(* mag y <= fexp1 (mag x) - 1 :
+ * mag y <= fexp1 (mag (x - y)) - 1 :
+ * round_round_gt_mid applies. *)
+Lemma round_round_minus_radix_ge_3_aux2 :
(3 <= beta)%Z ->
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ round_round_plus_radix_ge_3_hyp fexp1 fexp2 ->
forall x y,
0 < y -> y < x ->
- (ln_beta y <= fexp1 (ln_beta x) - 1)%Z ->
- (ln_beta y <= fexp1 (ln_beta (x - y)) - 1)%Z ->
+ (mag y <= fexp1 (mag x) - 1)%Z ->
+ (mag y <= fexp1 (mag (x - y)) - 1)%Z ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x - y).
Proof.
intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hxy Hly Hly' Fx Fy.
assert (Px := Rlt_trans 0 y x Py Hxy).
destruct Hexp as (_,(_,(_,Hexp4))).
-assert (Hf2 : (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z);
+assert (Hf2 : (fexp2 (mag x) <= fexp1 (mag x))%Z);
[now apply Hexp4; omega|].
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfx : (fexp1 (mag x) < mag x)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
assert (Bpow3 : bpow (- 1) <= / 3).
-{ unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+{ unfold Raux.bpow, Z.pow_pos; simpl.
rewrite Zmult_1_r.
apply Rinv_le; [lra|].
- now change 3 with (Z2R 3); apply Z2R_le. }
-assert (Ly : y < bpow (ln_beta y)).
+ now apply IZR_le. }
+assert (Ly : y < bpow (mag y)).
{ apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
-unfold double_round_eq.
-apply double_round_gt_mid.
+ apply bpow_mag_gt. }
+unfold round_round_eq.
+apply round_round_gt_mid.
- exact Vfexp1.
- exact Vfexp2.
- lra.
- apply Hexp4; omega.
-- assert (fexp1 (ln_beta (x - y)) < ln_beta (x - y))%Z; [|omega].
- apply (valid_exp_large fexp1 (ln_beta x - 1)).
- + apply (valid_exp_large fexp1 (ln_beta y)); [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
- + now apply ln_beta_minus_lb; [| |omega].
+- assert (fexp1 (mag (x - y)) < mag (x - y))%Z; [|omega].
+ apply (valid_exp_large fexp1 (mag x - 1)).
+ + apply (valid_exp_large fexp1 (mag y)); [|omega].
+ now apply mag_generic_gt; [|apply Rgt_not_eq|].
+ + now apply mag_minus_lb; [| |omega].
- unfold midp'.
apply (Rplus_lt_reg_r (/ 2 * ulp beta fexp1 (x - y) - (x - y))).
ring_simplify.
replace (_ + _) with (round beta fexp1 Zceil (x - y) - (x - y)) by ring.
- apply Rlt_le_trans with (bpow (fexp1 (ln_beta (x - y)) - 1)).
+ apply Rlt_le_trans with (bpow (fexp1 (mag (x - y)) - 1)).
+ apply Rle_lt_trans with y;
- [now apply double_round_minus_aux2_aux|].
+ [now apply round_round_minus_aux2_aux|].
apply (Rlt_le_trans _ _ _ Ly).
now apply bpow_le.
+ rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rgt_minus].
- unfold canonic_exp.
+ unfold cexp.
unfold Zminus at 1; rewrite bpow_plus.
rewrite Rmult_comm.
apply Rmult_le_compat_r; [now apply bpow_ge_0|].
- unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ unfold Raux.bpow, Z.pow_pos; simpl.
rewrite Zmult_1_r; apply Rinv_le; [lra|].
- now change 2 with (Z2R 2); apply Z2R_le; omega.
+ now apply IZR_le; omega.
- intro Hf2'.
unfold midp'.
apply (Rplus_lt_reg_r (/ 2 * (ulp beta fexp1 (x - y)
@@ -2151,21 +2143,21 @@ apply double_round_gt_mid.
ring_simplify; rewrite <- Rmult_minus_distr_l.
replace (_ + _) with (round beta fexp1 Zceil (x - y) - (x - y)) by ring.
apply Rle_lt_trans with y;
- [now apply double_round_minus_aux2_aux|].
+ [now apply round_round_minus_aux2_aux|].
apply (Rlt_le_trans _ _ _ Ly).
- apply Rle_trans with (bpow (fexp1 (ln_beta (x - y)) - 1));
+ apply Rle_trans with (bpow (fexp1 (mag (x - y)) - 1));
[now apply bpow_le|].
rewrite 2!ulp_neq_0; try now apply Rgt_not_eq, Rgt_minus.
- unfold canonic_exp.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta (x - y)))));
+ unfold cexp.
+ apply (Rmult_le_reg_r (bpow (- fexp1 (mag (x - y)))));
[now apply bpow_gt_0|].
rewrite Rmult_assoc.
rewrite Rmult_minus_distr_r.
bpow_simplify.
apply Rle_trans with (/ 3).
- + unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ + unfold Raux.bpow, Z.pow_pos; simpl.
rewrite Zmult_1_r; apply Rinv_le; [lra|].
- now change 3 with (Z2R 3); apply Z2R_le.
+ now apply IZR_le.
+ replace (/ 3) with (/ 2 * (2 / 3)) by field.
apply Rmult_le_compat_l; [lra|].
apply (Rplus_le_reg_r (- 1)); ring_simplify.
@@ -2173,27 +2165,27 @@ apply double_round_gt_mid.
apply Ropp_le_contravar.
apply Rle_trans with (bpow (- 1)).
* apply bpow_le; omega.
- * unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
+ * unfold Raux.bpow, Z.pow_pos; simpl.
rewrite Zmult_1_r; apply Rinv_le; [lra|].
- now change 3 with (Z2R 3); apply Z2R_le.
+ now apply IZR_le.
Qed.
-(* double_round_minus_aux{0,1,2} together *)
-Lemma double_round_minus_beta_ge_3_aux3 :
+(* round_round_minus_aux{0,1,2} together *)
+Lemma round_round_minus_radix_ge_3_aux3 :
(3 <= beta)%Z ->
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ round_round_plus_radix_ge_3_hyp fexp1 fexp2 ->
forall x y,
0 < y -> y <= x ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x - y).
Proof.
intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hyx Fx Fy.
assert (Px := Rlt_le_trans 0 y x Py Hyx).
-unfold double_round_eq.
+unfold round_round_eq.
destruct (Req_dec y x) as [Hy|Hy].
- (* y = x *)
rewrite Hy; replace (x - x) with 0 by ring.
@@ -2202,39 +2194,39 @@ destruct (Req_dec y x) as [Hy|Hy].
+ now apply valid_rnd_N.
- (* y < x *)
assert (Hyx' : y < x); [lra|].
- destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta x) - 1)) as [Hly|Hly].
- + (* ln_beta y <= fexp1 (ln_beta x) - 1 *)
- destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta (x - y)) - 1))
+ destruct (Zle_or_lt (mag y) (fexp1 (mag x) - 1)) as [Hly|Hly].
+ + (* mag y <= fexp1 (mag x) - 1 *)
+ destruct (Zle_or_lt (mag y) (fexp1 (mag (x - y)) - 1))
as [Hly'|Hly'].
- * (* ln_beta y <= fexp1 (ln_beta (x - y)) - 1 *)
- now apply double_round_minus_beta_ge_3_aux2.
- * (* fexp1 (ln_beta (x - y)) - 1 < ln_beta y *)
+ * (* mag y <= fexp1 (mag (x - y)) - 1 *)
+ now apply round_round_minus_radix_ge_3_aux2.
+ * (* fexp1 (mag (x - y)) - 1 < mag y *)
{ rewrite (round_generic beta fexp2).
- reflexivity.
- now apply valid_rnd_N.
- - assert (Hf1 : (fexp1 (ln_beta (x - y)) <= ln_beta y)%Z); [omega|].
- now apply (double_round_minus_beta_ge_3_aux1 fexp1). }
+ - assert (Hf1 : (fexp1 (mag (x - y)) <= mag y)%Z); [omega|].
+ now apply (round_round_minus_radix_ge_3_aux1 fexp1). }
+ rewrite (round_generic beta fexp2).
* reflexivity.
* now apply valid_rnd_N.
- * assert (Hf1 : (fexp1 (ln_beta x) <= ln_beta y)%Z); [omega|].
- now apply (double_round_minus_beta_ge_3_aux0 fexp1).
+ * assert (Hf1 : (fexp1 (mag x) <= mag y)%Z); [omega|].
+ now apply (round_round_minus_radix_ge_3_aux0 fexp1).
Qed.
-Lemma double_round_minus_beta_ge_3_aux :
+Lemma round_round_minus_radix_ge_3_aux :
(3 <= beta)%Z ->
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ round_round_plus_radix_ge_3_hyp fexp1 fexp2 ->
forall x y,
0 <= x -> 0 <= y ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x - y).
Proof.
intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Nnx Nny Fx Fy.
-unfold double_round_eq.
+unfold round_round_eq.
destruct (Req_dec x 0) as [Zx|Nzx].
- (* x = 0 *)
rewrite Zx; unfold Rminus; rewrite Rplus_0_l.
@@ -2242,7 +2234,7 @@ destruct (Req_dec x 0) as [Zx|Nzx].
rewrite (round_generic beta fexp2).
* reflexivity.
* now apply valid_rnd_N.
- * apply (generic_inclusion_ln_beta beta fexp1).
+ * apply (generic_inclusion_mag beta fexp1).
destruct Hexp as (_,(_,(_,Hexp4))).
now intros _; apply Hexp4; omega.
exact Fy.
@@ -2253,7 +2245,7 @@ destruct (Req_dec x 0) as [Zx|Nzx].
rewrite (round_generic beta fexp2).
* reflexivity.
* now apply valid_rnd_N.
- * apply (generic_inclusion_ln_beta beta fexp1).
+ * apply (generic_inclusion_mag beta fexp1).
destruct Hexp as (_,(_,(_,Hexp4))).
now intros _; apply Hexp4; omega.
exact Fx.
@@ -2266,24 +2258,24 @@ destruct (Req_dec x 0) as [Zx|Nzx].
replace (x - y) with (- (y - x)) by ring.
do 3 rewrite round_N_opp.
apply Ropp_eq_compat.
- now apply double_round_minus_beta_ge_3_aux3.
+ now apply round_round_minus_radix_ge_3_aux3.
* (* y <= x *)
- now apply double_round_minus_beta_ge_3_aux3.
+ now apply round_round_minus_radix_ge_3_aux3.
Qed.
-Lemma double_round_plus_beta_ge_3 :
+Lemma round_round_plus_radix_ge_3 :
(3 <= beta)%Z ->
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ round_round_plus_radix_ge_3_hyp fexp1 fexp2 ->
forall x y,
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x + y).
Proof.
intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Fx Fy.
-unfold double_round_eq.
+unfold round_round_eq.
destruct (Rlt_or_le x 0) as [Sx|Sx]; destruct (Rlt_or_le y 0) as [Sy|Sy].
- (* x < 0, y < 0 *)
replace (x + y) with (- (- x - y)); [|ring].
@@ -2293,41 +2285,39 @@ destruct (Rlt_or_le x 0) as [Sx|Sx]; destruct (Rlt_or_le y 0) as [Sy|Sy].
assert (Py : 0 <= - y); [lra|].
apply generic_format_opp in Fx.
apply generic_format_opp in Fy.
- now apply double_round_plus_beta_ge_3_aux.
+ now apply round_round_plus_radix_ge_3_aux.
- (* x < 0, 0 <= y *)
replace (x + y) with (y - (- x)); [|ring].
assert (Px : 0 <= - x); [lra|].
apply generic_format_opp in Fx.
- now apply double_round_minus_beta_ge_3_aux.
+ now apply round_round_minus_radix_ge_3_aux.
- (* 0 <= x, y < 0 *)
replace (x + y) with (x - (- y)); [|ring].
assert (Py : 0 <= - y); [lra|].
apply generic_format_opp in Fy.
- now apply double_round_minus_beta_ge_3_aux.
+ now apply round_round_minus_radix_ge_3_aux.
- (* 0 <= x, 0 <= y *)
- now apply double_round_plus_beta_ge_3_aux.
+ now apply round_round_plus_radix_ge_3_aux.
Qed.
-Lemma double_round_minus_beta_ge_3 :
+Lemma round_round_minus_radix_ge_3 :
(3 <= beta)%Z ->
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
+ round_round_plus_radix_ge_3_hyp fexp1 fexp2 ->
forall x y,
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x - y).
Proof.
intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Fx Fy.
unfold Rminus.
apply generic_format_opp in Fy.
-now apply double_round_plus_beta_ge_3.
+now apply round_round_plus_radix_ge_3.
Qed.
-Section Double_round_plus_beta_ge_3_FLX.
-
-Import Fcore_FLX.
+Section Double_round_plus_radix_ge_3_FLX.
Variable prec : Z.
Variable prec' : Z.
@@ -2335,60 +2325,57 @@ Variable prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FLX_double_round_plus_beta_ge_3_hyp :
+Lemma FLX_round_round_plus_radix_ge_3_hyp :
(2 * prec <= prec')%Z ->
- double_round_plus_beta_ge_3_hyp (FLX_exp prec) (FLX_exp prec').
+ round_round_plus_radix_ge_3_hyp (FLX_exp prec) (FLX_exp prec').
Proof.
intros Hprec.
unfold FLX_exp.
-unfold double_round_plus_beta_ge_3_hyp; split; [|split; [|split]];
+unfold round_round_plus_radix_ge_3_hyp; split; [|split; [|split]];
intros ex ey; try omega.
unfold Prec_gt_0 in prec_gt_0_.
omega.
Qed.
-Theorem double_round_plus_beta_ge_3_FLX :
+Theorem round_round_plus_radix_ge_3_FLX :
(3 <= beta)%Z ->
forall choice1 choice2,
(2 * prec <= prec')%Z ->
forall x y,
FLX_format beta prec x -> FLX_format beta prec y ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x + y).
+ round_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x + y).
Proof.
intros Hbeta choice1 choice2 Hprec x y Fx Fy.
-apply double_round_plus_beta_ge_3.
+apply round_round_plus_radix_ge_3.
- exact Hbeta.
- now apply FLX_exp_valid.
- now apply FLX_exp_valid.
-- now apply FLX_double_round_plus_beta_ge_3_hyp.
+- now apply FLX_round_round_plus_radix_ge_3_hyp.
- now apply generic_format_FLX.
- now apply generic_format_FLX.
Qed.
-Theorem double_round_minus_beta_ge_3_FLX :
+Theorem round_round_minus_radix_ge_3_FLX :
(3 <= beta)%Z ->
forall choice1 choice2,
(2 * prec <= prec')%Z ->
forall x y,
FLX_format beta prec x -> FLX_format beta prec y ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x - y).
+ round_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x - y).
Proof.
intros Hbeta choice1 choice2 Hprec x y Fx Fy.
-apply double_round_minus_beta_ge_3.
+apply round_round_minus_radix_ge_3.
- exact Hbeta.
- now apply FLX_exp_valid.
- now apply FLX_exp_valid.
-- now apply FLX_double_round_plus_beta_ge_3_hyp.
+- now apply FLX_round_round_plus_radix_ge_3_hyp.
- now apply generic_format_FLX.
- now apply generic_format_FLX.
Qed.
-End Double_round_plus_beta_ge_3_FLX.
-
-Section Double_round_plus_beta_ge_3_FLT.
+End Double_round_plus_radix_ge_3_FLX.
-Import Fcore_FLX.
-Import Fcore_FLT.
+Section Double_round_plus_radix_ge_3_FLT.
Variable emin prec : Z.
Variable emin' prec' : Z.
@@ -2396,13 +2383,13 @@ Variable emin' prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FLT_double_round_plus_beta_ge_3_hyp :
+Lemma FLT_round_round_plus_radix_ge_3_hyp :
(emin' <= emin)%Z -> (2 * prec <= prec')%Z ->
- double_round_plus_beta_ge_3_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
+ round_round_plus_radix_ge_3_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
Proof.
intros Hemin Hprec.
unfold FLT_exp.
-unfold double_round_plus_beta_ge_3_hyp; split; [|split; [|split]]; intros ex ey.
+unfold round_round_plus_radix_ge_3_hyp; split; [|split; [|split]]; intros ex ey.
- generalize (Zmax_spec (ex + 1 - prec) emin).
generalize (Zmax_spec (ex - prec') emin').
generalize (Zmax_spec (ey - prec) emin).
@@ -2421,50 +2408,47 @@ unfold double_round_plus_beta_ge_3_hyp; split; [|split; [|split]]; intros ex ey.
omega.
Qed.
-Theorem double_round_plus_beta_ge_3_FLT :
+Theorem round_round_plus_radix_ge_3_FLT :
(3 <= beta)%Z ->
forall choice1 choice2,
(emin' <= emin)%Z -> (2 * prec <= prec')%Z ->
forall x y,
FLT_format beta emin prec x -> FLT_format beta emin prec y ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ round_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
choice1 choice2 (x + y).
Proof.
intros Hbeta choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_plus_beta_ge_3.
+apply round_round_plus_radix_ge_3.
- exact Hbeta.
- now apply FLT_exp_valid.
- now apply FLT_exp_valid.
-- now apply FLT_double_round_plus_beta_ge_3_hyp.
+- now apply FLT_round_round_plus_radix_ge_3_hyp.
- now apply generic_format_FLT.
- now apply generic_format_FLT.
Qed.
-Theorem double_round_minus_beta_ge_3_FLT :
+Theorem round_round_minus_radix_ge_3_FLT :
(3 <= beta)%Z ->
forall choice1 choice2,
(emin' <= emin)%Z -> (2 * prec <= prec')%Z ->
forall x y,
FLT_format beta emin prec x -> FLT_format beta emin prec y ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ round_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
choice1 choice2 (x - y).
Proof.
intros Hbeta choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_minus_beta_ge_3.
+apply round_round_minus_radix_ge_3.
- exact Hbeta.
- now apply FLT_exp_valid.
- now apply FLT_exp_valid.
-- now apply FLT_double_round_plus_beta_ge_3_hyp.
+- now apply FLT_round_round_plus_radix_ge_3_hyp.
- now apply generic_format_FLT.
- now apply generic_format_FLT.
Qed.
-End Double_round_plus_beta_ge_3_FLT.
+End Double_round_plus_radix_ge_3_FLT.
-Section Double_round_plus_beta_ge_3_FTZ.
-
-Import Fcore_FLX.
-Import Fcore_FTZ.
+Section Double_round_plus_radix_ge_3_FTZ.
Variable emin prec : Z.
Variable emin' prec' : Z.
@@ -2472,14 +2456,14 @@ Variable emin' prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FTZ_double_round_plus_beta_ge_3_hyp :
+Lemma FTZ_round_round_plus_radix_ge_3_hyp :
(emin' + prec' <= emin + 1)%Z -> (2 * prec <= prec')%Z ->
- double_round_plus_beta_ge_3_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
+ round_round_plus_radix_ge_3_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
Proof.
intros Hemin Hprec.
unfold FTZ_exp.
unfold Prec_gt_0 in *.
-unfold double_round_plus_beta_ge_3_hyp; split; [|split; [|split]]; intros ex ey.
+unfold round_round_plus_radix_ge_3_hyp; split; [|split; [|split]]; intros ex ey.
- destruct (Z.ltb_spec (ex + 1 - prec) emin);
destruct (Z.ltb_spec (ex - prec') emin');
destruct (Z.ltb_spec (ey - prec) emin);
@@ -2497,64 +2481,64 @@ unfold double_round_plus_beta_ge_3_hyp; split; [|split; [|split]]; intros ex ey.
omega.
Qed.
-Theorem double_round_plus_beta_ge_3_FTZ :
+Theorem round_round_plus_radix_ge_3_FTZ :
(3 <= beta)%Z ->
forall choice1 choice2,
(emin' + prec' <= emin + 1)%Z -> (2 * prec <= prec')%Z ->
forall x y,
FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ round_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
choice1 choice2 (x + y).
Proof.
intros Hbeta choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_plus_beta_ge_3.
+apply round_round_plus_radix_ge_3.
- exact Hbeta.
- now apply FTZ_exp_valid.
- now apply FTZ_exp_valid.
-- now apply FTZ_double_round_plus_beta_ge_3_hyp.
+- now apply FTZ_round_round_plus_radix_ge_3_hyp.
- now apply generic_format_FTZ.
- now apply generic_format_FTZ.
Qed.
-Theorem double_round_minus_beta_ge_3_FTZ :
+Theorem round_round_minus_radix_ge_3_FTZ :
(3 <= beta)%Z ->
forall choice1 choice2,
(emin' + prec' <= emin + 1)%Z -> (2 * prec <= prec')%Z ->
forall x y,
FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ round_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
choice1 choice2 (x - y).
Proof.
intros Hbeta choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_minus_beta_ge_3.
+apply round_round_minus_radix_ge_3.
- exact Hbeta.
- now apply FTZ_exp_valid.
- now apply FTZ_exp_valid.
-- now apply FTZ_double_round_plus_beta_ge_3_hyp.
+- now apply FTZ_round_round_plus_radix_ge_3_hyp.
- now apply generic_format_FTZ.
- now apply generic_format_FTZ.
Qed.
-End Double_round_plus_beta_ge_3_FTZ.
+End Double_round_plus_radix_ge_3_FTZ.
-End Double_round_plus_beta_ge_3.
+End Double_round_plus_radix_ge_3.
End Double_round_plus.
-Lemma double_round_mid_cases :
+Lemma round_round_mid_cases :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
forall x,
0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- (fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ (fexp2 (mag x) <= fexp1 (mag x) - 1)%Z ->
+ (fexp1 (mag x) <= mag x)%Z ->
(Rabs (x - midp fexp1 x) <= / 2 * (ulp beta fexp2 x) ->
- double_round_eq fexp1 fexp2 choice1 choice2 x) ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
+ round_round_eq fexp1 fexp2 choice1 choice2 x) ->
+ round_round_eq fexp1 fexp2 choice1 choice2 x.
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1.
-unfold double_round_eq, midp.
+unfold round_round_eq, midp.
set (rd := round beta fexp1 Zfloor x).
set (u1 := ulp beta fexp1 x).
set (u2 := ulp beta fexp2 x).
@@ -2562,14 +2546,14 @@ intros Cmid.
destruct (generic_format_EM beta fexp1 x) as [Fx|Nfx].
- (* generic_format beta fexp1 x *)
rewrite (round_generic beta fexp2); [reflexivity|now apply valid_rnd_N|].
- now apply (generic_inclusion_ln_beta beta fexp1); [omega|].
+ now apply (generic_inclusion_mag beta fexp1); [omega|].
- (* ~ generic_format beta fexp1 x *)
assert (Hceil : round beta fexp1 Zceil x = rd + u1);
[now apply round_UP_DN_ulp|].
- assert (Hf2' : (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z); [omega|].
+ assert (Hf2' : (fexp2 (mag x) <= fexp1 (mag x) - 1)%Z); [omega|].
destruct (Rlt_or_le (x - rd) (/ 2 * (u1 - u2))).
+ (* x - rd < / 2 * (u1 - u2) *)
- apply double_round_lt_mid_further_place; try assumption.
+ apply round_round_lt_mid_further_place; try assumption.
unfold midp. fold rd; fold u1; fold u2.
apply (Rplus_lt_reg_r (- rd)); ring_simplify.
now rewrite <- Rmult_minus_distr_l.
@@ -2580,7 +2564,7 @@ destruct (generic_format_EM beta fexp1 x) as [Fx|Nfx].
< / 2 * (ulp beta fexp1 x - ulp beta fexp2 x)).
{ rewrite Hceil; fold u1; fold u2.
lra. }
- apply double_round_gt_mid_further_place; try assumption.
+ apply round_round_gt_mid_further_place; try assumption.
unfold midp'; lra.
- (* x - rd <= / 2 * (u1 + u2) *)
apply Cmid, Rabs_le; split; lra. }
@@ -2588,31 +2572,31 @@ Qed.
Section Double_round_sqrt.
-Definition double_round_sqrt_hyp fexp1 fexp2 :=
+Definition round_round_sqrt_hyp fexp1 fexp2 :=
(forall ex, (2 * fexp1 ex <= fexp1 (2 * ex))%Z)
/\ (forall ex, (2 * fexp1 ex <= fexp1 (2 * ex - 1))%Z)
/\ (forall ex, (fexp1 (2 * ex) < 2 * ex)%Z ->
(fexp2 ex + ex <= 2 * fexp1 ex - 2)%Z).
-Lemma ln_beta_sqrt_disj :
+Lemma mag_sqrt_disj :
forall x,
0 < x ->
- (ln_beta x = 2 * ln_beta (sqrt x) - 1 :> Z)%Z
- \/ (ln_beta x = 2 * ln_beta (sqrt x) :> Z)%Z.
+ (mag x = 2 * mag (sqrt x) - 1 :> Z)%Z
+ \/ (mag x = 2 * mag (sqrt x) :> Z)%Z.
Proof.
intros x Px.
-generalize (ln_beta_sqrt beta x Px).
-intro H.
-omega.
+rewrite (mag_sqrt beta x Px).
+generalize (Zdiv2_odd_eqn (mag x + 1)).
+destruct Z.odd ; intros ; omega.
Qed.
-Lemma double_round_sqrt_aux :
+Lemma round_round_sqrt_aux :
forall fexp1 fexp2 : Z -> Z,
Valid_exp fexp1 -> Valid_exp fexp2 ->
- double_round_sqrt_hyp fexp1 fexp2 ->
+ round_round_sqrt_hyp fexp1 fexp2 ->
forall x,
0 < x ->
- (fexp2 (ln_beta (sqrt x)) <= fexp1 (ln_beta (sqrt x)) - 1)%Z ->
+ (fexp2 (mag (sqrt x)) <= fexp1 (mag (sqrt x)) - 1)%Z ->
generic_format beta fexp1 x ->
/ 2 * ulp beta fexp2 (sqrt x) < Rabs (sqrt x - midp fexp1 (sqrt x)).
Proof.
@@ -2621,8 +2605,8 @@ assert (Hbeta : (2 <= beta)%Z).
{ destruct beta as (beta_val,beta_prop).
now apply Zle_bool_imp_le. }
set (a := round beta fexp1 Zfloor (sqrt x)).
-set (u1 := bpow (fexp1 (ln_beta (sqrt x)))).
-set (u2 := bpow (fexp2 (ln_beta (sqrt x)))).
+set (u1 := bpow (fexp1 (mag (sqrt x)))).
+set (u2 := bpow (fexp2 (mag (sqrt x)))).
set (b := / 2 * (u1 - u2)).
set (b' := / 2 * (u1 + u2)).
unfold midp; rewrite 2!ulp_neq_0; try now apply Rgt_not_eq, sqrt_lt_R0.
@@ -2633,9 +2617,9 @@ assert (Fa : generic_format beta fexp1 a).
- exact Vfexp1.
- now apply valid_rnd_DN. }
revert Fa; revert Fx.
-unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
-set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
-set (ma := Ztrunc (a * bpow (- fexp1 (ln_beta a)))).
+unfold generic_format, F2R, scaled_mantissa, cexp; simpl.
+set (mx := Ztrunc (x * bpow (- fexp1 (mag x)))).
+set (ma := Ztrunc (a * bpow (- fexp1 (mag a)))).
intros Fx Fa.
assert (Nna : 0 <= a).
{ rewrite <- (round_0 beta fexp1 Zfloor).
@@ -2666,14 +2650,14 @@ assert (Hl : a + b <= sqrt x).
replace (_ + sqrt _) with (sqrt x - (a + / 2 * u1)) by ring.
rewrite Ropp_mult_distr_l_reverse.
now apply Rabs_le_inv in H; destruct H. }
-assert (Hf1 : (2 * fexp1 (ln_beta (sqrt x)) <= fexp1 (ln_beta (x)))%Z);
- [destruct (ln_beta_sqrt_disj x Px) as [H'|H']; rewrite H'; apply Hexp|].
-assert (Hlx : (fexp1 (2 * ln_beta (sqrt x)) < 2 * ln_beta (sqrt x))%Z).
-{ destruct (ln_beta_sqrt_disj x Px) as [Hlx|Hlx].
- - apply (valid_exp_large fexp1 (ln_beta x)); [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+assert (Hf1 : (2 * fexp1 (mag (sqrt x)) <= fexp1 (mag (x)))%Z);
+ [destruct (mag_sqrt_disj x Px) as [H'|H']; rewrite H'; apply Hexp|].
+assert (Hlx : (fexp1 (2 * mag (sqrt x)) < 2 * mag (sqrt x))%Z).
+{ destruct (mag_sqrt_disj x Px) as [Hlx|Hlx].
+ - apply (valid_exp_large fexp1 (mag x)); [|omega].
+ now apply mag_generic_gt; [|apply Rgt_not_eq|].
- rewrite <- Hlx.
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]. }
+ now apply mag_generic_gt; [|apply Rgt_not_eq|]. }
assert (Hsl : a * a + u1 * a - u2 * a + b * b <= x).
{ replace (_ + _) with ((a + b) * (a + b)); [|now unfold b; field].
rewrite <- sqrt_def; [|now apply Rlt_le].
@@ -2692,34 +2676,33 @@ destruct (Req_dec a 0) as [Za|Nza].
+ revert Hsl; unfold Rminus; rewrite Za; do 3 rewrite Rmult_0_r.
now rewrite Ropp_0; do 3 rewrite Rplus_0_l.
+ rewrite Fx.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ apply (Rmult_le_reg_r (bpow (- fexp1 (mag x))));
[now apply bpow_gt_0|].
rewrite Rmult_0_l; bpow_simplify.
unfold mx.
rewrite Ztrunc_floor;
[|now apply Rmult_le_pos; [apply Rlt_le|apply bpow_ge_0]].
- apply Req_le.
- change 0 with (Z2R 0); apply f_equal.
+ apply Req_le, IZR_eq.
apply Zfloor_imp.
split; [now apply Rmult_le_pos; [apply Rlt_le|apply bpow_ge_0]|simpl].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x)))); [now apply bpow_gt_0|].
rewrite Rmult_1_l; bpow_simplify.
- apply Rlt_le_trans with (bpow (2 * fexp1 (ln_beta (sqrt x))));
+ apply Rlt_le_trans with (bpow (2 * fexp1 (mag (sqrt x))));
[|now apply bpow_le].
change 2%Z with (1 + 1)%Z; rewrite Zmult_plus_distr_l; rewrite Zmult_1_l.
rewrite bpow_plus.
rewrite <- (sqrt_def x) at 1; [|now apply Rlt_le].
- assert (sqrt x < bpow (fexp1 (ln_beta (sqrt x))));
+ assert (sqrt x < bpow (fexp1 (mag (sqrt x))));
[|now apply Rmult_lt_compat; [apply sqrt_pos|apply sqrt_pos| |]].
apply (Rle_lt_trans _ _ _ Hr); rewrite Za; rewrite Rplus_0_l.
unfold b'; change (bpow _) with u1.
apply Rlt_le_trans with (/ 2 * (u1 + u1)); [|lra].
apply Rmult_lt_compat_l; [lra|]; apply Rplus_lt_compat_l.
- unfold u2, u1, ulp, canonic_exp; apply bpow_lt; omega.
+ unfold u2, u1, ulp, cexp; apply bpow_lt; omega.
- (* a <> 0 *)
assert (Pa : 0 < a); [lra|].
- assert (Hla : (ln_beta a = ln_beta (sqrt x) :> Z)).
- { unfold a; apply ln_beta_DN.
+ assert (Hla : (mag a = mag (sqrt x) :> Z)).
+ { unfold a; apply mag_DN.
- exact Vfexp1.
- now fold a. }
assert (Hl' : 0 < - (u2 * a) + b * b).
@@ -2728,60 +2711,60 @@ destruct (Req_dec a 0) as [Za|Nza].
apply (Rplus_lt_reg_r (/ 2 * u2 * u1)); field_simplify.
replace (_ / 2) with (u2 * (a + / 2 * u1)) by field.
replace (_ / 8) with (/ 4 * (u2 ^ 2 + u1 ^ 2)) by field.
- apply Rlt_le_trans with (u2 * bpow (ln_beta (sqrt x))).
+ apply Rlt_le_trans with (u2 * bpow (mag (sqrt x))).
- apply Rmult_lt_compat_l; [now unfold u2, ulp; apply bpow_gt_0|].
unfold u1; rewrite <- Hla.
- apply Rlt_le_trans with (a + bpow (fexp1 (ln_beta a))).
+ apply Rlt_le_trans with (a + bpow (fexp1 (mag a))).
+ apply Rplus_lt_compat_l.
rewrite <- (Rmult_1_l (bpow _)) at 2.
apply Rmult_lt_compat_r; [apply bpow_gt_0|lra].
+ apply Rle_trans with (a+ ulp beta fexp1 a).
right; now rewrite ulp_neq_0.
apply (id_p_ulp_le_bpow _ _ _ _ Pa Fa).
- apply Rabs_lt_inv, bpow_ln_beta_gt.
+ apply Rabs_lt_inv, bpow_mag_gt.
- apply Rle_trans with (bpow (- 2) * u1 ^ 2).
+ unfold pow; rewrite Rmult_1_r.
- unfold u1, u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
+ unfold u1, u2, ulp, cexp; bpow_simplify; apply bpow_le.
now apply Hexp.
+ apply Rmult_le_compat.
* apply bpow_ge_0.
* apply pow2_ge_0.
- * unfold Fcore_Raux.bpow, Z.pow_pos; simpl; rewrite Zmult_1_r.
+ * unfold Raux.bpow, Z.pow_pos; simpl; rewrite Zmult_1_r.
apply Rinv_le; [lra|].
- change 4 with (Z2R (2 * 2)%Z); apply Z2R_le, Zmult_le_compat; omega.
+ change 4%Z with (2 * 2)%Z; apply IZR_le, Zmult_le_compat; omega.
* rewrite <- (Rplus_0_l (u1 ^ 2)) at 1; apply Rplus_le_compat_r.
apply pow2_ge_0. }
assert (Hr' : x <= a * a + u1 * a).
{ rewrite Hla in Fa.
rewrite <- Rmult_plus_distr_r.
- unfold u1, ulp, canonic_exp.
+ unfold u1, ulp, cexp.
rewrite <- (Rmult_1_l (bpow _)); rewrite Fa; rewrite <- Rmult_plus_distr_r.
- rewrite <- Rmult_assoc; rewrite (Rmult_comm _ (Z2R ma)).
- rewrite <- (Rmult_assoc (Z2R ma)); bpow_simplify.
- apply (Rmult_le_reg_r (bpow (- 2 * fexp1 (ln_beta (sqrt x)))));
+ rewrite <- Rmult_assoc; rewrite (Rmult_comm _ (IZR ma)).
+ rewrite <- (Rmult_assoc (IZR ma)); bpow_simplify.
+ apply (Rmult_le_reg_r (bpow (- 2 * fexp1 (mag (sqrt x)))));
[now apply bpow_gt_0|bpow_simplify].
rewrite Fx at 1; bpow_simplify.
- rewrite <- Z2R_Zpower; [|omega].
- change 1 with (Z2R 1); rewrite <- Z2R_plus; do 2 rewrite <- Z2R_mult.
- apply Z2R_le, Zlt_succ_le, lt_Z2R.
- unfold Z.succ; rewrite Z2R_plus; do 2 rewrite Z2R_mult; rewrite Z2R_plus.
- rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (2 * fexp1 (ln_beta (sqrt x)))));
+ rewrite <- IZR_Zpower; [|omega].
+ rewrite <- plus_IZR, <- 2!mult_IZR.
+ apply IZR_le, Zlt_succ_le, lt_IZR.
+ unfold Z.succ; rewrite plus_IZR; do 2 rewrite mult_IZR; rewrite plus_IZR.
+ rewrite IZR_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (2 * fexp1 (mag (sqrt x)))));
[now apply bpow_gt_0|bpow_simplify].
rewrite <- Fx.
change 2%Z with (1 + 1)%Z; rewrite Zmult_plus_distr_l; rewrite Zmult_1_l.
rewrite bpow_plus; simpl.
replace (_ * _) with (a * a + u1 * a + u1 * u1);
- [|unfold u1, ulp, canonic_exp; rewrite Fa; ring].
+ [|unfold u1, ulp, cexp; rewrite Fa; ring].
apply (Rle_lt_trans _ _ _ Hsr).
rewrite Rplus_assoc; apply Rplus_lt_compat_l.
apply (Rplus_lt_reg_r (- b' * b' + / 2 * u1 * u2)); ring_simplify.
replace (_ + _) with ((a + / 2 * u1) * u2) by ring.
- apply Rlt_le_trans with (bpow (ln_beta (sqrt x)) * u2).
+ apply Rlt_le_trans with (bpow (mag (sqrt x)) * u2).
- apply Rmult_lt_compat_r; [now unfold u2, ulp; apply bpow_gt_0|].
apply Rlt_le_trans with (a + u1); [lra|].
- unfold u1; fold (canonic_exp beta fexp1 (sqrt x)).
- rewrite <- canonic_exp_DN; [|exact Vfexp1|exact Pa]; fold a.
+ unfold u1; fold (cexp beta fexp1 (sqrt x)).
+ rewrite <- cexp_DN; [|exact Vfexp1|exact Pa]; fold a.
rewrite <- ulp_neq_0; trivial.
apply id_p_ulp_le_bpow.
+ exact Pa.
@@ -2789,27 +2772,27 @@ destruct (Req_dec a 0) as [Za|Nza].
+ apply Rle_lt_trans with (sqrt x).
* now apply round_DN_pt.
* apply Rabs_lt_inv.
- apply bpow_ln_beta_gt.
+ apply bpow_mag_gt.
- apply Rle_trans with (/ 2 * u1 ^ 2).
+ apply Rle_trans with (bpow (- 2) * u1 ^ 2).
* unfold pow; rewrite Rmult_1_r.
- unfold u2, u1, ulp, canonic_exp.
+ unfold u2, u1, ulp, cexp.
bpow_simplify.
apply bpow_le.
rewrite Zplus_comm.
now apply Hexp.
* apply Rmult_le_compat_r; [now apply pow2_ge_0|].
- unfold Fcore_Raux.bpow; simpl; unfold Z.pow_pos; simpl.
+ unfold Raux.bpow; simpl; unfold Z.pow_pos; simpl.
rewrite Zmult_1_r.
apply Rinv_le; [lra|].
- change 2 with (Z2R 2); apply Z2R_le.
+ apply IZR_le.
rewrite <- (Zmult_1_l 2).
apply Zmult_le_compat; omega.
+ assert (u2 ^ 2 < u1 ^ 2); [|unfold b'; lra].
unfold pow; do 2 rewrite Rmult_1_r.
assert (H' : 0 <= u2); [unfold u2, ulp; apply bpow_ge_0|].
assert (u2 < u1); [|now apply Rmult_lt_compat].
- unfold u1, u2, ulp, canonic_exp; apply bpow_lt; omega. }
+ unfold u1, u2, ulp, cexp; apply bpow_lt; omega. }
apply (Rlt_irrefl (a * a + u1 * a)).
apply Rlt_le_trans with (a * a + u1 * a - u2 * a + b * b).
+ rewrite <- (Rplus_0_r (a * a + _)) at 1.
@@ -2819,29 +2802,29 @@ destruct (Req_dec a 0) as [Za|Nza].
Qed.
-Lemma double_round_sqrt :
+Lemma round_round_sqrt :
forall fexp1 fexp2 : Z -> Z,
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_sqrt_hyp fexp1 fexp2 ->
+ round_round_sqrt_hyp fexp1 fexp2 ->
forall x,
generic_format beta fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 (sqrt x).
+ round_round_eq fexp1 fexp2 choice1 choice2 (sqrt x).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x Fx.
-unfold double_round_eq.
+unfold round_round_eq.
destruct (Rle_or_lt x 0) as [Npx|Px].
- (* x <= 0 *)
rewrite (sqrt_neg _ Npx).
now rewrite round_0; [|apply valid_rnd_N].
- (* 0 < x *)
- assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; try assumption; lra|].
- assert (Hfsx : (fexp1 (ln_beta (sqrt x)) < ln_beta (sqrt x))%Z).
+ assert (Hfx : (fexp1 (mag x) < mag x)%Z);
+ [now apply mag_generic_gt; try assumption; lra|].
+ assert (Hfsx : (fexp1 (mag (sqrt x)) < mag (sqrt x))%Z).
{ destruct (Rle_or_lt x 1) as [Hx|Hx].
- (* x <= 1 *)
- apply (valid_exp_large fexp1 (ln_beta x)); [exact Hfx|].
- apply ln_beta_le; [exact Px|].
+ apply (valid_exp_large fexp1 (mag x)); [exact Hfx|].
+ apply mag_le; [exact Px|].
rewrite <- (sqrt_def x) at 1; [|lra].
rewrite <- Rmult_1_r.
apply Rmult_le_compat_l.
@@ -2854,64 +2837,62 @@ destruct (Rle_or_lt x 0) as [Npx|Px].
intro Hexp10.
assert (Hf0 : (fexp1 1 < 1)%Z); [omega|clear Hexp10].
apply (valid_exp_large fexp1 1); [exact Hf0|].
- apply ln_beta_ge_bpow.
+ apply mag_ge_bpow.
rewrite Zeq_minus; [|reflexivity].
- unfold Fcore_Raux.bpow; simpl.
+ unfold Raux.bpow; simpl.
apply Rabs_ge; right.
rewrite <- sqrt_1.
apply sqrt_le_1_alt.
now apply Rlt_le. }
- assert (Hf2 : (fexp2 (ln_beta (sqrt x)) <= fexp1 (ln_beta (sqrt x)) - 1)%Z).
- { assert (H : (fexp1 (2 * ln_beta (sqrt x)) < 2 * ln_beta (sqrt x))%Z).
- { destruct (ln_beta_sqrt_disj x Px) as [Hlx|Hlx].
- - apply (valid_exp_large fexp1 (ln_beta x)); [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+ assert (Hf2 : (fexp2 (mag (sqrt x)) <= fexp1 (mag (sqrt x)) - 1)%Z).
+ { assert (H : (fexp1 (2 * mag (sqrt x)) < 2 * mag (sqrt x))%Z).
+ { destruct (mag_sqrt_disj x Px) as [Hlx|Hlx].
+ - apply (valid_exp_large fexp1 (mag x)); [|omega].
+ now apply mag_generic_gt; [|apply Rgt_not_eq|].
- rewrite <- Hlx.
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]. }
- generalize ((proj2 (proj2 Hexp)) (ln_beta (sqrt x)) H).
+ now apply mag_generic_gt; [|apply Rgt_not_eq|]. }
+ generalize ((proj2 (proj2 Hexp)) (mag (sqrt x)) H).
omega. }
- apply double_round_mid_cases.
+ apply round_round_mid_cases.
+ exact Vfexp1.
+ exact Vfexp2.
+ now apply sqrt_lt_R0.
+ omega.
+ omega.
+ intros Hmid; casetype False; apply (Rle_not_lt _ _ Hmid).
- apply (double_round_sqrt_aux fexp1 fexp2 Vfexp1 Vfexp2 Hexp x Px Hf2 Fx).
+ apply (round_round_sqrt_aux fexp1 fexp2 Vfexp1 Vfexp2 Hexp x Px Hf2 Fx).
Qed.
Section Double_round_sqrt_FLX.
-Import Fcore_FLX.
-
Variable prec : Z.
Variable prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FLX_double_round_sqrt_hyp :
+Lemma FLX_round_round_sqrt_hyp :
(2 * prec + 2 <= prec')%Z ->
- double_round_sqrt_hyp (FLX_exp prec) (FLX_exp prec').
+ round_round_sqrt_hyp (FLX_exp prec) (FLX_exp prec').
Proof.
intros Hprec.
unfold FLX_exp.
unfold Prec_gt_0 in prec_gt_0_.
-unfold double_round_sqrt_hyp; split; [|split]; intro ex; omega.
+unfold round_round_sqrt_hyp; split; [|split]; intro ex; omega.
Qed.
-Theorem double_round_sqrt_FLX :
+Theorem round_round_sqrt_FLX :
forall choice1 choice2,
(2 * prec + 2 <= prec')%Z ->
forall x,
FLX_format beta prec x ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (sqrt x).
+ round_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (sqrt x).
Proof.
intros choice1 choice2 Hprec x Fx.
-apply double_round_sqrt.
+apply round_round_sqrt.
- now apply FLX_exp_valid.
- now apply FLX_exp_valid.
-- now apply FLX_double_round_sqrt_hyp.
+- now apply FLX_round_round_sqrt_hyp.
- now apply generic_format_FLX.
Qed.
@@ -2919,26 +2900,23 @@ End Double_round_sqrt_FLX.
Section Double_round_sqrt_FLT.
-Import Fcore_FLX.
-Import Fcore_FLT.
-
Variable emin prec : Z.
Variable emin' prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FLT_double_round_sqrt_hyp :
+Lemma FLT_round_round_sqrt_hyp :
(emin <= 0)%Z ->
((emin' <= emin - prec - 2)%Z
\/ (2 * emin' <= emin - 4 * prec - 2)%Z) ->
(2 * prec + 2 <= prec')%Z ->
- double_round_sqrt_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
+ round_round_sqrt_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
Proof.
intros Hemin Heminprec Hprec.
unfold FLT_exp.
unfold Prec_gt_0 in prec_gt_0_.
-unfold double_round_sqrt_hyp; split; [|split]; intros ex.
+unfold round_round_sqrt_hyp; split; [|split]; intros ex.
- generalize (Zmax_spec (ex - prec) emin).
generalize (Zmax_spec (2 * ex - prec) emin).
omega.
@@ -2951,7 +2929,7 @@ unfold double_round_sqrt_hyp; split; [|split]; intros ex.
omega.
Qed.
-Theorem double_round_sqrt_FLT :
+Theorem round_round_sqrt_FLT :
forall choice1 choice2,
(emin <= 0)%Z ->
((emin' <= emin - prec - 2)%Z
@@ -2959,14 +2937,14 @@ Theorem double_round_sqrt_FLT :
(2 * prec + 2 <= prec')%Z ->
forall x,
FLT_format beta emin prec x ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ round_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
choice1 choice2 (sqrt x).
Proof.
intros choice1 choice2 Hemin Heminprec Hprec x Fx.
-apply double_round_sqrt.
+apply round_round_sqrt.
- now apply FLT_exp_valid.
- now apply FLT_exp_valid.
-- now apply FLT_double_round_sqrt_hyp.
+- now apply FLT_round_round_sqrt_hyp.
- now apply generic_format_FLT.
Qed.
@@ -2974,24 +2952,21 @@ End Double_round_sqrt_FLT.
Section Double_round_sqrt_FTZ.
-Import Fcore_FLX.
-Import Fcore_FTZ.
-
Variable emin prec : Z.
Variable emin' prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FTZ_double_round_sqrt_hyp :
+Lemma FTZ_round_round_sqrt_hyp :
(2 * (emin' + prec') <= emin + prec <= 1)%Z ->
(2 * prec + 2 <= prec')%Z ->
- double_round_sqrt_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
+ round_round_sqrt_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
Proof.
intros Hemin Hprec.
unfold FTZ_exp.
unfold Prec_gt_0 in *.
-unfold double_round_sqrt_hyp; split; [|split]; intros ex.
+unfold round_round_sqrt_hyp; split; [|split]; intros ex.
- destruct (Z.ltb_spec (ex - prec) emin);
destruct (Z.ltb_spec (2 * ex - prec) emin);
omega.
@@ -3008,49 +2983,49 @@ unfold double_round_sqrt_hyp; split; [|split]; intros ex.
omega.
Qed.
-Theorem double_round_sqrt_FTZ :
+Theorem round_round_sqrt_FTZ :
(4 <= beta)%Z ->
forall choice1 choice2,
(2 * (emin' + prec') <= emin + prec <= 1)%Z ->
(2 * prec + 2 <= prec')%Z ->
forall x,
FTZ_format beta emin prec x ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ round_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
choice1 choice2 (sqrt x).
Proof.
intros Hbeta choice1 choice2 Hemin Hprec x Fx.
-apply double_round_sqrt.
+apply round_round_sqrt.
- now apply FTZ_exp_valid.
- now apply FTZ_exp_valid.
-- now apply FTZ_double_round_sqrt_hyp.
+- now apply FTZ_round_round_sqrt_hyp.
- now apply generic_format_FTZ.
Qed.
End Double_round_sqrt_FTZ.
-Section Double_round_sqrt_beta_ge_4.
+Section Double_round_sqrt_radix_ge_4.
-Definition double_round_sqrt_beta_ge_4_hyp fexp1 fexp2 :=
+Definition round_round_sqrt_radix_ge_4_hyp fexp1 fexp2 :=
(forall ex, (2 * fexp1 ex <= fexp1 (2 * ex))%Z)
/\ (forall ex, (2 * fexp1 ex <= fexp1 (2 * ex - 1))%Z)
/\ (forall ex, (fexp1 (2 * ex) < 2 * ex)%Z ->
(fexp2 ex + ex <= 2 * fexp1 ex - 1)%Z).
-Lemma double_round_sqrt_beta_ge_4_aux :
+Lemma round_round_sqrt_radix_ge_4_aux :
(4 <= beta)%Z ->
forall fexp1 fexp2 : Z -> Z,
Valid_exp fexp1 -> Valid_exp fexp2 ->
- double_round_sqrt_beta_ge_4_hyp fexp1 fexp2 ->
+ round_round_sqrt_radix_ge_4_hyp fexp1 fexp2 ->
forall x,
0 < x ->
- (fexp2 (ln_beta (sqrt x)) <= fexp1 (ln_beta (sqrt x)) - 1)%Z ->
+ (fexp2 (mag (sqrt x)) <= fexp1 (mag (sqrt x)) - 1)%Z ->
generic_format beta fexp1 x ->
/ 2 * ulp beta fexp2 (sqrt x) < Rabs (sqrt x - midp fexp1 (sqrt x)).
Proof.
intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 Hexp x Px Hf2 Fx.
set (a := round beta fexp1 Zfloor (sqrt x)).
-set (u1 := bpow (fexp1 (ln_beta (sqrt x)))).
-set (u2 := bpow (fexp2 (ln_beta (sqrt x)))).
+set (u1 := bpow (fexp1 (mag (sqrt x)))).
+set (u2 := bpow (fexp2 (mag (sqrt x)))).
set (b := / 2 * (u1 - u2)).
set (b' := / 2 * (u1 + u2)).
unfold midp; rewrite 2!ulp_neq_0; try now apply Rgt_not_eq, sqrt_lt_R0.
@@ -3061,9 +3036,9 @@ assert (Fa : generic_format beta fexp1 a).
- exact Vfexp1.
- now apply valid_rnd_DN. }
revert Fa; revert Fx.
-unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
-set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
-set (ma := Ztrunc (a * bpow (- fexp1 (ln_beta a)))).
+unfold generic_format, F2R, scaled_mantissa, cexp; simpl.
+set (mx := Ztrunc (x * bpow (- fexp1 (mag x)))).
+set (ma := Ztrunc (a * bpow (- fexp1 (mag a)))).
intros Fx Fa.
assert (Nna : 0 <= a).
{ rewrite <- (round_0 beta fexp1 Zfloor).
@@ -3080,7 +3055,7 @@ assert (Pb : 0 < b).
rewrite <- (Rmult_0_r (/ 2)).
apply Rmult_lt_compat_l; [lra|].
apply Rlt_Rminus.
- unfold u2, u1, ulp, canonic_exp.
+ unfold u2, u1, ulp, cexp.
apply bpow_lt.
omega. }
assert (Pb' : 0 < b').
@@ -3094,14 +3069,14 @@ assert (Hl : a + b <= sqrt x).
replace (_ + sqrt _) with (sqrt x - (a + / 2 * u1)) by ring.
rewrite Ropp_mult_distr_l_reverse.
now apply Rabs_le_inv in H; destruct H. }
-assert (Hf1 : (2 * fexp1 (ln_beta (sqrt x)) <= fexp1 (ln_beta (x)))%Z);
- [destruct (ln_beta_sqrt_disj x Px) as [H'|H']; rewrite H'; apply Hexp|].
-assert (Hlx : (fexp1 (2 * ln_beta (sqrt x)) < 2 * ln_beta (sqrt x))%Z).
-{ destruct (ln_beta_sqrt_disj x Px) as [Hlx|Hlx].
- - apply (valid_exp_large fexp1 (ln_beta x)); [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+assert (Hf1 : (2 * fexp1 (mag (sqrt x)) <= fexp1 (mag (x)))%Z);
+ [destruct (mag_sqrt_disj x Px) as [H'|H']; rewrite H'; apply Hexp|].
+assert (Hlx : (fexp1 (2 * mag (sqrt x)) < 2 * mag (sqrt x))%Z).
+{ destruct (mag_sqrt_disj x Px) as [Hlx|Hlx].
+ - apply (valid_exp_large fexp1 (mag x)); [|omega].
+ now apply mag_generic_gt; [|apply Rgt_not_eq|].
- rewrite <- Hlx.
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]. }
+ now apply mag_generic_gt; [|apply Rgt_not_eq|]. }
assert (Hsl : a * a + u1 * a - u2 * a + b * b <= x).
{ replace (_ + _) with ((a + b) * (a + b)); [|now unfold b; field].
rewrite <- sqrt_def; [|now apply Rlt_le].
@@ -3120,34 +3095,33 @@ destruct (Req_dec a 0) as [Za|Nza].
+ revert Hsl; unfold Rminus; rewrite Za; do 3 rewrite Rmult_0_r.
now rewrite Ropp_0; do 3 rewrite Rplus_0_l.
+ rewrite Fx.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ apply (Rmult_le_reg_r (bpow (- fexp1 (mag x))));
[now apply bpow_gt_0|].
rewrite Rmult_0_l; bpow_simplify.
unfold mx.
rewrite Ztrunc_floor;
[|now apply Rmult_le_pos; [apply Rlt_le|apply bpow_ge_0]].
- apply Req_le.
- change 0 with (Z2R 0); apply f_equal.
+ apply Req_le, IZR_eq.
apply Zfloor_imp.
split; [now apply Rmult_le_pos; [apply Rlt_le|apply bpow_ge_0]|simpl].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x)))); [now apply bpow_gt_0|].
rewrite Rmult_1_l; bpow_simplify.
- apply Rlt_le_trans with (bpow (2 * fexp1 (ln_beta (sqrt x))));
+ apply Rlt_le_trans with (bpow (2 * fexp1 (mag (sqrt x))));
[|now apply bpow_le].
change 2%Z with (1 + 1)%Z; rewrite Zmult_plus_distr_l; rewrite Zmult_1_l.
rewrite bpow_plus.
rewrite <- (sqrt_def x) at 1; [|now apply Rlt_le].
- assert (sqrt x < bpow (fexp1 (ln_beta (sqrt x))));
+ assert (sqrt x < bpow (fexp1 (mag (sqrt x))));
[|now apply Rmult_lt_compat; [apply sqrt_pos|apply sqrt_pos| |]].
apply (Rle_lt_trans _ _ _ Hr); rewrite Za; rewrite Rplus_0_l.
unfold b'; change (bpow _) with u1.
apply Rlt_le_trans with (/ 2 * (u1 + u1)); [|lra].
apply Rmult_lt_compat_l; [lra|]; apply Rplus_lt_compat_l.
- unfold u2, u1, ulp, canonic_exp; apply bpow_lt; omega.
+ unfold u2, u1, ulp, cexp; apply bpow_lt; omega.
- (* a <> 0 *)
assert (Pa : 0 < a); [lra|].
- assert (Hla : (ln_beta a = ln_beta (sqrt x) :> Z)).
- { unfold a; apply ln_beta_DN.
+ assert (Hla : (mag a = mag (sqrt x) :> Z)).
+ { unfold a; apply mag_DN.
- exact Vfexp1.
- now fold a. }
assert (Hl' : 0 < - (u2 * a) + b * b).
@@ -3156,7 +3130,7 @@ destruct (Req_dec a 0) as [Za|Nza].
apply (Rplus_lt_reg_r (/ 2 * u2 * u1)); field_simplify.
replace (_ / 2) with (u2 * (a + / 2 * u1)) by field.
replace (_ / 8) with (/ 4 * (u2 ^ 2 + u1 ^ 2)) by field.
- apply Rlt_le_trans with (u2 * bpow (ln_beta (sqrt x))).
+ apply Rlt_le_trans with (u2 * bpow (mag (sqrt x))).
- apply Rmult_lt_compat_l; [now unfold u2, ulp; apply bpow_gt_0|].
unfold u1; rewrite <- Hla.
apply Rlt_le_trans with (a + ulp beta fexp1 a).
@@ -3165,50 +3139,50 @@ destruct (Req_dec a 0) as [Za|Nza].
rewrite ulp_neq_0; trivial.
apply Rmult_lt_compat_r; [apply bpow_gt_0|lra].
+ apply (id_p_ulp_le_bpow _ _ _ _ Pa Fa).
- apply Rabs_lt_inv, bpow_ln_beta_gt.
+ apply Rabs_lt_inv, bpow_mag_gt.
- apply Rle_trans with (bpow (- 1) * u1 ^ 2).
+ unfold pow; rewrite Rmult_1_r.
- unfold u1, u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
+ unfold u1, u2, ulp, cexp; bpow_simplify; apply bpow_le.
now apply Hexp.
+ apply Rmult_le_compat.
* apply bpow_ge_0.
* apply pow2_ge_0.
- * unfold Fcore_Raux.bpow, Z.pow_pos; simpl; rewrite Zmult_1_r.
+ * unfold Raux.bpow, Z.pow_pos; simpl; rewrite Zmult_1_r.
apply Rinv_le; [lra|].
- now change 4 with (Z2R 4); apply Z2R_le.
+ now apply IZR_le.
* rewrite <- (Rplus_0_l (u1 ^ 2)) at 1; apply Rplus_le_compat_r.
apply pow2_ge_0. }
assert (Hr' : x <= a * a + u1 * a).
{ rewrite Hla in Fa.
rewrite <- Rmult_plus_distr_r.
- unfold u1, ulp, canonic_exp.
+ unfold u1, ulp, cexp.
rewrite <- (Rmult_1_l (bpow _)); rewrite Fa; rewrite <- Rmult_plus_distr_r.
- rewrite <- Rmult_assoc; rewrite (Rmult_comm _ (Z2R ma)).
- rewrite <- (Rmult_assoc (Z2R ma)); bpow_simplify.
- apply (Rmult_le_reg_r (bpow (- 2 * fexp1 (ln_beta (sqrt x)))));
+ rewrite <- Rmult_assoc; rewrite (Rmult_comm _ (IZR ma)).
+ rewrite <- (Rmult_assoc (IZR ma)); bpow_simplify.
+ apply (Rmult_le_reg_r (bpow (- 2 * fexp1 (mag (sqrt x)))));
[now apply bpow_gt_0|bpow_simplify].
rewrite Fx at 1; bpow_simplify.
- rewrite <- Z2R_Zpower; [|omega].
- change 1 with (Z2R 1); rewrite <- Z2R_plus; do 2 rewrite <- Z2R_mult.
- apply Z2R_le, Zlt_succ_le, lt_Z2R.
- unfold Z.succ; rewrite Z2R_plus; do 2 rewrite Z2R_mult; rewrite Z2R_plus.
- rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (2 * fexp1 (ln_beta (sqrt x)))));
+ rewrite <- IZR_Zpower; [|omega].
+ rewrite <- plus_IZR, <- 2!mult_IZR.
+ apply IZR_le, Zlt_succ_le, lt_IZR.
+ unfold Z.succ; rewrite plus_IZR; do 2 rewrite mult_IZR; rewrite plus_IZR.
+ rewrite IZR_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (2 * fexp1 (mag (sqrt x)))));
[now apply bpow_gt_0|bpow_simplify].
rewrite <- Fx.
change 2%Z with (1 + 1)%Z; rewrite Zmult_plus_distr_l; rewrite Zmult_1_l.
rewrite bpow_plus; simpl.
replace (_ * _) with (a * a + u1 * a + u1 * u1);
- [|unfold u1, ulp, canonic_exp; rewrite Fa; ring].
+ [|unfold u1, ulp, cexp; rewrite Fa; ring].
apply (Rle_lt_trans _ _ _ Hsr).
rewrite Rplus_assoc; apply Rplus_lt_compat_l.
apply (Rplus_lt_reg_r (- b' * b' + / 2 * u1 * u2)); ring_simplify.
replace (_ + _) with ((a + / 2 * u1) * u2) by ring.
- apply Rlt_le_trans with (bpow (ln_beta (sqrt x)) * u2).
+ apply Rlt_le_trans with (bpow (mag (sqrt x)) * u2).
- apply Rmult_lt_compat_r; [now unfold u2, ulp; apply bpow_gt_0|].
apply Rlt_le_trans with (a + u1); [lra|].
- unfold u1; fold (canonic_exp beta fexp1 (sqrt x)).
- rewrite <- canonic_exp_DN; [|exact Vfexp1|exact Pa]; fold a.
+ unfold u1; fold (cexp beta fexp1 (sqrt x)).
+ rewrite <- cexp_DN; [|exact Vfexp1|exact Pa]; fold a.
rewrite <- ulp_neq_0; trivial.
apply id_p_ulp_le_bpow.
+ exact Pa.
@@ -3216,25 +3190,25 @@ destruct (Req_dec a 0) as [Za|Nza].
+ apply Rle_lt_trans with (sqrt x).
* now apply round_DN_pt.
* apply Rabs_lt_inv.
- apply bpow_ln_beta_gt.
+ apply bpow_mag_gt.
- apply Rle_trans with (/ 2 * u1 ^ 2).
+ apply Rle_trans with (bpow (- 1) * u1 ^ 2).
* unfold pow; rewrite Rmult_1_r.
- unfold u2, u1, ulp, canonic_exp.
+ unfold u2, u1, ulp, cexp.
bpow_simplify.
apply bpow_le.
rewrite Zplus_comm.
now apply Hexp.
* apply Rmult_le_compat_r; [now apply pow2_ge_0|].
- unfold Fcore_Raux.bpow; simpl; unfold Z.pow_pos; simpl.
+ unfold Raux.bpow; simpl; unfold Z.pow_pos; simpl.
rewrite Zmult_1_r.
apply Rinv_le; [lra|].
- change 2 with (Z2R 2); apply Z2R_le; omega.
+ apply IZR_le; omega.
+ assert (u2 ^ 2 < u1 ^ 2); [|unfold b'; lra].
unfold pow; do 2 rewrite Rmult_1_r.
assert (H' : 0 <= u2); [unfold u2, ulp; apply bpow_ge_0|].
assert (u2 < u1); [|now apply Rmult_lt_compat].
- unfold u1, u2, ulp, canonic_exp; apply bpow_lt; omega. }
+ unfold u1, u2, ulp, cexp; apply bpow_lt; omega. }
apply (Rlt_irrefl (a * a + u1 * a)).
apply Rlt_le_trans with (a * a + u1 * a - u2 * a + b * b).
+ rewrite <- (Rplus_0_r (a * a + _)) at 1.
@@ -3243,18 +3217,18 @@ destruct (Req_dec a 0) as [Za|Nza].
+ now apply Rle_trans with x.
Qed.
-Lemma double_round_sqrt_beta_ge_4 :
+Lemma round_round_sqrt_radix_ge_4 :
(4 <= beta)%Z ->
forall fexp1 fexp2 : Z -> Z,
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_sqrt_beta_ge_4_hyp fexp1 fexp2 ->
+ round_round_sqrt_radix_ge_4_hyp fexp1 fexp2 ->
forall x,
generic_format beta fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 (sqrt x).
+ round_round_eq fexp1 fexp2 choice1 choice2 (sqrt x).
Proof.
intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x Fx.
-unfold double_round_eq.
+unfold round_round_eq.
destruct (Rle_or_lt x 0) as [Npx|Px].
- (* x <= 0 *)
assert (Hs : sqrt x = 0).
@@ -3272,13 +3246,13 @@ destruct (Rle_or_lt x 0) as [Npx|Px].
+ reflexivity.
+ now apply valid_rnd_N.
- (* 0 < x *)
- assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; try assumption; lra|].
- assert (Hfsx : (fexp1 (ln_beta (sqrt x)) < ln_beta (sqrt x))%Z).
+ assert (Hfx : (fexp1 (mag x) < mag x)%Z);
+ [now apply mag_generic_gt; try assumption; lra|].
+ assert (Hfsx : (fexp1 (mag (sqrt x)) < mag (sqrt x))%Z).
{ destruct (Rle_or_lt x 1) as [Hx|Hx].
- (* x <= 1 *)
- apply (valid_exp_large fexp1 (ln_beta x)); [exact Hfx|].
- apply ln_beta_le; [exact Px|].
+ apply (valid_exp_large fexp1 (mag x)); [exact Hfx|].
+ apply mag_le; [exact Px|].
rewrite <- (sqrt_def x) at 1; [|lra].
rewrite <- Rmult_1_r.
apply Rmult_le_compat_l.
@@ -3291,36 +3265,34 @@ destruct (Rle_or_lt x 0) as [Npx|Px].
intro Hexp10.
assert (Hf0 : (fexp1 1 < 1)%Z); [omega|clear Hexp10].
apply (valid_exp_large fexp1 1); [exact Hf0|].
- apply ln_beta_ge_bpow.
+ apply mag_ge_bpow.
rewrite Zeq_minus; [|reflexivity].
- unfold Fcore_Raux.bpow; simpl.
+ unfold Raux.bpow; simpl.
apply Rabs_ge; right.
rewrite <- sqrt_1.
apply sqrt_le_1_alt.
now apply Rlt_le. }
- assert (Hf2 : (fexp2 (ln_beta (sqrt x)) <= fexp1 (ln_beta (sqrt x)) - 1)%Z).
- { assert (H : (fexp1 (2 * ln_beta (sqrt x)) < 2 * ln_beta (sqrt x))%Z).
- { destruct (ln_beta_sqrt_disj x Px) as [Hlx|Hlx].
- - apply (valid_exp_large fexp1 (ln_beta x)); [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
+ assert (Hf2 : (fexp2 (mag (sqrt x)) <= fexp1 (mag (sqrt x)) - 1)%Z).
+ { assert (H : (fexp1 (2 * mag (sqrt x)) < 2 * mag (sqrt x))%Z).
+ { destruct (mag_sqrt_disj x Px) as [Hlx|Hlx].
+ - apply (valid_exp_large fexp1 (mag x)); [|omega].
+ now apply mag_generic_gt; [|apply Rgt_not_eq|].
- rewrite <- Hlx.
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]. }
- generalize ((proj2 (proj2 Hexp)) (ln_beta (sqrt x)) H).
+ now apply mag_generic_gt; [|apply Rgt_not_eq|]. }
+ generalize ((proj2 (proj2 Hexp)) (mag (sqrt x)) H).
omega. }
- apply double_round_mid_cases.
+ apply round_round_mid_cases.
+ exact Vfexp1.
+ exact Vfexp2.
+ now apply sqrt_lt_R0.
+ omega.
+ omega.
+ intros Hmid; casetype False; apply (Rle_not_lt _ _ Hmid).
- apply (double_round_sqrt_beta_ge_4_aux Hbeta fexp1 fexp2 Vfexp1 Vfexp2
+ apply (round_round_sqrt_radix_ge_4_aux Hbeta fexp1 fexp2 Vfexp1 Vfexp2
Hexp x Px Hf2 Fx).
Qed.
-Section Double_round_sqrt_beta_ge_4_FLX.
-
-Import Fcore_FLX.
+Section Double_round_sqrt_radix_ge_4_FLX.
Variable prec : Z.
Variable prec' : Z.
@@ -3328,39 +3300,36 @@ Variable prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FLX_double_round_sqrt_beta_ge_4_hyp :
+Lemma FLX_round_round_sqrt_radix_ge_4_hyp :
(2 * prec + 1 <= prec')%Z ->
- double_round_sqrt_beta_ge_4_hyp (FLX_exp prec) (FLX_exp prec').
+ round_round_sqrt_radix_ge_4_hyp (FLX_exp prec) (FLX_exp prec').
Proof.
intros Hprec.
unfold FLX_exp.
unfold Prec_gt_0 in prec_gt_0_.
-unfold double_round_sqrt_beta_ge_4_hyp; split; [|split]; intro ex; omega.
+unfold round_round_sqrt_radix_ge_4_hyp; split; [|split]; intro ex; omega.
Qed.
-Theorem double_round_sqrt_beta_ge_4_FLX :
+Theorem round_round_sqrt_radix_ge_4_FLX :
(4 <= beta)%Z ->
forall choice1 choice2,
(2 * prec + 1 <= prec')%Z ->
forall x,
FLX_format beta prec x ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (sqrt x).
+ round_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (sqrt x).
Proof.
intros Hbeta choice1 choice2 Hprec x Fx.
-apply double_round_sqrt_beta_ge_4.
+apply round_round_sqrt_radix_ge_4.
- exact Hbeta.
- now apply FLX_exp_valid.
- now apply FLX_exp_valid.
-- now apply FLX_double_round_sqrt_beta_ge_4_hyp.
+- now apply FLX_round_round_sqrt_radix_ge_4_hyp.
- now apply generic_format_FLX.
Qed.
-End Double_round_sqrt_beta_ge_4_FLX.
+End Double_round_sqrt_radix_ge_4_FLX.
-Section Double_round_sqrt_beta_ge_4_FLT.
-
-Import Fcore_FLX.
-Import Fcore_FLT.
+Section Double_round_sqrt_radix_ge_4_FLT.
Variable emin prec : Z.
Variable emin' prec' : Z.
@@ -3368,17 +3337,17 @@ Variable emin' prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FLT_double_round_sqrt_beta_ge_4_hyp :
+Lemma FLT_round_round_sqrt_radix_ge_4_hyp :
(emin <= 0)%Z ->
((emin' <= emin - prec - 1)%Z
\/ (2 * emin' <= emin - 4 * prec)%Z) ->
(2 * prec + 1 <= prec')%Z ->
- double_round_sqrt_beta_ge_4_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
+ round_round_sqrt_radix_ge_4_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
Proof.
intros Hemin Heminprec Hprec.
unfold FLT_exp.
unfold Prec_gt_0 in prec_gt_0_.
-unfold double_round_sqrt_beta_ge_4_hyp; split; [|split]; intros ex.
+unfold round_round_sqrt_radix_ge_4_hyp; split; [|split]; intros ex.
- generalize (Zmax_spec (ex - prec) emin).
generalize (Zmax_spec (2 * ex - prec) emin).
omega.
@@ -3391,7 +3360,7 @@ unfold double_round_sqrt_beta_ge_4_hyp; split; [|split]; intros ex.
omega.
Qed.
-Theorem double_round_sqrt_beta_ge_4_FLT :
+Theorem round_round_sqrt_radix_ge_4_FLT :
(4 <= beta)%Z ->
forall choice1 choice2,
(emin <= 0)%Z ->
@@ -3400,24 +3369,21 @@ Theorem double_round_sqrt_beta_ge_4_FLT :
(2 * prec + 1 <= prec')%Z ->
forall x,
FLT_format beta emin prec x ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ round_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
choice1 choice2 (sqrt x).
Proof.
intros Hbeta choice1 choice2 Hemin Heminprec Hprec x Fx.
-apply double_round_sqrt_beta_ge_4.
+apply round_round_sqrt_radix_ge_4.
- exact Hbeta.
- now apply FLT_exp_valid.
- now apply FLT_exp_valid.
-- now apply FLT_double_round_sqrt_beta_ge_4_hyp.
+- now apply FLT_round_round_sqrt_radix_ge_4_hyp.
- now apply generic_format_FLT.
Qed.
-End Double_round_sqrt_beta_ge_4_FLT.
-
-Section Double_round_sqrt_beta_ge_4_FTZ.
+End Double_round_sqrt_radix_ge_4_FLT.
-Import Fcore_FLX.
-Import Fcore_FTZ.
+Section Double_round_sqrt_radix_ge_4_FTZ.
Variable emin prec : Z.
Variable emin' prec' : Z.
@@ -3425,15 +3391,15 @@ Variable emin' prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FTZ_double_round_sqrt_beta_ge_4_hyp :
+Lemma FTZ_round_round_sqrt_radix_ge_4_hyp :
(2 * (emin' + prec') <= emin + prec <= 1)%Z ->
(2 * prec + 1 <= prec')%Z ->
- double_round_sqrt_beta_ge_4_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
+ round_round_sqrt_radix_ge_4_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
Proof.
intros Hemin Hprec.
unfold FTZ_exp.
unfold Prec_gt_0 in *.
-unfold double_round_sqrt_beta_ge_4_hyp; split; [|split]; intros ex.
+unfold round_round_sqrt_radix_ge_4_hyp; split; [|split]; intros ex.
- destruct (Z.ltb_spec (ex - prec) emin);
destruct (Z.ltb_spec (2 * ex - prec) emin);
omega.
@@ -3450,47 +3416,47 @@ unfold double_round_sqrt_beta_ge_4_hyp; split; [|split]; intros ex.
omega.
Qed.
-Theorem double_round_sqrt_beta_ge_4_FTZ :
+Theorem round_round_sqrt_radix_ge_4_FTZ :
(4 <= beta)%Z ->
forall choice1 choice2,
(2 * (emin' + prec') <= emin + prec <= 1)%Z ->
(2 * prec + 1 <= prec')%Z ->
forall x,
FTZ_format beta emin prec x ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ round_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
choice1 choice2 (sqrt x).
Proof.
intros Hbeta choice1 choice2 Hemin Hprec x Fx.
-apply double_round_sqrt_beta_ge_4.
+apply round_round_sqrt_radix_ge_4.
- exact Hbeta.
- now apply FTZ_exp_valid.
- now apply FTZ_exp_valid.
-- now apply FTZ_double_round_sqrt_beta_ge_4_hyp.
+- now apply FTZ_round_round_sqrt_radix_ge_4_hyp.
- now apply generic_format_FTZ.
Qed.
-End Double_round_sqrt_beta_ge_4_FTZ.
+End Double_round_sqrt_radix_ge_4_FTZ.
-End Double_round_sqrt_beta_ge_4.
+End Double_round_sqrt_radix_ge_4.
End Double_round_sqrt.
Section Double_round_div.
-Lemma double_round_eq_mid_beta_even :
+Lemma round_round_eq_mid_beta_even :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
(exists n, (beta = 2 * n :> Z)%Z) ->
forall x,
0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- (fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ (fexp2 (mag x) <= fexp1 (mag x) - 1)%Z ->
+ (fexp1 (mag x) <= mag x)%Z ->
x = midp fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
+ round_round_eq fexp1 fexp2 choice1 choice2 x.
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Ebeta x Px Hf2 Hf1.
-unfold double_round_eq.
+unfold round_round_eq.
unfold midp.
set (rd := round beta fexp1 Zfloor x).
set (u := ulp beta fexp1 x).
@@ -3505,30 +3471,30 @@ assert (Hbeta : (2 <= beta)%Z).
apply (Rplus_eq_compat_l rd) in Xmid; ring_simplify in Xmid.
rewrite (round_generic beta fexp2); [reflexivity|now apply valid_rnd_N|].
set (f := Float beta (Zfloor (scaled_mantissa beta fexp2 rd)
- + n * beta ^ (fexp1 (ln_beta x) - 1
- - fexp2 (ln_beta x)))
- (canonic_exp beta fexp2 x)).
+ + n * beta ^ (fexp1 (mag x) - 1
+ - fexp2 (mag x)))
+ (cexp beta fexp2 x)).
assert (Hf : F2R f = x).
{ unfold f, F2R; simpl.
- rewrite Z2R_plus.
+ rewrite plus_IZR.
rewrite Rmult_plus_distr_r.
- rewrite Z2R_mult.
- rewrite Z2R_Zpower; [|omega].
- unfold canonic_exp at 2; bpow_simplify.
+ rewrite mult_IZR.
+ rewrite IZR_Zpower; [|omega].
+ unfold cexp at 2; bpow_simplify.
unfold Zminus; rewrite bpow_plus.
rewrite (Rmult_comm _ (bpow (- 1))).
- rewrite <- (Rmult_assoc (Z2R n)).
- change (bpow (- 1)) with (/ Z2R (beta * 1)).
+ rewrite <- (Rmult_assoc (IZR n)).
+ change (bpow (- 1)) with (/ IZR (beta * 1)).
rewrite Zmult_1_r.
rewrite Ebeta.
- rewrite (Z2R_mult 2).
+ rewrite (mult_IZR 2).
rewrite Rinv_mult_distr;
- [|simpl; lra|change 0 with (Z2R 0); apply Z2R_neq; omega].
- rewrite <- Rmult_assoc; rewrite (Rmult_comm (Z2R n));
- rewrite (Rmult_assoc _ (Z2R n)).
+ [|simpl; lra | apply IZR_neq; omega].
+ rewrite <- Rmult_assoc; rewrite (Rmult_comm (IZR n));
+ rewrite (Rmult_assoc _ (IZR n)).
rewrite Rinv_r;
- [rewrite Rmult_1_r|change 0 with (Z2R 0); apply Z2R_neq; omega].
- simpl; fold (canonic_exp beta fexp1 x).
+ [rewrite Rmult_1_r | apply IZR_neq; omega].
+ simpl; fold (cexp beta fexp1 x).
rewrite <- 2!ulp_neq_0; try now apply Rgt_not_eq.
fold u; rewrite Xmid at 2.
apply f_equal2; [|reflexivity].
@@ -3537,7 +3503,7 @@ assert (Hf : F2R f = x).
- (* rd = 0 *)
rewrite Zrd.
rewrite scaled_mantissa_0.
- change 0 with (Z2R 0) at 1; rewrite Zfloor_Z2R.
+ rewrite Zfloor_IZR.
now rewrite Rmult_0_l.
- (* rd <> 0 *)
assert (Nnrd : 0 <= rd).
@@ -3546,187 +3512,187 @@ assert (Hf : F2R f = x).
- apply generic_format_0.
- now apply Rlt_le. }
assert (Prd : 0 < rd); [lra|].
- assert (Lrd : (ln_beta rd = ln_beta x :> Z)).
+ assert (Lrd : (mag rd = mag x :> Z)).
{ apply Zle_antisym.
- - apply ln_beta_le; [exact Prd|].
+ - apply mag_le; [exact Prd|].
now apply round_DN_pt.
- - apply ln_beta_round_ge.
+ - apply mag_round_ge.
+ exact Vfexp1.
+ now apply valid_rnd_DN.
+ exact Nzrd. }
unfold scaled_mantissa.
unfold rd at 1.
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
+ unfold round, F2R, scaled_mantissa, cexp; simpl.
bpow_simplify.
rewrite Lrd.
- rewrite <- (Z2R_Zpower _ (_ - _)); [|omega].
- rewrite <- Z2R_mult.
- rewrite (Zfloor_imp (Zfloor (x * bpow (- fexp1 (ln_beta x))) *
- beta ^ (fexp1 (ln_beta x) - fexp2 (ln_beta x)))).
- + rewrite Z2R_mult.
- rewrite Z2R_Zpower; [|omega].
+ rewrite <- (IZR_Zpower _ (_ - _)); [|omega].
+ rewrite <- mult_IZR.
+ rewrite (Zfloor_imp (Zfloor (x * bpow (- fexp1 (mag x))) *
+ beta ^ (fexp1 (mag x) - fexp2 (mag x)))).
+ + rewrite mult_IZR.
+ rewrite IZR_Zpower; [|omega].
bpow_simplify.
now unfold rd.
+ split; [now apply Rle_refl|].
- rewrite Z2R_plus.
+ rewrite plus_IZR.
simpl; lra. }
apply (generic_format_F2R' _ _ x f Hf).
intros _.
-apply Zle_refl.
+apply Z.le_refl.
Qed.
-Lemma double_round_really_zero :
+Lemma round_round_really_zero :
forall (fexp1 fexp2 : Z -> Z),
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
forall x,
0 < x ->
- (ln_beta x <= fexp1 (ln_beta x) - 2)%Z ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
+ (mag x <= fexp1 (mag x) - 2)%Z ->
+ round_round_eq fexp1 fexp2 choice1 choice2 x.
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf1.
-assert (Hlx : bpow (ln_beta x - 1) <= x < bpow (ln_beta x)).
-{ destruct (ln_beta x) as (ex,Hex); simpl.
+assert (Hlx : bpow (mag x - 1) <= x < bpow (mag x)).
+{ destruct (mag x) as (ex,Hex); simpl.
rewrite <- (Rabs_right x); [|now apply Rle_ge; apply Rlt_le].
apply Hex.
now apply Rgt_not_eq. }
-unfold double_round_eq.
-rewrite (round_N_really_small_pos beta fexp1 _ x (ln_beta x)); [|exact Hlx|omega].
+unfold round_round_eq.
+rewrite (round_N_small_pos beta fexp1 _ x (mag x)); [|exact Hlx|omega].
set (x'' := round beta fexp2 (Znearest choice2) x).
destruct (Req_dec x'' 0) as [Zx''|Nzx''];
[now rewrite Zx''; rewrite round_0; [|apply valid_rnd_N]|].
-destruct (Zle_or_lt (fexp2 (ln_beta x)) (ln_beta x)).
-- (* fexp2 (ln_beta x) <= ln_beta x *)
- destruct (Rlt_or_le x'' (bpow (ln_beta x))).
- + (* x'' < bpow (ln_beta x) *)
- rewrite (round_N_really_small_pos beta fexp1 _ _ (ln_beta x));
+destruct (Zle_or_lt (fexp2 (mag x)) (mag x)).
+- (* fexp2 (mag x) <= mag x *)
+ destruct (Rlt_or_le x'' (bpow (mag x))).
+ + (* x'' < bpow (mag x) *)
+ rewrite (round_N_small_pos beta fexp1 _ _ (mag x));
[reflexivity|split; [|exact H0]|omega].
- apply round_large_pos_ge_pow; [now apply valid_rnd_N| |now apply Hlx].
+ apply round_large_pos_ge_bpow; [now apply valid_rnd_N| |now apply Hlx].
fold x''; assert (0 <= x''); [|lra]; unfold x''.
rewrite <- (round_0 beta fexp2 (Znearest choice2)).
now apply round_le; [|apply valid_rnd_N|apply Rlt_le].
- + (* bpow (ln_beta x) <= x'' *)
- assert (Hx'' : x'' = bpow (ln_beta x)).
+ + (* bpow (mag x) <= x'' *)
+ assert (Hx'' : x'' = bpow (mag x)).
{ apply Rle_antisym; [|exact H0].
rewrite <- (round_generic beta fexp2 (Znearest choice2) (bpow _)).
- now apply round_le; [|apply valid_rnd_N|apply Rlt_le].
- now apply generic_format_bpow'. }
rewrite Hx''.
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
- rewrite ln_beta_bpow.
- assert (Hf11 : (fexp1 (ln_beta x + 1) = fexp1 (ln_beta x) :> Z)%Z);
+ unfold round, F2R, scaled_mantissa, cexp; simpl.
+ rewrite mag_bpow.
+ assert (Hf11 : (fexp1 (mag x + 1) = fexp1 (mag x) :> Z)%Z);
[apply Vfexp1; omega|].
rewrite Hf11.
- apply (Rmult_eq_reg_r (bpow (- fexp1 (ln_beta x))));
+ apply (Rmult_eq_reg_r (bpow (- fexp1 (mag x))));
[|now apply Rgt_not_eq; apply bpow_gt_0].
rewrite Rmult_0_l; bpow_simplify.
- change 0 with (Z2R 0); apply f_equal.
+ apply IZR_eq.
apply Znearest_imp.
simpl; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
rewrite Rabs_right; [|now apply Rle_ge; apply bpow_ge_0].
apply Rle_lt_trans with (bpow (- 2)); [now apply bpow_le; omega|].
- unfold Fcore_Raux.bpow, Z.pow_pos; simpl; rewrite Zmult_1_r.
+ unfold Raux.bpow, Z.pow_pos; simpl; rewrite Zmult_1_r.
assert (Hbeta : (2 <= beta)%Z).
{ destruct beta as (beta_val,beta_prop); simpl.
now apply Zle_bool_imp_le. }
apply Rinv_lt_contravar.
* apply Rmult_lt_0_compat; [lra|].
- rewrite Z2R_mult; apply Rmult_lt_0_compat; change 0 with (Z2R 0);
- apply Z2R_lt; omega.
- * change 2 with (Z2R 2); apply Z2R_lt.
- apply (Zle_lt_trans _ _ _ Hbeta).
+ rewrite mult_IZR; apply Rmult_lt_0_compat;
+ apply IZR_lt; omega.
+ * apply IZR_lt.
+ apply (Z.le_lt_trans _ _ _ Hbeta).
rewrite <- (Zmult_1_r beta) at 1.
apply Zmult_lt_compat_l; omega.
-- (* ln_beta x < fexp2 (ln_beta x) *)
+- (* mag x < fexp2 (mag x) *)
casetype False; apply Nzx''.
- now apply (round_N_really_small_pos beta _ _ _ (ln_beta x)).
+ now apply (round_N_small_pos beta _ _ _ (mag x)).
Qed.
-Lemma double_round_zero :
+Lemma round_round_zero :
forall fexp1 fexp2 : Z -> Z,
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
forall x,
0 < x ->
- (fexp1 (ln_beta x) = ln_beta x + 1 :> Z)%Z ->
- x < bpow (ln_beta x) - / 2 * ulp beta fexp2 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
+ (fexp1 (mag x) = mag x + 1 :> Z)%Z ->
+ x < bpow (mag x) - / 2 * ulp beta fexp2 x ->
+ round_round_eq fexp1 fexp2 choice1 choice2 x.
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf1.
-unfold double_round_eq.
+unfold round_round_eq.
set (x'' := round beta fexp2 (Znearest choice2) x).
set (u1 := ulp beta fexp1 x).
set (u2 := ulp beta fexp2 x).
intro Hx.
-assert (Hlx : bpow (ln_beta x - 1) <= x < bpow (ln_beta x)).
-{ destruct (ln_beta x) as (ex,Hex); simpl.
+assert (Hlx : bpow (mag x - 1) <= x < bpow (mag x)).
+{ destruct (mag x) as (ex,Hex); simpl.
rewrite <- (Rabs_right x); [|now apply Rle_ge; apply Rlt_le].
apply Hex.
now apply Rgt_not_eq. }
-rewrite (round_N_really_small_pos beta fexp1 choice1 x (ln_beta x));
+rewrite (round_N_small_pos beta fexp1 choice1 x (mag x));
[|exact Hlx|omega].
destruct (Req_dec x'' 0) as [Zx''|Nzx''];
[now rewrite Zx''; rewrite round_0; [reflexivity|apply valid_rnd_N]|].
-rewrite (round_N_really_small_pos beta _ _ x'' (ln_beta x));
+rewrite (round_N_small_pos beta _ _ x'' (mag x));
[reflexivity| |omega].
split.
-- apply round_large_pos_ge_pow.
+- apply round_large_pos_ge_bpow.
+ now apply valid_rnd_N.
+ assert (0 <= x''); [|now fold x''; lra].
rewrite <- (round_0 beta fexp2 (Znearest choice2)).
now apply round_le; [|apply valid_rnd_N|apply Rlt_le].
+ apply Rle_trans with (Rabs x);
[|now rewrite Rabs_right; [apply Rle_refl|apply Rle_ge; apply Rlt_le]].
- destruct (ln_beta x) as (ex,Hex); simpl; apply Hex.
+ destruct (mag x) as (ex,Hex); simpl; apply Hex.
now apply Rgt_not_eq.
- replace x'' with (x + (x'' - x)) by ring.
- replace (bpow _) with (bpow (ln_beta x) - / 2 * u2 + / 2 * u2) by ring.
+ replace (bpow _) with (bpow (mag x) - / 2 * u2 + / 2 * u2) by ring.
apply Rplus_lt_le_compat; [exact Hx|].
apply Rabs_le_inv.
now apply error_le_half_ulp.
Qed.
-Lemma double_round_all_mid_cases :
+Lemma round_round_all_mid_cases :
forall fexp1 fexp2 : Z -> Z,
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
forall x,
0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- ((fexp1 (ln_beta x) = ln_beta x + 1 :> Z)%Z ->
- bpow (ln_beta x) - / 2 * ulp beta fexp2 x <= x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x) ->
- ((fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ (fexp2 (mag x) <= fexp1 (mag x) - 1)%Z ->
+ ((fexp1 (mag x) = mag x + 1 :> Z)%Z ->
+ bpow (mag x) - / 2 * ulp beta fexp2 x <= x ->
+ round_round_eq fexp1 fexp2 choice1 choice2 x) ->
+ ((fexp1 (mag x) <= mag x)%Z ->
midp fexp1 x - / 2 * ulp beta fexp2 x <= x < midp fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x) ->
- ((fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ round_round_eq fexp1 fexp2 choice1 choice2 x) ->
+ ((fexp1 (mag x) <= mag x)%Z ->
x = midp fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x) ->
- ((fexp1 (ln_beta x) <= ln_beta x)%Z ->
+ round_round_eq fexp1 fexp2 choice1 choice2 x) ->
+ ((fexp1 (mag x) <= mag x)%Z ->
midp fexp1 x < x <= midp fexp1 x + / 2 * ulp beta fexp2 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x) ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
+ round_round_eq fexp1 fexp2 choice1 choice2 x) ->
+ round_round_eq fexp1 fexp2 choice1 choice2 x.
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2.
set (x' := round beta fexp1 Zfloor x).
set (u1 := ulp beta fexp1 x).
set (u2 := ulp beta fexp2 x).
intros Cz Clt Ceq Cgt.
-destruct (Ztrichotomy (ln_beta x) (fexp1 (ln_beta x) - 1)) as [Hlt|[Heq|Hgt]].
-- (* ln_beta x < fexp1 (ln_beta x) - 1 *)
- assert (H : (ln_beta x <= fexp1 (ln_beta x) - 2)%Z) by omega.
- now apply double_round_really_zero.
-- (* ln_beta x = fexp1 (ln_beta x) - 1 *)
- assert (H : (fexp1 (ln_beta x) = (ln_beta x + 1))%Z) by omega.
- destruct (Rlt_or_le x (bpow (ln_beta x) - / 2 * u2)) as [Hlt'|Hge'].
- + now apply double_round_zero.
+destruct (Ztrichotomy (mag x) (fexp1 (mag x) - 1)) as [Hlt|[Heq|Hgt]].
+- (* mag x < fexp1 (mag x) - 1 *)
+ assert (H : (mag x <= fexp1 (mag x) - 2)%Z) by omega.
+ now apply round_round_really_zero.
+- (* mag x = fexp1 (mag x) - 1 *)
+ assert (H : (fexp1 (mag x) = (mag x + 1))%Z) by omega.
+ destruct (Rlt_or_le x (bpow (mag x) - / 2 * u2)) as [Hlt'|Hge'].
+ + now apply round_round_zero.
+ now apply Cz.
-- (* ln_beta x > fexp1 (ln_beta x) - 1 *)
- assert (H : (fexp1 (ln_beta x) <= ln_beta x)%Z) by omega.
+- (* mag x > fexp1 (mag x) - 1 *)
+ assert (H : (fexp1 (mag x) <= mag x)%Z) by omega.
destruct (Rtotal_order x (midp fexp1 x)) as [Hlt'|[Heq'|Hgt']].
+ (* x < midp fexp1 x *)
destruct (Rlt_or_le x (midp fexp1 x - / 2 * u2)) as [Hlt''|Hle''].
- * now apply double_round_lt_mid_further_place; [| | |omega| |].
+ * now apply round_round_lt_mid_further_place; [| | |omega| |].
* now apply Clt; [|split].
+ (* x = midp fexp1 x *)
now apply Ceq.
@@ -3735,33 +3701,33 @@ destruct (Ztrichotomy (ln_beta x) (fexp1 (ln_beta x) - 1)) as [Hlt|[Heq|Hgt]].
* now apply Cgt; [|split].
* { destruct (generic_format_EM beta fexp1 x) as [Fx|Nfx].
- (* generic_format beta fexp1 x *)
- unfold double_round_eq; rewrite (round_generic beta fexp2);
+ unfold round_round_eq; rewrite (round_generic beta fexp2);
[reflexivity|now apply valid_rnd_N|].
- now apply (generic_inclusion_ln_beta beta fexp1); [omega|].
+ now apply (generic_inclusion_mag beta fexp1); [omega|].
- (* ~ generic_format beta fexp1 x *)
assert (Hceil : round beta fexp1 Zceil x = x' + u1);
[now apply round_UP_DN_ulp|].
- assert (Hf2' : (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z);
+ assert (Hf2' : (fexp2 (mag x) <= fexp1 (mag x) - 1)%Z);
[omega|].
assert (midp' fexp1 x + / 2 * ulp beta fexp2 x < x);
- [|now apply double_round_gt_mid_further_place].
+ [|now apply round_round_gt_mid_further_place].
revert Hle''; unfold midp, midp'; fold x'.
rewrite Hceil; fold u1; fold u2.
lra. }
Qed.
-Lemma ln_beta_div_disj :
+Lemma mag_div_disj :
forall x y : R,
0 < x -> 0 < y ->
- ((ln_beta (x / y) = ln_beta x - ln_beta y :> Z)%Z
- \/ (ln_beta (x / y) = ln_beta x - ln_beta y + 1 :> Z)%Z).
+ ((mag (x / y) = mag x - mag y :> Z)%Z
+ \/ (mag (x / y) = mag x - mag y + 1 :> Z)%Z).
Proof.
intros x y Px Py.
-generalize (ln_beta_div beta x y Px Py).
+generalize (mag_div beta x y (Rgt_not_eq _ _ Px) (Rgt_not_eq _ _ Py)).
omega.
Qed.
-Definition double_round_div_hyp fexp1 fexp2 :=
+Definition round_round_div_hyp fexp1 fexp2 :=
(forall ex, (fexp2 ex <= fexp1 ex - 1)%Z)
/\ (forall ex ey, (fexp1 ex < ex)%Z -> (fexp1 ey < ey)%Z ->
(fexp1 (ex - ey) <= ex - ey + 1)%Z ->
@@ -3777,63 +3743,63 @@ Definition double_round_div_hyp fexp1 fexp2 :=
(fexp1 (ex - ey) = ex - ey + 1)%Z ->
(fexp2 (ex - ey) <= ex - ey - ey + fexp1 ey)%Z).
-Lemma double_round_div_aux0 :
+Lemma round_round_div_aux0 :
forall fexp1 fexp2 : Z -> Z,
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_div_hyp fexp1 fexp2 ->
+ round_round_div_hyp fexp1 fexp2 ->
forall x y,
0 < x -> 0 < y ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- fexp1 (ln_beta (x / y)) = (ln_beta (x / y) + 1)%Z ->
- ~ (bpow (ln_beta (x / y)) - / 2 * ulp beta fexp2 (x / y) <= x / y).
+ fexp1 (mag (x / y)) = (mag (x / y) + 1)%Z ->
+ ~ (bpow (mag (x / y)) - / 2 * ulp beta fexp2 (x / y) <= x / y).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Fx Fy Hf1.
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-set (p := bpow (ln_beta (x / y))).
-set (u2 := bpow (fexp2 (ln_beta (x / y)))).
+assert (Hfx : (fexp1 (mag x) < mag x)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfy : (fexp1 (mag y) < mag y)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
+set (p := bpow (mag (x / y))).
+set (u2 := bpow (fexp2 (mag (x / y)))).
revert Fx Fy.
-unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
-set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
-set (my := Ztrunc (y * bpow (- fexp1 (ln_beta y)))).
+unfold generic_format, F2R, scaled_mantissa, cexp; simpl.
+set (mx := Ztrunc (x * bpow (- fexp1 (mag x)))).
+set (my := Ztrunc (y * bpow (- fexp1 (mag y)))).
intros Fx Fy.
rewrite ulp_neq_0.
2: apply Rmult_integral_contrapositive_currified; [now apply Rgt_not_eq|idtac].
2: now apply Rinv_neq_0_compat, Rgt_not_eq.
intro Hl.
assert (Hr : x / y < p);
- [now apply Rabs_lt_inv; apply bpow_ln_beta_gt|].
+ [now apply Rabs_lt_inv; apply bpow_mag_gt|].
apply (Rlt_irrefl (p - / 2 * u2)).
apply (Rle_lt_trans _ _ _ Hl).
apply (Rmult_lt_reg_r y _ _ Py).
unfold Rdiv; rewrite Rmult_assoc.
rewrite Rinv_l; [|now apply Rgt_not_eq]; rewrite Rmult_1_r.
-destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - ln_beta (x / y)
- - fexp1 (ln_beta y))%Z) as [He|He].
-- (* ln_beta (x / y) + fexp1 (ln_beta y) <= fexp1 (ln_beta x) *)
- apply Rle_lt_trans with (p * y - p * bpow (fexp1 (ln_beta y))).
+destruct (Zle_or_lt Z0 (fexp1 (mag x) - mag (x / y)
+ - fexp1 (mag y))%Z) as [He|He].
+- (* mag (x / y) + fexp1 (mag y) <= fexp1 (mag x) *)
+ apply Rle_lt_trans with (p * y - p * bpow (fexp1 (mag y))).
+ rewrite Fx; rewrite Fy at 1.
rewrite <- Rmult_assoc.
rewrite (Rmult_comm p).
unfold p; bpow_simplify.
- apply (Rmult_le_reg_r (bpow (- ln_beta (x / y) - fexp1 (ln_beta y))));
+ apply (Rmult_le_reg_r (bpow (- mag (x / y) - fexp1 (mag y))));
[now apply bpow_gt_0|].
rewrite Rmult_minus_distr_r.
bpow_simplify.
- rewrite <- Z2R_Zpower; [|exact He].
- rewrite <- Z2R_mult.
- change 1 with (Z2R 1); rewrite <- Z2R_minus.
- apply Z2R_le.
+ rewrite <- IZR_Zpower; [|exact He].
+ rewrite <- mult_IZR.
+ rewrite <- minus_IZR.
+ apply IZR_le.
apply (Zplus_le_reg_r _ _ 1); ring_simplify.
apply Zlt_le_succ.
- apply lt_Z2R.
- rewrite Z2R_mult.
- rewrite Z2R_Zpower; [|exact He].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta y) + ln_beta (x / y))));
+ apply lt_IZR.
+ rewrite mult_IZR.
+ rewrite IZR_Zpower; [|exact He].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag y) + mag (x / y))));
[now apply bpow_gt_0|].
bpow_simplify.
rewrite <- Fx.
@@ -3845,7 +3811,7 @@ destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - ln_beta (x / y)
+ rewrite Rmult_minus_distr_r.
unfold Rminus; apply Rplus_lt_compat_l.
apply Ropp_lt_contravar.
- apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
+ apply Rlt_le_trans with (u2 * bpow (mag y)).
* rewrite <- (Rmult_1_l (u2 * _)).
rewrite Rmult_assoc.
{ apply Rmult_lt_compat.
@@ -3854,38 +3820,38 @@ destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - ln_beta (x / y)
- lra.
- apply Rmult_lt_compat_l; [now apply bpow_gt_0|].
apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
- * unfold u2, p, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
- rewrite (Zplus_comm (- _)); fold (Zminus (ln_beta (x / y)) (ln_beta y)).
- destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
+ apply bpow_mag_gt. }
+ * unfold u2, p, ulp, cexp; bpow_simplify; apply bpow_le.
+ apply (Zplus_le_reg_r _ _ (- mag y)); ring_simplify.
+ rewrite (Zplus_comm (- _)); fold (Zminus (mag (x / y)) (mag y)).
+ destruct (mag_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
[now apply Hexp; [| |rewrite <- Hxy]|].
- replace (_ - _ + 1)%Z with ((ln_beta x + 1) - ln_beta y)%Z by ring.
+ replace (_ - _ + 1)%Z with ((mag x + 1) - mag y)%Z by ring.
apply Hexp.
- { now assert (fexp1 (ln_beta x + 1) <= ln_beta x)%Z;
+ { now assert (fexp1 (mag x + 1) <= mag x)%Z;
[apply valid_exp|omega]. }
{ assumption. }
- replace (_ + 1 - _)%Z with (ln_beta x - ln_beta y + 1)%Z by ring.
+ replace (_ + 1 - _)%Z with (mag x - mag y + 1)%Z by ring.
now rewrite <- Hxy.
-- (* fexp1 (ln_beta x) < ln_beta (x / y) + fexp1 (ln_beta y) *)
- apply Rle_lt_trans with (p * y - bpow (fexp1 (ln_beta x))).
+- (* fexp1 (mag x) < mag (x / y) + fexp1 (mag y) *)
+ apply Rle_lt_trans with (p * y - bpow (fexp1 (mag x))).
+ rewrite Fx at 1; rewrite Fy at 1.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ apply (Rmult_le_reg_r (bpow (- fexp1 (mag x))));
[now apply bpow_gt_0|].
rewrite Rmult_minus_distr_r.
bpow_simplify.
rewrite (Rmult_comm p).
unfold p; bpow_simplify.
- rewrite <- Z2R_Zpower; [|omega].
- rewrite <- Z2R_mult.
- change 1 with (Z2R 1); rewrite <- Z2R_minus.
- apply Z2R_le.
+ rewrite <- IZR_Zpower; [|omega].
+ rewrite <- mult_IZR.
+ rewrite <- minus_IZR.
+ apply IZR_le.
apply (Zplus_le_reg_r _ _ 1); ring_simplify.
apply Zlt_le_succ.
- apply lt_Z2R.
- rewrite Z2R_mult.
- rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x))));
+ apply lt_IZR.
+ rewrite mult_IZR.
+ rewrite IZR_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x))));
[now apply bpow_gt_0|bpow_simplify].
rewrite <- Fx.
rewrite Zplus_comm; rewrite bpow_plus.
@@ -3896,7 +3862,7 @@ destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - ln_beta (x / y)
+ rewrite Rmult_minus_distr_r.
unfold Rminus; apply Rplus_lt_compat_l.
apply Ropp_lt_contravar.
- apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
+ apply Rlt_le_trans with (u2 * bpow (mag y)).
* rewrite <- (Rmult_1_l (u2 * _)).
rewrite Rmult_assoc.
{ apply Rmult_lt_compat.
@@ -3905,33 +3871,33 @@ destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - ln_beta (x / y)
- lra.
- apply Rmult_lt_compat_l; [now apply bpow_gt_0|].
apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
- * unfold u2, p, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
- rewrite (Zplus_comm (- _)); fold (Zminus (ln_beta (x / y)) (ln_beta y)).
- destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
- apply Hexp; try assumption; rewrite <- Hxy; rewrite Hf1; apply Zle_refl.
+ apply bpow_mag_gt. }
+ * unfold u2, p, ulp, cexp; bpow_simplify; apply bpow_le.
+ apply (Zplus_le_reg_r _ _ (- mag y)); ring_simplify.
+ rewrite (Zplus_comm (- _)); fold (Zminus (mag (x / y)) (mag y)).
+ destruct (mag_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
+ apply Hexp; try assumption; rewrite <- Hxy; rewrite Hf1; apply Z.le_refl.
Qed.
-Lemma double_round_div_aux1 :
+Lemma round_round_div_aux1 :
forall fexp1 fexp2 : Z -> Z,
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_div_hyp fexp1 fexp2 ->
+ round_round_div_hyp fexp1 fexp2 ->
forall x y,
0 < x -> 0 < y ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- (fexp1 (ln_beta (x / y)) <= ln_beta (x / y))%Z ->
+ (fexp1 (mag (x / y)) <= mag (x / y))%Z ->
~ (midp fexp1 (x / y) - / 2 * ulp beta fexp2 (x / y)
<= x / y
< midp fexp1 (x / y)).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Fx Fy Hf1.
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfx : (fexp1 (mag x) < mag x)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfy : (fexp1 (mag y) < mag y)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
assert (S : (x / y <> 0)%R).
apply Rmult_integral_contrapositive_currified; [now apply Rgt_not_eq|idtac].
now apply Rinv_neq_0_compat, Rgt_not_eq.
@@ -3945,14 +3911,14 @@ cut (~ (/ 2 * (ulp beta fexp1 (x / y) - ulp beta fexp2 (x / y))
- apply (Rplus_lt_reg_l (round beta fexp1 Zfloor (x / y))).
ring_simplify.
apply H'. }
-set (u1 := bpow (fexp1 (ln_beta (x / y)))).
-set (u2 := bpow (fexp2 (ln_beta (x / y)))).
+set (u1 := bpow (fexp1 (mag (x / y)))).
+set (u2 := bpow (fexp2 (mag (x / y)))).
set (x' := round beta fexp1 Zfloor (x / y)).
rewrite 2!ulp_neq_0; trivial.
revert Fx Fy.
-unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
-set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
-set (my := Ztrunc (y * bpow (- fexp1 (ln_beta y)))).
+unfold generic_format, F2R, scaled_mantissa, cexp; simpl.
+set (mx := Ztrunc (x * bpow (- fexp1 (mag x)))).
+set (my := Ztrunc (y * bpow (- fexp1 (mag y)))).
intros Fx Fy.
intro Hlr.
apply (Rlt_irrefl (/ 2 * (u1 - u2))).
@@ -3966,48 +3932,47 @@ apply (Rmult_lt_reg_l 2); [lra|].
rewrite Rmult_minus_distr_l; rewrite Rmult_plus_distr_l.
do 5 rewrite <- Rmult_assoc.
rewrite Rinv_r; [|lra]; do 2 rewrite Rmult_1_l.
-destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - fexp1 (ln_beta (x / y))
- - fexp1 (ln_beta y))%Z) as [He|He].
-- (* fexp1 (ln_beta (x / y)) + fexp1 (ln_beta y)) <= fexp1 (ln_beta x) *)
+destruct (Zle_or_lt Z0 (fexp1 (mag x) - fexp1 (mag (x / y))
+ - fexp1 (mag y))%Z) as [He|He].
+- (* fexp1 (mag (x / y)) + fexp1 (mag y)) <= fexp1 (mag x) *)
apply Rle_lt_trans with (2 * x' * y + u1 * y
- - bpow (fexp1 (ln_beta (x / y))
- + fexp1 (ln_beta y))).
+ - bpow (fexp1 (mag (x / y))
+ + fexp1 (mag y))).
+ rewrite Fx at 1; rewrite Fy at 1 2.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta (x / y))
- - fexp1 (ln_beta y))));
+ apply (Rmult_le_reg_r (bpow (- fexp1 (mag (x / y))
+ - fexp1 (mag y))));
[now apply bpow_gt_0|].
rewrite Rmult_minus_distr_r; rewrite (Rmult_plus_distr_r (_ * _ * _)).
bpow_simplify.
replace (2 * x' * _ * _)
- with (2 * Z2R my * x' * bpow (- fexp1 (ln_beta (x / y)))) by ring.
+ with (2 * IZR my * x' * bpow (- fexp1 (mag (x / y)))) by ring.
rewrite (Rmult_comm u1).
- unfold x', u1, round, F2R, ulp, scaled_mantissa, canonic_exp; simpl.
+ unfold x', u1, round, F2R, ulp, scaled_mantissa, cexp; simpl.
bpow_simplify.
- rewrite <- Z2R_Zpower; [|exact He].
- change 2 with (Z2R 2).
- do 4 rewrite <- Z2R_mult.
- rewrite <- Z2R_plus.
- change 1 with (Z2R 1); rewrite <- Z2R_minus.
- apply Z2R_le.
+ rewrite <- IZR_Zpower; [|exact He].
+ do 4 rewrite <- mult_IZR.
+ rewrite <- plus_IZR.
+ rewrite <- minus_IZR.
+ apply IZR_le.
apply (Zplus_le_reg_r _ _ 1); ring_simplify.
apply Zlt_le_succ.
- apply lt_Z2R.
- rewrite Z2R_plus.
- do 4 rewrite Z2R_mult; simpl.
- rewrite Z2R_Zpower; [|exact He].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta (x / y))
- + fexp1 (ln_beta y))));
+ apply lt_IZR.
+ rewrite plus_IZR.
+ do 4 rewrite mult_IZR; simpl.
+ rewrite IZR_Zpower; [|exact He].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag (x / y))
+ + fexp1 (mag y))));
[now apply bpow_gt_0|bpow_simplify].
rewrite Rmult_assoc.
rewrite <- Fx.
- rewrite (Rmult_plus_distr_r _ _ (Fcore_Raux.bpow _ _)).
+ rewrite (Rmult_plus_distr_r _ _ (Raux.bpow _ _)).
rewrite Rmult_assoc.
rewrite bpow_plus.
- rewrite <- (Rmult_assoc (Z2R (Zfloor _))).
- change (Z2R (Zfloor _) * _) with x'.
- do 2 rewrite (Rmult_comm _ (bpow (fexp1 (ln_beta y)))).
+ rewrite <- (Rmult_assoc (IZR (Zfloor _))).
+ change (IZR (Zfloor _) * _) with x'.
+ do 2 rewrite (Rmult_comm _ (bpow (fexp1 (mag y)))).
rewrite Rmult_assoc.
- do 2 rewrite <- (Rmult_assoc (Z2R my)).
+ do 2 rewrite <- (Rmult_assoc (IZR my)).
rewrite <- Fy.
change (bpow _) with u1.
apply (Rmult_lt_reg_l (/ 2)); [lra|].
@@ -4022,60 +3987,59 @@ destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - fexp1 (ln_beta (x / y))
now rewrite Rmult_comm.
+ apply Rplus_lt_compat_l.
apply Ropp_lt_contravar.
- apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
+ apply Rlt_le_trans with (u2 * bpow (mag y)).
* { apply Rmult_lt_compat_l.
- apply bpow_gt_0.
- apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
- * unfold u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
+ apply bpow_mag_gt. }
+ * unfold u2, ulp, cexp; bpow_simplify; apply bpow_le.
+ apply (Zplus_le_reg_r _ _ (- mag y)); ring_simplify.
rewrite <- Zplus_assoc; rewrite (Zplus_comm (- _)).
- destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
+ destruct (mag_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
[now apply Hexp; [| |rewrite <- Hxy]|].
- replace (_ - _ + 1)%Z with ((ln_beta x + 1) - ln_beta y)%Z by ring.
+ replace (_ - _ + 1)%Z with ((mag x + 1) - mag y)%Z by ring.
apply Hexp.
- { now assert (fexp1 (ln_beta x + 1) <= ln_beta x)%Z;
+ { now assert (fexp1 (mag x + 1) <= mag x)%Z;
[apply valid_exp|omega]. }
{ assumption. }
- replace (_ + 1 - _)%Z with (ln_beta x - ln_beta y + 1)%Z by ring.
+ replace (_ + 1 - _)%Z with (mag x - mag y + 1)%Z by ring.
now rewrite <- Hxy.
-- (* fexp1 (ln_beta x) < fexp1 (ln_beta (x / y)) + fexp1 (ln_beta y) *)
- apply Rle_lt_trans with (2 * x' * y + u1 * y - bpow (fexp1 (ln_beta x))).
+- (* fexp1 (mag x) < fexp1 (mag (x / y)) + fexp1 (mag y) *)
+ apply Rle_lt_trans with (2 * x' * y + u1 * y - bpow (fexp1 (mag x))).
+ rewrite Fx at 1; rewrite Fy at 1 2.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ apply (Rmult_le_reg_r (bpow (- fexp1 (mag x))));
[now apply bpow_gt_0|].
rewrite Rmult_minus_distr_r; rewrite (Rmult_plus_distr_r (_ * _ * _)).
bpow_simplify.
replace (2 * x' * _ * _)
- with (2 * Z2R my * x' * bpow (fexp1 (ln_beta y) - fexp1 (ln_beta x))) by ring.
+ with (2 * IZR my * x' * bpow (fexp1 (mag y) - fexp1 (mag x))) by ring.
rewrite (Rmult_comm u1).
- unfold x', u1, round, F2R, ulp, scaled_mantissa, canonic_exp; simpl.
+ unfold x', u1, round, F2R, ulp, scaled_mantissa, cexp; simpl.
bpow_simplify.
- rewrite <- (Z2R_Zpower _ (_ - _)%Z); [|omega].
- change 2 with (Z2R 2).
- do 5 rewrite <- Z2R_mult.
- rewrite <- Z2R_plus.
- change 1 with (Z2R 1); rewrite <- Z2R_minus.
- apply Z2R_le.
+ rewrite <- (IZR_Zpower _ (_ - _)%Z); [|omega].
+ do 5 rewrite <- mult_IZR.
+ rewrite <- plus_IZR.
+ rewrite <- minus_IZR.
+ apply IZR_le.
apply (Zplus_le_reg_r _ _ 1); ring_simplify.
apply Zlt_le_succ.
- apply lt_Z2R.
- rewrite Z2R_plus.
- do 5 rewrite Z2R_mult; simpl.
- rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x))));
+ apply lt_IZR.
+ rewrite plus_IZR.
+ do 5 rewrite mult_IZR; simpl.
+ rewrite IZR_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x))));
[now apply bpow_gt_0|].
rewrite Rmult_assoc.
rewrite <- Fx.
- rewrite (Rmult_plus_distr_r _ _ (Fcore_Raux.bpow _ _)).
+ rewrite (Rmult_plus_distr_r _ _ (Raux.bpow _ _)).
bpow_simplify.
rewrite Rmult_assoc.
rewrite bpow_plus.
- rewrite <- (Rmult_assoc (Z2R (Zfloor _))).
- change (Z2R (Zfloor _) * _) with x'.
- do 2 rewrite (Rmult_comm _ (bpow (fexp1 (ln_beta y)))).
+ rewrite <- (Rmult_assoc (IZR (Zfloor _))).
+ change (IZR (Zfloor _) * _) with x'.
+ do 2 rewrite (Rmult_comm _ (bpow (fexp1 (mag y)))).
rewrite Rmult_assoc.
- do 2 rewrite <- (Rmult_assoc (Z2R my)).
+ do 2 rewrite <- (Rmult_assoc (IZR my)).
rewrite <- Fy.
change (bpow _) with u1.
apply (Rmult_lt_reg_l (/ 2)); [lra|].
@@ -4090,37 +4054,37 @@ destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - fexp1 (ln_beta (x / y))
now rewrite Rmult_comm.
+ apply Rplus_lt_compat_l.
apply Ropp_lt_contravar.
- apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
+ apply Rlt_le_trans with (u2 * bpow (mag y)).
* { apply Rmult_lt_compat_l.
- apply bpow_gt_0.
- apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
- * unfold u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
+ apply bpow_mag_gt. }
+ * unfold u2, ulp, cexp; bpow_simplify; apply bpow_le.
+ apply (Zplus_le_reg_r _ _ (- mag y)); ring_simplify.
rewrite (Zplus_comm (- _)).
- destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
+ destruct (mag_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
apply Hexp; try assumption; rewrite <- Hxy; omega.
Qed.
-Lemma double_round_div_aux2 :
+Lemma round_round_div_aux2 :
forall fexp1 fexp2 : Z -> Z,
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
- double_round_div_hyp fexp1 fexp2 ->
+ round_round_div_hyp fexp1 fexp2 ->
forall x y,
0 < x -> 0 < y ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- (fexp1 (ln_beta (x / y)) <= ln_beta (x / y))%Z ->
+ (fexp1 (mag (x / y)) <= mag (x / y))%Z ->
~ (midp fexp1 (x / y)
< x / y
<= midp fexp1 (x / y) + / 2 * ulp beta fexp2 (x / y)).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Fx Fy Hf1.
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfx : (fexp1 (mag x) < mag x)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
+assert (Hfy : (fexp1 (mag y) < mag y)%Z);
+ [now apply mag_generic_gt; [|apply Rgt_not_eq|]|].
cut (~ (/ 2 * ulp beta fexp1 (x / y)
< x / y - round beta fexp1 Zfloor (x / y)
<= / 2 * (ulp beta fexp1 (x / y) + ulp beta fexp2 (x / y)))).
@@ -4131,17 +4095,17 @@ cut (~ (/ 2 * ulp beta fexp1 (x / y)
- apply (Rplus_le_reg_l (round beta fexp1 Zfloor (x / y))).
ring_simplify.
apply H'. }
-set (u1 := bpow (fexp1 (ln_beta (x / y)))).
-set (u2 := bpow (fexp2 (ln_beta (x / y)))).
+set (u1 := bpow (fexp1 (mag (x / y)))).
+set (u2 := bpow (fexp2 (mag (x / y)))).
set (x' := round beta fexp1 Zfloor (x / y)).
assert (S : (x / y <> 0)%R).
apply Rmult_integral_contrapositive_currified; [now apply Rgt_not_eq|idtac].
now apply Rinv_neq_0_compat, Rgt_not_eq.
rewrite 2!ulp_neq_0; trivial.
revert Fx Fy.
-unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
-set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
-set (my := Ztrunc (y * bpow (- fexp1 (ln_beta y)))).
+unfold generic_format, F2R, scaled_mantissa, cexp; simpl.
+set (mx := Ztrunc (x * bpow (- fexp1 (mag x)))).
+set (my := Ztrunc (y * bpow (- fexp1 (mag y)))).
intros Fx Fy.
intro Hlr.
apply (Rlt_irrefl (/ 2 * (u1 + u2))).
@@ -4155,76 +4119,75 @@ apply (Rmult_lt_reg_l 2); [lra|].
do 2 rewrite Rmult_plus_distr_l.
do 5 rewrite <- Rmult_assoc.
rewrite Rinv_r; [|lra]; do 2 rewrite Rmult_1_l.
-destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - fexp1 (ln_beta (x / y))
- - fexp1 (ln_beta y))%Z) as [He|He].
-- (* fexp1 (ln_beta (x / y)) + fexp1 (ln_beta y) <= fexp1 (ln_beta x) *)
- apply Rlt_le_trans with (u1 * y + bpow (fexp1 (ln_beta (x / y))
- + fexp1 (ln_beta y))
+destruct (Zle_or_lt Z0 (fexp1 (mag x) - fexp1 (mag (x / y))
+ - fexp1 (mag y))%Z) as [He|He].
+- (* fexp1 (mag (x / y)) + fexp1 (mag y) <= fexp1 (mag x) *)
+ apply Rlt_le_trans with (u1 * y + bpow (fexp1 (mag (x / y))
+ + fexp1 (mag y))
+ 2 * x' * y).
+ apply Rplus_lt_compat_r, Rplus_lt_compat_l.
- apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
+ apply Rlt_le_trans with (u2 * bpow (mag y)).
* { apply Rmult_lt_compat_l.
- apply bpow_gt_0.
- apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
- * unfold u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
+ apply bpow_mag_gt. }
+ * unfold u2, ulp, cexp; bpow_simplify; apply bpow_le.
+ apply (Zplus_le_reg_r _ _ (- mag y)); ring_simplify.
rewrite <- Zplus_assoc; rewrite (Zplus_comm (- _)).
- destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
+ destruct (mag_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
[now apply Hexp; [| |rewrite <- Hxy]|].
- replace (_ - _ + 1)%Z with ((ln_beta x + 1) - ln_beta y)%Z by ring.
+ replace (_ - _ + 1)%Z with ((mag x + 1) - mag y)%Z by ring.
apply Hexp.
- { now assert (fexp1 (ln_beta x + 1) <= ln_beta x)%Z;
+ { now assert (fexp1 (mag x + 1) <= mag x)%Z;
[apply valid_exp|omega]. }
{ assumption. }
- replace (_ + 1 - _)%Z with (ln_beta x - ln_beta y + 1)%Z by ring.
+ replace (_ + 1 - _)%Z with (mag x - mag y + 1)%Z by ring.
now rewrite <- Hxy.
+ apply Rge_le; rewrite Fx at 1; apply Rle_ge.
- replace (u1 * y) with (u1 * (Z2R my * bpow (fexp1 (ln_beta y))));
+ replace (u1 * y) with (u1 * (IZR my * bpow (fexp1 (mag y))));
[|now apply eq_sym; rewrite Fy at 1].
- replace (2 * x' * y) with (2 * x' * (Z2R my * bpow (fexp1 (ln_beta y))));
+ replace (2 * x' * y) with (2 * x' * (IZR my * bpow (fexp1 (mag y))));
[|now apply eq_sym; rewrite Fy at 1].
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta (x / y))
- - fexp1 (ln_beta y))));
+ apply (Rmult_le_reg_r (bpow (- fexp1 (mag (x / y))
+ - fexp1 (mag y))));
[now apply bpow_gt_0|].
do 2 rewrite Rmult_plus_distr_r.
bpow_simplify.
rewrite (Rmult_comm u1).
- unfold u1, ulp, canonic_exp; bpow_simplify.
+ unfold u1, ulp, cexp; bpow_simplify.
rewrite (Rmult_assoc 2).
rewrite (Rmult_comm x').
rewrite (Rmult_assoc 2).
- unfold x', round, F2R, scaled_mantissa, canonic_exp; simpl.
+ unfold x', round, F2R, scaled_mantissa, cexp; simpl.
bpow_simplify.
- rewrite <- (Z2R_Zpower _ (_ - _)%Z); [|exact He].
- change 2 with (Z2R 2).
- do 4 rewrite <- Z2R_mult.
- change 1 with (Z2R 1); do 2 rewrite <- Z2R_plus.
- apply Z2R_le.
+ rewrite <- (IZR_Zpower _ (_ - _)%Z); [|exact He].
+ do 4 rewrite <- mult_IZR.
+ do 2 rewrite <- plus_IZR.
+ apply IZR_le.
rewrite Zplus_comm, Zplus_assoc.
apply Zlt_le_succ.
- apply lt_Z2R.
- rewrite Z2R_plus.
- do 4 rewrite Z2R_mult; simpl.
- rewrite Z2R_Zpower; [|exact He].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta y))));
+ apply lt_IZR.
+ rewrite plus_IZR.
+ do 4 rewrite mult_IZR; simpl.
+ rewrite IZR_Zpower; [|exact He].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag y))));
[now apply bpow_gt_0|].
rewrite Rmult_plus_distr_r.
- rewrite (Rmult_comm _ (Z2R _)).
+ rewrite (Rmult_comm _ (IZR _)).
do 2 rewrite Rmult_assoc.
rewrite <- Fy.
bpow_simplify.
unfold Zminus; rewrite bpow_plus.
- rewrite (Rmult_assoc _ (Z2R mx)).
- rewrite <- (Rmult_assoc (Z2R mx)).
+ rewrite (Rmult_assoc _ (IZR mx)).
+ rewrite <- (Rmult_assoc (IZR mx)).
rewrite <- Fx.
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta (x / y)))));
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag (x / y)))));
[now apply bpow_gt_0|].
rewrite Rmult_plus_distr_r.
bpow_simplify.
rewrite (Rmult_comm _ y).
do 2 rewrite Rmult_assoc.
- change (Z2R (Zfloor _) * _) with x'.
+ change (IZR (Zfloor _) * _) with x'.
change (bpow _) with u1.
apply (Rmult_lt_reg_l (/ 2)); [lra|].
rewrite Rmult_plus_distr_l.
@@ -4239,52 +4202,51 @@ destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - fexp1 (ln_beta (x / y))
rewrite Rinv_l; [|now apply Rgt_not_eq]; do 2 rewrite Rmult_1_l.
rewrite (Rmult_comm (/ y)).
now rewrite (Rplus_comm (- x')).
-- (* fexp1 (ln_beta x) < fexp1 (ln_beta (x / y)) + fexp1 (ln_beta y) *)
- apply Rlt_le_trans with (2 * x' * y + u1 * y + bpow (fexp1 (ln_beta x))).
+- (* fexp1 (mag x) < fexp1 (mag (x / y)) + fexp1 (mag y) *)
+ apply Rlt_le_trans with (2 * x' * y + u1 * y + bpow (fexp1 (mag x))).
+ rewrite Rplus_comm, Rplus_assoc; do 2 apply Rplus_lt_compat_l.
- apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
+ apply Rlt_le_trans with (u2 * bpow (mag y)).
* apply Rmult_lt_compat_l.
now apply bpow_gt_0.
- now apply Rabs_lt_inv; apply bpow_ln_beta_gt.
- * unfold u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
+ now apply Rabs_lt_inv; apply bpow_mag_gt.
+ * unfold u2, ulp, cexp; bpow_simplify; apply bpow_le.
+ apply (Zplus_le_reg_r _ _ (- mag y)); ring_simplify.
rewrite (Zplus_comm (- _)).
- destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
+ destruct (mag_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
apply Hexp; try assumption; rewrite <- Hxy; omega.
+ apply Rge_le; rewrite Fx at 1; apply Rle_ge.
rewrite Fy at 1 2.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
+ apply (Rmult_le_reg_r (bpow (- fexp1 (mag x))));
[now apply bpow_gt_0|].
do 2 rewrite Rmult_plus_distr_r.
bpow_simplify.
replace (2 * x' * _ * _)
- with (2 * Z2R my * x' * bpow (fexp1 (ln_beta y) - fexp1 (ln_beta x))) by ring.
+ with (2 * IZR my * x' * bpow (fexp1 (mag y) - fexp1 (mag x))) by ring.
rewrite (Rmult_comm u1).
- unfold x', u1, round, F2R, ulp, scaled_mantissa, canonic_exp; simpl.
+ unfold x', u1, round, F2R, ulp, scaled_mantissa, cexp; simpl.
bpow_simplify.
- rewrite <- (Z2R_Zpower _ (_ - _)%Z); [|omega].
- change 2 with (Z2R 2).
- do 5 rewrite <- Z2R_mult.
- change 1 with (Z2R 1); do 2 rewrite <- Z2R_plus.
- apply Z2R_le.
+ rewrite <- (IZR_Zpower _ (_ - _)%Z); [|omega].
+ do 5 rewrite <- mult_IZR.
+ do 2 rewrite <- plus_IZR.
+ apply IZR_le.
apply Zlt_le_succ.
- apply lt_Z2R.
- rewrite Z2R_plus.
- do 5 rewrite Z2R_mult; simpl.
- rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x))));
+ apply lt_IZR.
+ rewrite plus_IZR.
+ do 5 rewrite mult_IZR; simpl.
+ rewrite IZR_Zpower; [|omega].
+ apply (Rmult_lt_reg_r (bpow (fexp1 (mag x))));
[now apply bpow_gt_0|].
- rewrite (Rmult_assoc _ (Z2R mx)).
+ rewrite (Rmult_assoc _ (IZR mx)).
rewrite <- Fx.
rewrite Rmult_plus_distr_r.
bpow_simplify.
rewrite bpow_plus.
rewrite Rmult_assoc.
- rewrite <- (Rmult_assoc (Z2R _)).
- change (Z2R _ * bpow _) with x'.
- do 2 rewrite (Rmult_comm _ (bpow (fexp1 (ln_beta y)))).
+ rewrite <- (Rmult_assoc (IZR _)).
+ change (IZR _ * bpow _) with x'.
+ do 2 rewrite (Rmult_comm _ (bpow (fexp1 (mag y)))).
rewrite Rmult_assoc.
- do 2 rewrite <- (Rmult_assoc (Z2R my)).
+ do 2 rewrite <- (Rmult_assoc (IZR my)).
rewrite <- Fy.
change (bpow _) with u1.
apply (Rmult_lt_reg_l (/ 2)); [lra|].
@@ -4302,55 +4264,55 @@ destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - fexp1 (ln_beta (x / y))
now rewrite (Rplus_comm (- x')).
Qed.
-Lemma double_round_div_aux :
+Lemma round_round_div_aux :
forall fexp1 fexp2 : Z -> Z,
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
(exists n, (beta = 2 * n :> Z)%Z) ->
- double_round_div_hyp fexp1 fexp2 ->
+ round_round_div_hyp fexp1 fexp2 ->
forall x y,
0 < x -> 0 < y ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x / y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x / y).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Ebeta Hexp x y Px Py Fx Fy.
assert (Pxy : 0 < x / y).
{ apply Rmult_lt_0_compat; [exact Px|].
now apply Rinv_0_lt_compat. }
-apply double_round_all_mid_cases.
+apply round_round_all_mid_cases.
- exact Vfexp1.
- exact Vfexp2.
- exact Pxy.
- apply Hexp.
- intros Hf1 Hlxy.
casetype False.
- now apply (double_round_div_aux0 fexp1 fexp2 _ _ choice1 choice2 Hexp x y).
+ now apply (round_round_div_aux0 fexp1 fexp2 _ _ choice1 choice2 Hexp x y).
- intros Hf1 Hlxy.
casetype False.
- now apply (double_round_div_aux1 fexp1 fexp2 _ _ choice1 choice2 Hexp x y).
+ now apply (round_round_div_aux1 fexp1 fexp2 _ _ choice1 choice2 Hexp x y).
- intro H.
- apply double_round_eq_mid_beta_even; try assumption.
+ apply round_round_eq_mid_beta_even; try assumption.
apply Hexp.
- intros Hf1 Hlxy.
casetype False.
- now apply (double_round_div_aux2 fexp1 fexp2 _ _ choice1 choice2 Hexp x y).
+ now apply (round_round_div_aux2 fexp1 fexp2 _ _ choice1 choice2 Hexp x y).
Qed.
-Lemma double_round_div :
+Lemma round_round_div :
forall fexp1 fexp2 : Z -> Z,
Valid_exp fexp1 -> Valid_exp fexp2 ->
forall (choice1 choice2 : Z -> bool),
(exists n, (beta = 2 * n :> Z)%Z) ->
- double_round_div_hyp fexp1 fexp2 ->
+ round_round_div_hyp fexp1 fexp2 ->
forall x y,
y <> 0 ->
generic_format beta fexp1 x ->
generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x / y).
+ round_round_eq fexp1 fexp2 choice1 choice2 (x / y).
Proof.
intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Ebeta Hexp x y Nzy Fx Fy.
-unfold double_round_eq.
+unfold round_round_eq.
destruct (Rtotal_order x 0) as [Nx|[Zx|Px]].
- (* x < 0 *)
destruct (Rtotal_order y 0) as [Ny|[Zy|Py]].
@@ -4367,7 +4329,7 @@ destruct (Rtotal_order x 0) as [Nx|[Zx|Px]].
rewrite Ropp_0 in Nx, Ny.
apply generic_format_opp in Fx.
apply generic_format_opp in Fy.
- now apply double_round_div_aux.
+ now apply round_round_div_aux.
+ (* y = 0 *)
now casetype False; apply Nzy.
+ (* y > 0 *)
@@ -4378,7 +4340,7 @@ destruct (Rtotal_order x 0) as [Nx|[Zx|Px]].
apply Ropp_lt_contravar in Nx.
rewrite Ropp_0 in Nx.
apply generic_format_opp in Fx.
- now apply double_round_div_aux.
+ now apply round_round_div_aux.
- (* x = 0 *)
rewrite Zx.
unfold Rdiv; rewrite Rmult_0_l.
@@ -4394,50 +4356,48 @@ destruct (Rtotal_order x 0) as [Nx|[Zx|Px]].
apply Ropp_lt_contravar in Ny.
rewrite Ropp_0 in Ny.
apply generic_format_opp in Fy.
- now apply double_round_div_aux.
+ now apply round_round_div_aux.
+ (* y = 0 *)
now casetype False; apply Nzy.
+ (* y > 0 *)
- now apply double_round_div_aux.
+ now apply round_round_div_aux.
Qed.
Section Double_round_div_FLX.
-Import Fcore_FLX.
-
Variable prec : Z.
Variable prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FLX_double_round_div_hyp :
+Lemma FLX_round_round_div_hyp :
(2 * prec <= prec')%Z ->
- double_round_div_hyp (FLX_exp prec) (FLX_exp prec').
+ round_round_div_hyp (FLX_exp prec) (FLX_exp prec').
Proof.
intros Hprec.
unfold Prec_gt_0 in prec_gt_0_.
unfold FLX_exp.
-unfold double_round_div_hyp.
+unfold round_round_div_hyp.
split; [now intro ex; omega|].
split; [|split; [|split]]; intros ex ey; omega.
Qed.
-Theorem double_round_div_FLX :
+Theorem round_round_div_FLX :
forall choice1 choice2,
(exists n, (beta = 2 * n :> Z)%Z) ->
(2 * prec <= prec')%Z ->
forall x y,
y <> 0 ->
FLX_format beta prec x -> FLX_format beta prec y ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x / y).
+ round_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x / y).
Proof.
intros choice1 choice2 Ebeta Hprec x y Nzy Fx Fy.
-apply double_round_div.
+apply round_round_div.
- now apply FLX_exp_valid.
- now apply FLX_exp_valid.
- exact Ebeta.
-- now apply FLX_double_round_div_hyp.
+- now apply FLX_round_round_div_hyp.
- exact Nzy.
- now apply generic_format_FLX.
- now apply generic_format_FLX.
@@ -4447,24 +4407,21 @@ End Double_round_div_FLX.
Section Double_round_div_FLT.
-Import Fcore_FLX.
-Import Fcore_FLT.
-
Variable emin prec : Z.
Variable emin' prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FLT_double_round_div_hyp :
+Lemma FLT_round_round_div_hyp :
(emin' <= emin - prec - 2)%Z ->
(2 * prec <= prec')%Z ->
- double_round_div_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
+ round_round_div_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
Proof.
intros Hemin Hprec.
unfold FLT_exp.
unfold Prec_gt_0 in prec_gt_0_.
-unfold double_round_div_hyp.
+unfold round_round_div_hyp.
split; [intro ex|split; [|split; [|split]]; intros ex ey].
- generalize (Zmax_spec (ex - prec') emin').
generalize (Zmax_spec (ex - prec) emin).
@@ -4491,7 +4448,7 @@ split; [intro ex|split; [|split; [|split]]; intros ex ey].
omega.
Qed.
-Theorem double_round_div_FLT :
+Theorem round_round_div_FLT :
forall choice1 choice2,
(exists n, (beta = 2 * n :> Z)%Z) ->
(emin' <= emin - prec - 2)%Z ->
@@ -4499,15 +4456,15 @@ Theorem double_round_div_FLT :
forall x y,
y <> 0 ->
FLT_format beta emin prec x -> FLT_format beta emin prec y ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
+ round_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
choice1 choice2 (x / y).
Proof.
intros choice1 choice2 Ebeta Hemin Hprec x y Nzy Fx Fy.
-apply double_round_div.
+apply round_round_div.
- now apply FLT_exp_valid.
- now apply FLT_exp_valid.
- exact Ebeta.
-- now apply FLT_double_round_div_hyp.
+- now apply FLT_round_round_div_hyp.
- exact Nzy.
- now apply generic_format_FLT.
- now apply generic_format_FLT.
@@ -4517,25 +4474,22 @@ End Double_round_div_FLT.
Section Double_round_div_FTZ.
-Import Fcore_FLX.
-Import Fcore_FTZ.
-
Variable emin prec : Z.
Variable emin' prec' : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Context { prec_gt_0_' : Prec_gt_0 prec' }.
-Lemma FTZ_double_round_div_hyp :
+Lemma FTZ_round_round_div_hyp :
(emin' + prec' <= emin - 1)%Z ->
(2 * prec <= prec')%Z ->
- double_round_div_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
+ round_round_div_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
Proof.
intros Hemin Hprec.
unfold FTZ_exp.
unfold Prec_gt_0 in prec_gt_0_.
unfold Prec_gt_0 in prec_gt_0_.
-unfold double_round_div_hyp.
+unfold round_round_div_hyp.
split; [intro ex|split; [|split; [|split]]; intros ex ey].
- destruct (Z.ltb_spec (ex - prec') emin');
destruct (Z.ltb_spec (ex - prec) emin);
@@ -4562,7 +4516,7 @@ split; [intro ex|split; [|split; [|split]]; intros ex ey].
omega.
Qed.
-Theorem double_round_div_FTZ :
+Theorem round_round_div_FTZ :
forall choice1 choice2,
(exists n, (beta = 2 * n :> Z)%Z) ->
(emin' + prec' <= emin - 1)%Z ->
@@ -4570,15 +4524,15 @@ Theorem double_round_div_FTZ :
forall x y,
y <> 0 ->
FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
+ round_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
choice1 choice2 (x / y).
Proof.
intros choice1 choice2 Ebeta Hemin Hprec x y Nzy Fx Fy.
-apply double_round_div.
+apply round_round_div.
- now apply FTZ_exp_valid.
- now apply FTZ_exp_valid.
- exact Ebeta.
-- now apply FTZ_double_round_div_hyp.
+- now apply FTZ_round_round_div_hyp.
- exact Nzy.
- now apply generic_format_FTZ.
- now apply generic_format_FTZ.
diff --git a/flocq/Prop/Fprop_div_sqrt_error.v b/flocq/Prop/Fprop_div_sqrt_error.v
deleted file mode 100644
index 422b6b64..00000000
--- a/flocq/Prop/Fprop_div_sqrt_error.v
+++ /dev/null
@@ -1,300 +0,0 @@
-(**
-This file is part of the Flocq formalization of floating-point
-arithmetic in Coq: http://flocq.gforge.inria.fr/
-
-Copyright (C) 2010-2013 Sylvie Boldo
-#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
-
-This library is free software; you can redistribute it and/or
-modify it under the terms of the GNU Lesser General Public
-License as published by the Free Software Foundation; either
-version 3 of the License, or (at your option) any later version.
-
-This library is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-COPYING file for more details.
-*)
-
-(** * Remainder of the division and square root are in the FLX format *)
-Require Import Fcore.
-Require Import Fcalc_ops.
-Require Import Fprop_relative.
-
-Section Fprop_divsqrt_error.
-
-Variable beta : radix.
-Notation bpow e := (bpow beta e).
-
-Variable prec : Z.
-
-Theorem generic_format_plus_prec:
- forall fexp, (forall e, (fexp e <= e - prec)%Z) ->
- forall x y (fx fy: float beta),
- (x = F2R fx)%R -> (y = F2R fy)%R -> (Rabs (x+y) < bpow (prec+Fexp fx))%R -> (Rabs (x+y) < bpow (prec+Fexp fy))%R
- -> generic_format beta fexp (x+y)%R.
-intros fexp Hfexp x y fx fy Hx Hy H1 H2.
-case (Req_dec (x+y) 0); intros H.
-rewrite H; apply generic_format_0.
-rewrite Hx, Hy, <- F2R_plus.
-apply generic_format_F2R.
-intros _.
-case_eq (Fplus beta fx fy).
-intros mz ez Hz.
-rewrite <- Hz.
-apply Zle_trans with (Zmin (Fexp fx) (Fexp fy)).
-rewrite F2R_plus, <- Hx, <- Hy.
-unfold canonic_exp.
-apply Zle_trans with (1:=Hfexp _).
-apply Zplus_le_reg_l with prec; ring_simplify.
-apply ln_beta_le_bpow with (1 := H).
-now apply Zmin_case.
-rewrite <- Fexp_Fplus, Hz.
-apply Zle_refl.
-Qed.
-
-Theorem ex_Fexp_canonic: forall fexp, forall x, generic_format beta fexp x
- -> exists fx:float beta, (x=F2R fx)%R /\ Fexp fx = canonic_exp beta fexp x.
-intros fexp x; unfold generic_format.
-exists (Float beta (Ztrunc (scaled_mantissa beta fexp x)) (canonic_exp beta fexp x)).
-split; auto.
-Qed.
-
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-
-Notation format := (generic_format beta (FLX_exp prec)).
-Notation cexp := (canonic_exp beta (FLX_exp prec)).
-
-Variable choice : Z -> bool.
-
-
-(** Remainder of the division in FLX *)
-Theorem div_error_FLX :
- forall rnd { Zrnd : Valid_rnd rnd } x y,
- format x -> format y ->
- format (x - round beta (FLX_exp prec) rnd (x/y) * y)%R.
-Proof with auto with typeclass_instances.
-intros rnd Zrnd x y Hx Hy.
-destruct (Req_dec y 0) as [Zy|Zy].
-now rewrite Zy, Rmult_0_r, Rminus_0_r.
-destruct (Req_dec (round beta (FLX_exp prec) rnd (x/y)) 0) as [Hr|Hr].
-rewrite Hr; ring_simplify (x-0*y)%R; assumption.
-assert (Zx: x <> R0).
-contradict Hr.
-rewrite Hr.
-unfold Rdiv.
-now rewrite Rmult_0_l, round_0.
-destruct (ex_Fexp_canonic _ x Hx) as (fx,(Hx1,Hx2)).
-destruct (ex_Fexp_canonic _ y Hy) as (fy,(Hy1,Hy2)).
-destruct (ex_Fexp_canonic (FLX_exp prec) (round beta (FLX_exp prec) rnd (x / y))) as (fr,(Hr1,Hr2)).
-apply generic_format_round...
-unfold Rminus; apply generic_format_plus_prec with fx (Fopp beta (Fmult beta fr fy)); trivial.
-intros e; apply Zle_refl.
-now rewrite F2R_opp, F2R_mult, <- Hr1, <- Hy1.
-(* *)
-destruct (relative_error_FLX_ex beta prec (prec_gt_0 prec) rnd (x / y)%R) as (eps,(Heps1,Heps2)).
-rewrite Heps2.
-rewrite <- Rabs_Ropp.
-replace (-(x + - (x / y * (1 + eps) * y)))%R with (x * eps)%R by now field.
-rewrite Rabs_mult.
-apply Rlt_le_trans with (Rabs x * 1)%R.
-apply Rmult_lt_compat_l.
-now apply Rabs_pos_lt.
-apply Rlt_le_trans with (1 := Heps1).
-change 1%R with (bpow 0).
-apply bpow_le.
-generalize (prec_gt_0 prec).
-clear ; omega.
-rewrite Rmult_1_r.
-rewrite Hx2.
-unfold canonic_exp.
-destruct (ln_beta beta x) as (ex, Hex).
-simpl.
-specialize (Hex Zx).
-apply Rlt_le.
-apply Rlt_le_trans with (1 := proj2 Hex).
-apply bpow_le.
-unfold FLX_exp.
-ring_simplify.
-apply Zle_refl.
-(* *)
-replace (Fexp (Fopp beta (Fmult beta fr fy))) with (Fexp fr + Fexp fy)%Z.
-2: unfold Fopp, Fmult; destruct fr; destruct fy; now simpl.
-replace (x + - (round beta (FLX_exp prec) rnd (x / y) * y))%R with
- (y * (-(round beta (FLX_exp prec) rnd (x / y) - x/y)))%R.
-2: field; assumption.
-rewrite Rabs_mult.
-apply Rlt_le_trans with (Rabs y * bpow (Fexp fr))%R.
-apply Rmult_lt_compat_l.
-now apply Rabs_pos_lt.
-rewrite Rabs_Ropp.
-replace (bpow (Fexp fr)) with (ulp beta (FLX_exp prec) (F2R fr)).
-rewrite <- Hr1.
-apply error_lt_ulp_round...
-apply Rmult_integral_contrapositive_currified; try apply Rinv_neq_0_compat; assumption.
-rewrite ulp_neq_0.
-2: now rewrite <- Hr1.
-apply f_equal.
-now rewrite Hr2, <- Hr1.
-replace (prec+(Fexp fr+Fexp fy))%Z with ((prec+Fexp fy)+Fexp fr)%Z by ring.
-rewrite bpow_plus.
-apply Rmult_le_compat_r.
-apply bpow_ge_0.
-rewrite Hy2; unfold canonic_exp, FLX_exp.
-ring_simplify (prec + (ln_beta beta y - prec))%Z.
-destruct (ln_beta beta y); simpl.
-left; now apply a.
-Qed.
-
-(** Remainder of the square in FLX (with p>1) and rounding to nearest *)
-Variable Hp1 : Zlt 1 prec.
-
-Theorem sqrt_error_FLX_N :
- forall x, format x ->
- format (x - Rsqr (round beta (FLX_exp prec) (Znearest choice) (sqrt x)))%R.
-Proof with auto with typeclass_instances.
-intros x Hx.
-destruct (total_order_T x 0) as [[Hxz|Hxz]|Hxz].
-unfold sqrt.
-destruct (Rcase_abs x).
-rewrite round_0...
-unfold Rsqr.
-now rewrite Rmult_0_l, Rminus_0_r.
-elim (Rlt_irrefl 0).
-now apply Rgt_ge_trans with x.
-rewrite Hxz, sqrt_0, round_0...
-unfold Rsqr.
-rewrite Rmult_0_l, Rminus_0_r.
-apply generic_format_0.
-case (Req_dec (round beta (FLX_exp prec) (Znearest choice) (sqrt x)) 0); intros Hr.
-rewrite Hr; unfold Rsqr; ring_simplify (x-0*0)%R; assumption.
-destruct (ex_Fexp_canonic _ x Hx) as (fx,(Hx1,Hx2)).
-destruct (ex_Fexp_canonic (FLX_exp prec) (round beta (FLX_exp prec) (Znearest choice) (sqrt x))) as (fr,(Hr1,Hr2)).
-apply generic_format_round...
-unfold Rminus; apply generic_format_plus_prec with fx (Fopp beta (Fmult beta fr fr)); trivial.
-intros e; apply Zle_refl.
-unfold Rsqr; now rewrite F2R_opp,F2R_mult, <- Hr1.
-(* *)
-apply Rle_lt_trans with x.
-apply Rabs_minus_le.
-apply Rle_0_sqr.
-destruct (relative_error_N_FLX_ex beta prec (prec_gt_0 prec) choice (sqrt x)) as (eps,(Heps1,Heps2)).
-rewrite Heps2.
-rewrite Rsqr_mult, Rsqr_sqrt, Rmult_comm. 2: now apply Rlt_le.
-apply Rmult_le_compat_r.
-now apply Rlt_le.
-apply Rle_trans with (5²/4²)%R.
-rewrite <- Rsqr_div.
-apply Rsqr_le_abs_1.
-apply Rle_trans with (1 := Rabs_triang _ _).
-rewrite Rabs_R1.
-apply Rplus_le_reg_l with (-1)%R.
-replace (-1 + (1 + Rabs eps))%R with (Rabs eps) by ring.
-apply Rle_trans with (1 := Heps1).
-rewrite Rabs_pos_eq.
-apply Rmult_le_reg_l with 2%R.
-now apply (Z2R_lt 0 2).
-rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l.
-apply Rle_trans with (bpow (-1)).
-apply bpow_le.
-omega.
-replace (2 * (-1 + 5 / 4))%R with (/2)%R by field.
-apply Rinv_le.
-now apply (Z2R_lt 0 2).
-apply (Z2R_le 2).
-unfold Zpower_pos. simpl.
-rewrite Zmult_1_r.
-apply Zle_bool_imp_le.
-apply beta.
-apply Rgt_not_eq.
-now apply (Z2R_lt 0 2).
-unfold Rdiv.
-apply Rmult_le_pos.
-now apply (Z2R_le 0 5).
-apply Rlt_le.
-apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 4).
-apply Rgt_not_eq.
-now apply (Z2R_lt 0 4).
-unfold Rsqr.
-replace (5 * 5 / (4 * 4))%R with (25 * /16)%R by field.
-apply Rmult_le_reg_r with 16%R.
-now apply (Z2R_lt 0 16).
-rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
-now apply (Z2R_le 25 32).
-apply Rgt_not_eq.
-now apply (Z2R_lt 0 16).
-rewrite Hx2; unfold canonic_exp, FLX_exp.
-ring_simplify (prec + (ln_beta beta x - prec))%Z.
-destruct (ln_beta beta x); simpl.
-rewrite <- (Rabs_right x).
-apply a.
-now apply Rgt_not_eq.
-now apply Rgt_ge.
-(* *)
-replace (Fexp (Fopp beta (Fmult beta fr fr))) with (Fexp fr + Fexp fr)%Z.
-2: unfold Fopp, Fmult; destruct fr; now simpl.
-rewrite Hr1.
-replace (x + - Rsqr (F2R fr))%R with (-((F2R fr - sqrt x)*(F2R fr + sqrt x)))%R.
-2: rewrite <- (sqrt_sqrt x) at 3; auto.
-2: unfold Rsqr; ring.
-rewrite Rabs_Ropp, Rabs_mult.
-apply Rle_lt_trans with ((/2*bpow (Fexp fr))* Rabs (F2R fr + sqrt x))%R.
-apply Rmult_le_compat_r.
-apply Rabs_pos.
-apply Rle_trans with (/2*ulp beta (FLX_exp prec) (F2R fr))%R.
-rewrite <- Hr1.
-apply error_le_half_ulp_round...
-right; rewrite ulp_neq_0.
-2: now rewrite <- Hr1.
-apply f_equal.
-rewrite Hr2, <- Hr1; trivial.
-rewrite Rmult_assoc, Rmult_comm.
-replace (prec+(Fexp fr+Fexp fr))%Z with (Fexp fr + (prec+Fexp fr))%Z by ring.
-rewrite bpow_plus, Rmult_assoc.
-apply Rmult_lt_compat_l.
-apply bpow_gt_0.
-apply Rmult_lt_reg_l with (1 := Rlt_0_2).
-apply Rle_lt_trans with (Rabs (F2R fr + sqrt x)).
-right; field.
-apply Rle_lt_trans with (1:=Rabs_triang _ _).
-(* . *)
-assert (Rabs (F2R fr) < bpow (prec + Fexp fr))%R.
-rewrite Hr2; unfold canonic_exp; rewrite Hr1.
-unfold FLX_exp.
-ring_simplify (prec + (ln_beta beta (F2R fr) - prec))%Z.
-destruct (ln_beta beta (F2R fr)); simpl.
-apply a.
-rewrite <- Hr1; auto.
-(* . *)
-apply Rlt_le_trans with (bpow (prec + Fexp fr)+ Rabs (sqrt x))%R.
-now apply Rplus_lt_compat_r.
-(* . *)
-replace (2 * bpow (prec + Fexp fr))%R with (bpow (prec + Fexp fr) + bpow (prec + Fexp fr))%R by ring.
-apply Rplus_le_compat_l.
-assert (sqrt x <> 0)%R.
-apply Rgt_not_eq.
-now apply sqrt_lt_R0.
-destruct (ln_beta beta (sqrt x)) as (es,Es).
-specialize (Es H0).
-apply Rle_trans with (bpow es).
-now apply Rlt_le.
-apply bpow_le.
-case (Zle_or_lt es (prec + Fexp fr)) ; trivial.
-intros H1.
-absurd (Rabs (F2R fr) < bpow (es - 1))%R.
-apply Rle_not_lt.
-rewrite <- Hr1.
-apply abs_round_ge_generic...
-apply generic_format_bpow.
-unfold FLX_exp; omega.
-apply Es.
-apply Rlt_le_trans with (1:=H).
-apply bpow_le.
-omega.
-now apply Rlt_le.
-Qed.
-
-End Fprop_divsqrt_error.
diff --git a/flocq/Prop/Fprop_mult_error.v b/flocq/Prop/Mult_error.v
index 44448cd6..57a3856f 100644
--- a/flocq/Prop/Fprop_mult_error.v
+++ b/flocq/Prop/Mult_error.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2010-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2010-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,8 +18,7 @@ COPYING file for more details.
*)
(** * Error of the multiplication is in the FLX/FLT format *)
-Require Import Fcore.
-Require Import Fcalc_ops.
+Require Import Core Operations Plus_error.
Section Fprop_mult_error.
@@ -30,7 +29,7 @@ Variable prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Notation format := (generic_format beta (FLX_exp prec)).
-Notation cexp := (canonic_exp beta (FLX_exp prec)).
+Notation cexp := (cexp beta (FLX_exp prec)).
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
@@ -41,9 +40,9 @@ Lemma mult_error_FLX_aux:
format x -> format y ->
(round beta (FLX_exp prec) rnd (x * y) - (x * y) <> 0)%R ->
exists f:float beta,
- (F2R f = round beta (FLX_exp prec) rnd (x * y) - (x * y))%R
- /\ (canonic_exp beta (FLX_exp prec) (F2R f) <= Fexp f)%Z
- /\ (Fexp f = cexp x + cexp y)%Z.
+ (F2R f = round beta (FLX_exp prec) rnd (x * y) - (x * y))%R
+ /\ (cexp (F2R f) <= Fexp f)%Z
+ /\ (Fexp f = cexp x + cexp y)%Z.
Proof with auto with typeclass_instances.
intros x y Hx Hy Hz.
set (f := (round beta (FLX_exp prec) rnd (x * y))).
@@ -52,26 +51,26 @@ contradict Hz.
rewrite Hxy0.
rewrite round_0...
ring.
-destruct (ln_beta beta (x * y)) as (exy, Hexy).
+destruct (mag beta (x * y)) as (exy, Hexy).
specialize (Hexy Hxy0).
-destruct (ln_beta beta (f - x * y)) as (er, Her).
+destruct (mag beta (f - x * y)) as (er, Her).
specialize (Her Hz).
-destruct (ln_beta beta x) as (ex, Hex).
+destruct (mag beta x) as (ex, Hex).
assert (Hx0: (x <> 0)%R).
contradict Hxy0.
now rewrite Hxy0, Rmult_0_l.
specialize (Hex Hx0).
-destruct (ln_beta beta y) as (ey, Hey).
+destruct (mag beta y) as (ey, Hey).
assert (Hy0: (y <> 0)%R).
contradict Hxy0.
now rewrite Hxy0, Rmult_0_r.
specialize (Hey Hy0).
(* *)
assert (Hc1: (cexp (x * y)%R - prec <= cexp x + cexp y)%Z).
-unfold canonic_exp, FLX_exp.
-rewrite ln_beta_unique with (1 := Hex).
-rewrite ln_beta_unique with (1 := Hey).
-rewrite ln_beta_unique with (1 := Hexy).
+unfold cexp, FLX_exp.
+rewrite mag_unique with (1 := Hex).
+rewrite mag_unique with (1 := Hey).
+rewrite mag_unique with (1 := Hexy).
cut (exy - 1 < ex + ey)%Z. omega.
apply (lt_bpow beta).
apply Rle_lt_trans with (1 := proj1 Hexy).
@@ -84,10 +83,10 @@ apply Hex.
apply Hey.
(* *)
assert (Hc2: (cexp x + cexp y <= cexp (x * y)%R)%Z).
-unfold canonic_exp, FLX_exp.
-rewrite ln_beta_unique with (1 := Hex).
-rewrite ln_beta_unique with (1 := Hey).
-rewrite ln_beta_unique with (1 := Hexy).
+unfold cexp, FLX_exp.
+rewrite mag_unique with (1 := Hex).
+rewrite mag_unique with (1 := Hey).
+rewrite mag_unique with (1 := Hexy).
cut ((ex - 1) + (ey - 1) < exy)%Z.
generalize (prec_gt_0 prec).
clear ; omega.
@@ -120,16 +119,16 @@ split;[assumption|split].
rewrite Hr.
simpl.
clear Hr.
-apply Zle_trans with (cexp (x * y)%R - prec)%Z.
-unfold canonic_exp, FLX_exp.
+apply Z.le_trans with (cexp (x * y)%R - prec)%Z.
+unfold cexp, FLX_exp.
apply Zplus_le_compat_r.
-rewrite ln_beta_unique with (1 := Hexy).
-apply ln_beta_le_bpow with (1 := Hz).
+rewrite mag_unique with (1 := Hexy).
+apply mag_le_bpow with (1 := Hz).
replace (bpow (exy - prec)) with (ulp beta (FLX_exp prec) (x * y)).
apply error_lt_ulp...
rewrite ulp_neq_0; trivial.
-unfold canonic_exp.
-now rewrite ln_beta_unique with (1 := Hexy).
+unfold cexp.
+now rewrite mag_unique with (1 := Hexy).
apply Hc1.
reflexivity.
Qed.
@@ -149,6 +148,24 @@ rewrite <- H1.
now apply generic_format_F2R.
Qed.
+Lemma mult_bpow_exact_FLX :
+ forall x e,
+ format x ->
+ format (x * bpow e)%R.
+Proof.
+intros x e Fx.
+destruct (Req_dec x 0) as [Zx|Nzx].
+{ rewrite Zx, Rmult_0_l; apply generic_format_0. }
+rewrite Fx.
+set (mx := Ztrunc _); set (ex := cexp _).
+pose (f := {| Fnum := mx; Fexp := ex + e |} : float beta).
+apply (generic_format_F2R' _ _ _ f).
+{ now unfold F2R; simpl; rewrite bpow_plus, Rmult_assoc. }
+intro Nzmx; unfold mx, ex; rewrite <- Fx.
+unfold f, ex; simpl; unfold cexp; rewrite (mag_mult_bpow _ _ _ Nzx).
+unfold FLX_exp; omega.
+Qed.
+
End Fprop_mult_error.
Section Fprop_mult_error_FLT.
@@ -160,7 +177,7 @@ Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Notation format := (generic_format beta (FLT_exp emin prec)).
-Notation cexp := (canonic_exp beta (FLT_exp emin prec)).
+Notation cexp := (cexp beta (FLT_exp emin prec)).
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
@@ -169,7 +186,7 @@ Context { valid_rnd : Valid_rnd rnd }.
Theorem mult_error_FLT :
forall x y,
format x -> format y ->
- (x*y = 0)%R \/ (bpow (emin + 2*prec - 1) <= Rabs (x * y))%R ->
+ (x * y <> 0 -> bpow (emin + 2*prec - 1) <= Rabs (x * y))%R ->
format (round beta (FLT_exp emin prec) rnd (x * y) - (x * y))%R.
Proof with auto with typeclass_instances.
intros x y Hx Hy Hxy.
@@ -177,12 +194,13 @@ set (f := (round beta (FLT_exp emin prec) rnd (x * y))).
destruct (Req_dec (f - x * y) 0) as [Hr0|Hr0].
rewrite Hr0.
apply generic_format_0.
-destruct Hxy as [Hxy|Hxy].
+destruct (Req_dec (x * y) 0) as [Hxy'|Hxy'].
unfold f.
-rewrite Hxy.
+rewrite Hxy'.
rewrite round_0...
ring_simplify (0 - 0)%R.
apply generic_format_0.
+specialize (Hxy Hxy').
destruct (mult_error_FLX_aux beta prec rnd x y) as ((m,e),(H1,(H2,H3))).
now apply generic_format_FLX_FLT with emin.
now apply generic_format_FLX_FLT with emin.
@@ -199,14 +217,14 @@ unfold f; rewrite <- H1.
apply generic_format_F2R.
intros _.
simpl in H2, H3.
-unfold canonic_exp, FLT_exp.
-case (Zmax_spec (ln_beta beta (F2R (Float beta m e)) - prec) emin);
+unfold cexp, FLT_exp.
+case (Zmax_spec (mag beta (F2R (Float beta m e)) - prec) emin);
intros (M1,M2); rewrite M2.
-apply Zle_trans with (2:=H2).
-unfold canonic_exp, FLX_exp.
-apply Zle_refl.
+apply Z.le_trans with (2:=H2).
+unfold cexp, FLX_exp.
+apply Z.le_refl.
rewrite H3.
-unfold canonic_exp, FLX_exp.
+unfold cexp, FLX_exp.
assert (Hxy0:(x*y <> 0)%R).
contradict Hr0.
unfold f.
@@ -219,9 +237,9 @@ now rewrite Hxy0, Rmult_0_l.
assert (Hy0: (y <> 0)%R).
contradict Hxy0.
now rewrite Hxy0, Rmult_0_r.
-destruct (ln_beta beta x) as (ex,Ex) ; simpl.
+destruct (mag beta x) as (ex,Ex) ; simpl.
specialize (Ex Hx0).
-destruct (ln_beta beta y) as (ey,Ey) ; simpl.
+destruct (mag beta y) as (ey,Ey) ; simpl.
specialize (Ey Hy0).
assert (emin + 2 * prec -1 < ex + ey)%Z.
2: omega.
@@ -233,4 +251,85 @@ apply Ex.
apply Ey.
Qed.
+Lemma F2R_ge: forall (y:float beta),
+ (F2R y <> 0)%R -> (bpow (Fexp y) <= Rabs (F2R y))%R.
+Proof.
+intros (ny,ey).
+rewrite <- F2R_Zabs; unfold F2R; simpl.
+case (Zle_lt_or_eq 0 (Z.abs ny)).
+apply Z.abs_nonneg.
+intros Hy _.
+rewrite <- (Rmult_1_l (bpow _)) at 1.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+apply IZR_le; omega.
+intros H1 H2; contradict H2.
+replace ny with 0%Z.
+simpl; ring.
+now apply sym_eq, Z.abs_0_iff, sym_eq.
+Qed.
+
+Theorem mult_error_FLT_ge_bpow :
+ forall x y e,
+ format x -> format y ->
+ (bpow (e+2*prec-1) <= Rabs (x * y))%R ->
+ (round beta (FLT_exp emin prec) rnd (x * y) - (x * y) <> 0)%R ->
+ (bpow e <= Rabs (round beta (FLT_exp emin prec) rnd (x * y) - (x * y)))%R.
+Proof with auto with typeclass_instances.
+intros x y e.
+set (f := (round beta (FLT_exp emin prec) rnd (x * y))).
+intros Fx Fy H1.
+unfold f; rewrite Fx, Fy, <- F2R_mult.
+simpl Fmult.
+destruct (round_repr_same_exp beta (FLT_exp emin prec)
+ rnd (Ztrunc (scaled_mantissa beta (FLT_exp emin prec) x) *
+ Ztrunc (scaled_mantissa beta (FLT_exp emin prec) y))
+ (cexp x + cexp y)) as (n,Hn).
+rewrite Hn; clear Hn.
+rewrite <- F2R_minus, Fminus_same_exp.
+intros K.
+eapply Rle_trans with (2:=F2R_ge _ K).
+simpl (Fexp _).
+apply bpow_le.
+unfold cexp, FLT_exp.
+destruct (mag beta x) as (ex,Hx).
+destruct (mag beta y) as (ey,Hy).
+simpl; apply Z.le_trans with ((ex-prec)+(ey-prec))%Z.
+2: apply Zplus_le_compat; apply Z.le_max_l.
+assert (e + 2*prec -1< ex+ey)%Z;[idtac|omega].
+apply lt_bpow with beta.
+apply Rle_lt_trans with (1:=H1).
+rewrite Rabs_mult, bpow_plus.
+apply Rmult_lt_compat.
+apply Rabs_pos.
+apply Rabs_pos.
+apply Hx.
+intros K'; contradict H1; apply Rlt_not_le.
+rewrite K', Rmult_0_l, Rabs_R0; apply bpow_gt_0.
+apply Hy.
+intros K'; contradict H1; apply Rlt_not_le.
+rewrite K', Rmult_0_r, Rabs_R0; apply bpow_gt_0.
+Qed.
+
+Lemma mult_bpow_exact_FLT :
+ forall x e,
+ format x ->
+ (emin + prec - mag beta x <= e)%Z ->
+ format (x * bpow e)%R.
+Proof.
+intros x e Fx He.
+destruct (Req_dec x 0) as [Zx|Nzx].
+{ rewrite Zx, Rmult_0_l; apply generic_format_0. }
+rewrite Fx.
+set (mx := Ztrunc _); set (ex := cexp _).
+pose (f := {| Fnum := mx; Fexp := ex + e |} : float beta).
+apply (generic_format_F2R' _ _ _ f).
+{ now unfold F2R; simpl; rewrite bpow_plus, Rmult_assoc. }
+intro Nzmx; unfold mx, ex; rewrite <- Fx.
+unfold f, ex; simpl; unfold cexp; rewrite (mag_mult_bpow _ _ _ Nzx).
+unfold FLT_exp; rewrite Z.max_l; [|omega]; rewrite <- Z.add_max_distr_r.
+set (n := (_ - _ + _)%Z); apply (Z.le_trans _ n); [unfold n; omega|].
+apply Z.le_max_l.
+Qed.
+
End Fprop_mult_error_FLT.
diff --git a/flocq/Prop/Fprop_plus_error.v b/flocq/Prop/Plus_error.v
index 9bb5aee8..42f80093 100644
--- a/flocq/Prop/Fprop_plus_error.v
+++ b/flocq/Prop/Plus_error.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2010-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2010-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -20,15 +20,9 @@ COPYING file for more details.
(** * Error of the rounded-to-nearest addition is representable. *)
Require Import Psatz.
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_float_prop.
-Require Import Fcore_generic_fmt.
-Require Import Fcore_FIX.
-Require Import Fcore_FLX.
-Require Import Fcore_FLT.
-Require Import Fcore_ulp.
-Require Import Fcalc_ops.
+Require Import Raux Defs Float_prop Generic_fmt.
+Require Import FIX FLX FLT Ulp Operations.
+Require Import Relative.
Section Fprop_plus_error.
@@ -44,31 +38,31 @@ Section round_repr_same_exp.
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
-Theorem round_repr_same_exp :
+Lemma round_repr_same_exp :
forall m e,
exists m',
round beta fexp rnd (F2R (Float beta m e)) = F2R (Float beta m' e).
Proof with auto with typeclass_instances.
intros m e.
-set (e' := canonic_exp beta fexp (F2R (Float beta m e))).
+set (e' := cexp beta fexp (F2R (Float beta m e))).
unfold round, scaled_mantissa. fold e'.
destruct (Zle_or_lt e' e) as [He|He].
exists m.
unfold F2R at 2. simpl.
rewrite Rmult_assoc, <- bpow_plus.
-rewrite <- Z2R_Zpower. 2: omega.
-rewrite <- Z2R_mult, Zrnd_Z2R...
+rewrite <- IZR_Zpower. 2: omega.
+rewrite <- mult_IZR, Zrnd_IZR...
unfold F2R. simpl.
-rewrite Z2R_mult.
+rewrite mult_IZR.
rewrite Rmult_assoc.
-rewrite Z2R_Zpower. 2: omega.
+rewrite IZR_Zpower. 2: omega.
rewrite <- bpow_plus.
-apply (f_equal (fun v => Z2R m * bpow v)%R).
+apply (f_equal (fun v => IZR m * bpow v)%R).
ring.
-exists ((rnd (Z2R m * bpow (e - e'))) * Zpower beta (e' - e))%Z.
+exists ((rnd (IZR m * bpow (e - e'))) * Zpower beta (e' - e))%Z.
unfold F2R. simpl.
-rewrite Z2R_mult.
-rewrite Z2R_Zpower. 2: omega.
+rewrite mult_IZR.
+rewrite IZR_Zpower. 2: omega.
rewrite 2!Rmult_assoc.
rewrite <- 2!bpow_plus.
apply (f_equal (fun v => _ * bpow v)%R).
@@ -84,13 +78,13 @@ Variable choice : Z -> bool.
Lemma plus_error_aux :
forall x y,
- (canonic_exp beta fexp x <= canonic_exp beta fexp y)%Z ->
+ (cexp beta fexp x <= cexp beta fexp y)%Z ->
format x -> format y ->
format (round beta fexp (Znearest choice) (x + y) - (x + y))%R.
Proof.
intros x y.
-set (ex := canonic_exp beta fexp x).
-set (ey := canonic_exp beta fexp y).
+set (ex := cexp beta fexp x).
+set (ey := cexp beta fexp y).
intros He Hx Hy.
destruct (Req_dec (round beta fexp (Znearest choice) (x + y) - (x + y)) R0) as [H0|H0].
rewrite H0.
@@ -116,7 +110,7 @@ apply generic_format_F2R.
intros _.
apply monotone_exp.
rewrite <- H, <- Hxy', <- Hxy.
-apply ln_beta_le_abs.
+apply mag_le_abs.
exact H0.
pattern x at 3 ; replace x with (-(y - (x + y)))%R by ring.
rewrite Rabs_Ropp.
@@ -130,7 +124,7 @@ Theorem plus_error :
format (round beta fexp (Znearest choice) (x + y) - (x + y))%R.
Proof.
intros x y Hx Hy.
-destruct (Zle_or_lt (canonic_exp beta fexp x) (canonic_exp beta fexp y)).
+destruct (Zle_or_lt (cexp beta fexp x) (cexp beta fexp y)).
now apply plus_error_aux.
rewrite Rplus_comm.
apply plus_error_aux ; try easy.
@@ -154,20 +148,17 @@ Section round_plus_eq_zero_aux.
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
-Lemma round_plus_eq_zero_aux :
+Lemma round_plus_neq_0_aux :
forall x y,
- (canonic_exp beta fexp x <= canonic_exp beta fexp y)%Z ->
+ (cexp beta fexp x <= cexp beta fexp y)%Z ->
format x -> format y ->
- (0 <= x + y)%R ->
- round beta fexp rnd (x + y) = 0%R ->
- (x + y = 0)%R.
+ (0 < x + y)%R ->
+ round beta fexp rnd (x + y) <> 0%R.
Proof with auto with typeclass_instances.
-intros x y He Hx Hy Hp Hxy.
-destruct (Req_dec (x + y) 0) as [H0|H0].
-exact H0.
-destruct (ln_beta beta (x + y)) as (exy, Hexy).
+intros x y He Hx Hy Hxy.
+destruct (mag beta (x + y)) as (exy, Hexy).
simpl.
-specialize (Hexy H0).
+specialize (Hexy (Rgt_not_eq _ _ Hxy)).
destruct (Zle_or_lt exy (fexp exy)) as [He'|He'].
(* . *)
assert (H: (x + y)%R = F2R (Float beta (Ztrunc (x * bpow (- fexp exy)) +
@@ -175,19 +166,21 @@ assert (H: (x + y)%R = F2R (Float beta (Ztrunc (x * bpow (- fexp exy)) +
rewrite (subnormal_exponent beta fexp exy x He' Hx) at 1.
rewrite (subnormal_exponent beta fexp exy y He' Hy) at 1.
now rewrite <- F2R_plus, Fplus_same_exp.
-rewrite H in Hxy.
-rewrite round_generic in Hxy...
-now rewrite <- H in Hxy.
+rewrite H.
+rewrite round_generic...
+rewrite <- H.
+now apply Rgt_not_eq.
apply generic_format_F2R.
intros _.
rewrite <- H.
-unfold canonic_exp.
-rewrite ln_beta_unique with (1 := Hexy).
-apply Zle_refl.
+unfold cexp.
+rewrite mag_unique with (1 := Hexy).
+apply Z.le_refl.
(* . *)
+intros H.
elim Rle_not_lt with (1 := round_le beta _ rnd _ _ (proj1 Hexy)).
-rewrite (Rabs_pos_eq _ Hp).
-rewrite Hxy.
+rewrite (Rabs_pos_eq _ (Rlt_le _ _ Hxy)).
+rewrite H.
rewrite round_generic...
apply bpow_gt_0.
apply generic_format_bpow.
@@ -201,40 +194,46 @@ Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
(** rnd(x+y)=0 -> x+y = 0 provided this is not a FTZ format *)
-Theorem round_plus_eq_zero :
+Theorem round_plus_neq_0 :
forall x y,
format x -> format y ->
- round beta fexp rnd (x + y) = 0%R ->
- (x + y = 0)%R.
+ (x + y <> 0)%R ->
+ round beta fexp rnd (x + y) <> 0%R.
Proof with auto with typeclass_instances.
-intros x y Hx Hy.
+intros x y Hx Hy Hxy.
destruct (Rle_or_lt 0 (x + y)) as [H1|H1].
(* . *)
-revert H1.
-destruct (Zle_or_lt (canonic_exp beta fexp x) (canonic_exp beta fexp y)) as [H2|H2].
-now apply round_plus_eq_zero_aux.
+destruct (Zle_or_lt (cexp beta fexp x) (cexp beta fexp y)) as [H2|H2].
+apply round_plus_neq_0_aux...
+lra.
rewrite Rplus_comm.
-apply round_plus_eq_zero_aux ; try easy.
+apply round_plus_neq_0_aux ; try easy.
now apply Zlt_le_weak.
+lra.
(* . *)
-revert H1.
-rewrite <- (Ropp_involutive (x + y)), Ropp_plus_distr, <- Ropp_0.
-intros H1.
+rewrite <- (Ropp_involutive (x + y)), Ropp_plus_distr.
rewrite round_opp.
-intros Hxy.
-apply f_equal.
-cut (round beta fexp (Zrnd_opp rnd) (- x + - y) = 0)%R.
-cut (0 <= -x + -y)%R.
-destruct (Zle_or_lt (canonic_exp beta fexp (-x)) (canonic_exp beta fexp (-y))) as [H2|H2].
-apply round_plus_eq_zero_aux ; try apply generic_format_opp...
+apply Ropp_neq_0_compat.
+destruct (Zle_or_lt (cexp beta fexp (-x)) (cexp beta fexp (-y))) as [H2|H2].
+apply round_plus_neq_0_aux; try apply generic_format_opp...
+lra.
rewrite Rplus_comm.
-apply round_plus_eq_zero_aux ; try apply generic_format_opp...
+apply round_plus_neq_0_aux; try apply generic_format_opp...
now apply Zlt_le_weak.
-apply Rlt_le.
-now apply Ropp_lt_cancel.
-rewrite <- (Ropp_involutive (round _ _ _ _)).
-rewrite Hxy.
-apply Ropp_involutive.
+lra.
+Qed.
+
+Theorem round_plus_eq_0 :
+ forall x y,
+ format x -> format y ->
+ round beta fexp rnd (x + y) = 0%R ->
+ (x + y = 0)%R.
+Proof with auto with typeclass_instances.
+intros x y Fx Fy H.
+destruct (Req_dec (x + y) 0) as [H'|H'].
+exact H'.
+contradict H.
+now apply round_plus_neq_0.
Qed.
End Fprop_plus_zero.
@@ -258,14 +257,48 @@ apply generic_format_FLT_FIX...
rewrite Zplus_comm; assumption.
apply generic_format_FIX_FLT, FIX_format_generic in Fx.
apply generic_format_FIX_FLT, FIX_format_generic in Fy.
-destruct Fx as (nx,(H1x,H2x)).
-destruct Fy as (ny,(H1y,H2y)).
+destruct Fx as [nx H1x H2x].
+destruct Fy as [ny H1y H2y].
apply generic_format_FIX.
exists (Float beta (Fnum nx+Fnum ny)%Z emin).
-split;[idtac|reflexivity].
rewrite H1x,H1y; unfold F2R; simpl.
rewrite H2x, H2y.
-rewrite Z2R_plus; ring.
+rewrite plus_IZR; ring.
+easy.
+Qed.
+
+Variable choice : Z -> bool.
+
+Lemma FLT_plus_error_N_ex : forall x y,
+ generic_format beta (FLT_exp emin prec) x ->
+ generic_format beta (FLT_exp emin prec) y ->
+ exists eps,
+ (Rabs eps <= u_ro beta prec / (1 + u_ro beta prec))%R /\
+ round beta (FLT_exp emin prec) (Znearest choice) (x + y)
+ = ((x + y) * (1 + eps))%R.
+Proof.
+intros x y Fx Fy.
+assert (Pb := u_rod1pu_ro_pos beta prec).
+destruct (Rle_or_lt (bpow (emin + prec - 1)) (Rabs (x + y))) as [M|M].
+{ destruct (relative_error_N_FLX'_ex beta prec prec_gt_0_ choice (x + y))
+ as (d, (Bd, Hd)).
+ now exists d; split; [exact Bd|]; rewrite <- Hd; apply round_FLT_FLX. }
+exists 0%R; rewrite Rabs_R0; split; [exact Pb|]; rewrite Rplus_0_r, Rmult_1_r.
+apply round_generic; [apply valid_rnd_N|].
+apply FLT_format_plus_small; [exact Fx|exact Fy|].
+apply Rlt_le, (Rlt_le_trans _ _ _ M), bpow_le; lia.
+Qed.
+
+Lemma FLT_plus_error_N_round_ex : forall x y,
+ generic_format beta (FLT_exp emin prec) x ->
+ generic_format beta (FLT_exp emin prec) y ->
+ exists eps,
+ (Rabs eps <= u_ro beta prec)%R /\
+ (x + y
+ = round beta (FLT_exp emin prec) (Znearest choice) (x + y) * (1 + eps))%R.
+Proof.
+intros x y Fx Fy.
+now apply relative_error_N_round_ex_derive, FLT_plus_error_N_ex.
Qed.
End Fprop_plus_FLT.
@@ -282,62 +315,58 @@ Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.
Notation format := (generic_format beta fexp).
-Notation cexp := (canonic_exp beta fexp).
+Notation cexp := (cexp beta fexp).
Lemma ex_shift :
forall x e, format x -> (e <= cexp x)%Z ->
- exists m, (x = Z2R m * bpow e)%R.
+ exists m, (x = IZR m * bpow e)%R.
Proof with auto with typeclass_instances.
intros x e Fx He.
exists (Ztrunc (scaled_mantissa beta fexp x)*Zpower beta (cexp x -e))%Z.
rewrite Fx at 1; unfold F2R; simpl.
-rewrite Z2R_mult, Rmult_assoc.
+rewrite mult_IZR, Rmult_assoc.
f_equal.
-rewrite Z2R_Zpower.
+rewrite IZR_Zpower.
2: omega.
rewrite <- bpow_plus; f_equal; ring.
Qed.
-Lemma ln_beta_minus1 :
+Lemma mag_minus1 :
forall z, z <> 0%R ->
- (ln_beta beta z - 1)%Z = ln_beta beta (z / Z2R beta).
+ (mag beta z - 1)%Z = mag beta (z / IZR beta).
Proof.
intros z Hz.
unfold Zminus.
-rewrite <- ln_beta_mult_bpow with (1 := Hz).
+rewrite <- mag_mult_bpow by easy.
now rewrite bpow_opp, bpow_1.
Qed.
-Theorem round_plus_mult_ulp :
+Theorem round_plus_F2R :
forall x y, format x -> format y -> (x <> 0)%R ->
- exists m, (round beta fexp rnd (x+y) = Z2R m * ulp beta fexp (x/Z2R beta))%R.
+ exists m,
+ round beta fexp rnd (x+y) = F2R (Float beta m (cexp (x / IZR beta))).
Proof with auto with typeclass_instances.
intros x y Fx Fy Zx.
-case (Zle_or_lt (ln_beta beta (x/Z2R beta)) (ln_beta beta y)); intros H1.
-pose (e:=cexp (x / Z2R beta)).
+case (Zle_or_lt (mag beta (x/IZR beta)) (mag beta y)); intros H1.
+pose (e:=cexp (x / IZR beta)).
destruct (ex_shift x e) as (nx, Hnx); try exact Fx.
apply monotone_exp.
-rewrite <- (ln_beta_minus1 x Zx); omega.
+rewrite <- (mag_minus1 x Zx); omega.
destruct (ex_shift y e) as (ny, Hny); try assumption.
apply monotone_exp...
destruct (round_repr_same_exp beta fexp rnd (nx+ny) e) as (n,Hn).
exists n.
-apply trans_eq with (F2R (Float beta n e)).
+fold e.
rewrite <- Hn; f_equal.
-rewrite Hnx, Hny; unfold F2R; simpl; rewrite Z2R_plus; ring.
+rewrite Hnx, Hny; unfold F2R; simpl; rewrite plus_IZR; ring.
unfold F2R; simpl.
-rewrite ulp_neq_0; try easy.
-apply Rmult_integral_contrapositive_currified; try assumption.
-apply Rinv_neq_0_compat.
-apply Rgt_not_eq.
-apply radix_pos.
(* *)
-destruct (ex_shift (round beta fexp rnd (x + y)) (cexp (x/Z2R beta))) as (n,Hn).
+destruct (ex_shift (round beta fexp rnd (x + y)) (cexp (x/IZR beta))) as (n,Hn).
apply generic_format_round...
-apply Zle_trans with (cexp (x+y)).
+apply Z.le_trans with (cexp (x+y)).
apply monotone_exp.
-rewrite <- ln_beta_minus1 by easy.
-rewrite <- (ln_beta_abs beta (x+y)).
+rewrite <- mag_minus1 by easy.
+rewrite <- (mag_abs beta (x+y)).
(* . *)
assert (U: (Rabs (x+y) = Rabs x + Rabs y)%R \/ (y <> 0 /\ Rabs (x+y) = Rabs x - Rabs y)%R).
assert (V: forall x y, (Rabs y <= Rabs x)%R ->
@@ -374,94 +403,89 @@ rewrite Rabs_left1.
ring.
lra.
apply V; left.
-apply ln_beta_lt_pos with beta.
+apply lt_mag with beta.
now apply Rabs_pos_lt.
-rewrite <- ln_beta_minus1 in H1; try assumption.
-rewrite 2!ln_beta_abs; omega.
+rewrite <- mag_minus1 in H1; try assumption.
+rewrite 2!mag_abs; omega.
(* . *)
destruct U as [U|U].
-rewrite U; apply Zle_trans with (ln_beta beta x).
+rewrite U; apply Z.le_trans with (mag beta x).
omega.
-rewrite <- ln_beta_abs.
-apply ln_beta_le.
+rewrite <- mag_abs.
+apply mag_le.
now apply Rabs_pos_lt.
apply Rplus_le_reg_l with (-Rabs x)%R; ring_simplify.
apply Rabs_pos.
destruct U as (U',U); rewrite U.
-rewrite <- ln_beta_abs.
-apply ln_beta_minus_lb.
+rewrite <- mag_abs.
+apply mag_minus_lb.
now apply Rabs_pos_lt.
now apply Rabs_pos_lt.
-rewrite 2!ln_beta_abs.
-assert (ln_beta beta y < ln_beta beta x - 1)%Z.
-now rewrite (ln_beta_minus1 x Zx).
+rewrite 2!mag_abs.
+assert (mag beta y < mag beta x - 1)%Z.
+now rewrite (mag_minus1 x Zx).
omega.
-apply canonic_exp_round_ge...
-intros K.
-apply round_plus_eq_zero in K...
+apply cexp_round_ge...
+apply round_plus_neq_0...
contradict H1; apply Zle_not_lt.
-rewrite <- (ln_beta_minus1 x Zx).
+rewrite <- (mag_minus1 x Zx).
replace y with (-x)%R.
-rewrite ln_beta_opp; omega.
+rewrite mag_opp; omega.
lra.
-exists n.
-rewrite ulp_neq_0.
-assumption.
-apply Rmult_integral_contrapositive_currified; try assumption.
-apply Rinv_neq_0_compat.
-apply Rgt_not_eq.
-apply radix_pos.
+now exists n.
Qed.
Context {exp_not_FTZ : Exp_not_FTZ fexp}.
Theorem round_plus_ge_ulp :
forall x y, format x -> format y ->
- round beta fexp rnd (x+y) = 0%R \/
- (ulp beta fexp (x/Z2R beta) <= Rabs (round beta fexp rnd (x+y)))%R.
+ round beta fexp rnd (x+y) <> 0%R ->
+ (ulp beta fexp (x/IZR beta) <= Rabs (round beta fexp rnd (x+y)))%R.
Proof with auto with typeclass_instances.
-intros x y Fx Fy.
+intros x y Fx Fy KK.
case (Req_dec x 0); intros Zx.
(* *)
rewrite Zx, Rplus_0_l.
rewrite round_generic...
unfold Rdiv; rewrite Rmult_0_l.
-rewrite Fy at 2.
+rewrite Fy.
unfold F2R; simpl; rewrite Rabs_mult.
rewrite (Rabs_pos_eq (bpow _)) by apply bpow_ge_0.
case (Z.eq_dec (Ztrunc (scaled_mantissa beta fexp y)) 0); intros Hm.
-left.
-rewrite Fy, Hm; unfold F2R; simpl; ring.
-right.
+contradict KK.
+rewrite Zx, Fy, Hm; unfold F2R; simpl.
+rewrite Rplus_0_l, Rmult_0_l.
+apply round_0...
apply Rle_trans with (1*bpow (cexp y))%R.
rewrite Rmult_1_l.
rewrite <- ulp_neq_0.
apply ulp_ge_ulp_0...
intros K; apply Hm.
rewrite K, scaled_mantissa_0.
-apply (Ztrunc_Z2R 0).
+apply Ztrunc_IZR.
apply Rmult_le_compat_r.
apply bpow_ge_0.
-rewrite <- Z2R_abs.
-apply (Z2R_le 1).
+rewrite <- abs_IZR.
+apply IZR_le.
apply (Zlt_le_succ 0).
now apply Z.abs_pos.
(* *)
-destruct (round_plus_mult_ulp x y Fx Fy Zx) as (m,Hm).
+destruct (round_plus_F2R x y Fx Fy Zx) as (m,Hm).
case (Z.eq_dec m 0); intros Zm.
-left.
-rewrite Hm, Zm; simpl; ring.
-right.
-rewrite Hm, Rabs_mult.
-rewrite (Rabs_pos_eq (ulp _ _ _)) by apply ulp_ge_0.
-apply Rle_trans with (1*ulp beta fexp (x/Z2R beta))%R.
-right; ring.
+contradict KK.
+rewrite Hm, Zm.
+apply F2R_0.
+rewrite Hm, <- F2R_Zabs.
+rewrite ulp_neq_0.
+rewrite <- (Rmult_1_l (bpow _)).
apply Rmult_le_compat_r.
-apply ulp_ge_0.
-rewrite <- Z2R_abs.
-apply (Z2R_le 1).
+apply bpow_ge_0.
+apply IZR_le.
apply (Zlt_le_succ 0).
now apply Z.abs_pos.
+apply Rmult_integral_contrapositive_currified with (1 := Zx).
+apply Rinv_neq_0_compat.
+apply Rgt_not_eq, radix_pos.
Qed.
End Fprop_plus_mult_ulp.
@@ -476,27 +500,27 @@ Context { valid_rnd : Valid_rnd rnd }.
Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
-Theorem round_plus_ge_ulp_FLT : forall x y e,
+Theorem round_FLT_plus_ge :
+ forall x y e,
generic_format beta (FLT_exp emin prec) x -> generic_format beta (FLT_exp emin prec) y ->
- (bpow e <= Rabs x)%R ->
- round beta (FLT_exp emin prec) rnd (x+y) = 0%R \/
- (bpow (e - prec) <= Rabs (round beta (FLT_exp emin prec) rnd (x+y)))%R.
+ (bpow (e + prec) <= Rabs x)%R ->
+ round beta (FLT_exp emin prec) rnd (x + y) <> 0%R ->
+ (bpow e <= Rabs (round beta (FLT_exp emin prec) rnd (x + y)))%R.
Proof with auto with typeclass_instances.
-intros x y e Fx Fy He.
+intros x y e Fx Fy He KK.
assert (Zx: x <> 0%R).
contradict He.
apply Rlt_not_le; rewrite He, Rabs_R0.
apply bpow_gt_0.
-case round_plus_ge_ulp with beta (FLT_exp emin prec) rnd x y...
-intros H; right.
-apply Rle_trans with (2:=H).
+apply Rle_trans with (ulp beta (FLT_exp emin prec) (x/IZR beta)).
+2: apply round_plus_ge_ulp...
rewrite ulp_neq_0.
-unfold canonic_exp.
-rewrite <- ln_beta_minus1 by easy.
+unfold cexp.
+rewrite <- mag_minus1; try assumption.
unfold FLT_exp; apply bpow_le.
-apply Zle_trans with (2:=Z.le_max_l _ _).
-destruct (ln_beta beta x) as (n,Hn); simpl.
-assert (e < n)%Z; try omega.
+apply Z.le_trans with (2:=Z.le_max_l _ _).
+destruct (mag beta x) as (n,Hn); simpl.
+assert (e + prec < n)%Z; try omega.
apply lt_bpow with beta.
apply Rle_lt_trans with (1:=He).
now apply Hn.
@@ -506,26 +530,45 @@ apply Rgt_not_eq.
apply radix_pos.
Qed.
-Theorem round_plus_ge_ulp_FLX : forall x y e,
+Lemma round_FLT_plus_ge' :
+ forall x y e,
+ generic_format beta (FLT_exp emin prec) x -> generic_format beta (FLT_exp emin prec) y ->
+ (x <> 0%R -> (bpow (e+prec) <= Rabs x)%R) ->
+ (x = 0%R -> y <> 0%R -> (bpow e <= Rabs y)%R) ->
+ round beta (FLT_exp emin prec) rnd (x+y) <> 0%R ->
+ (bpow e <= Rabs (round beta (FLT_exp emin prec) rnd (x+y)))%R.
+Proof with auto with typeclass_instances.
+intros x y e Fx Fy H1 H2 H3.
+case (Req_dec x 0); intros H4.
+case (Req_dec y 0); intros H5.
+contradict H3.
+rewrite H4, H5, Rplus_0_l; apply round_0...
+rewrite H4, Rplus_0_l.
+rewrite round_generic...
+apply round_FLT_plus_ge; try easy.
+now apply H1.
+Qed.
+
+Theorem round_FLX_plus_ge :
+ forall x y e,
generic_format beta (FLX_exp prec) x -> generic_format beta (FLX_exp prec) y ->
- (bpow e <= Rabs x)%R ->
- round beta (FLX_exp prec) rnd (x+y) = 0%R \/
- (bpow (e - prec) <= Rabs (round beta (FLX_exp prec) rnd (x+y)))%R.
+ (bpow (e+prec) <= Rabs x)%R ->
+ (round beta (FLX_exp prec) rnd (x+y) <> 0)%R ->
+ (bpow e <= Rabs (round beta (FLX_exp prec) rnd (x+y)))%R.
Proof with auto with typeclass_instances.
-intros x y e Fx Fy He.
+intros x y e Fx Fy He KK.
assert (Zx: x <> 0%R).
contradict He.
apply Rlt_not_le; rewrite He, Rabs_R0.
apply bpow_gt_0.
-case round_plus_ge_ulp with beta (FLX_exp prec) rnd x y...
-intros H; right.
-apply Rle_trans with (2:=H).
+apply Rle_trans with (ulp beta (FLX_exp prec) (x/IZR beta)).
+2: apply round_plus_ge_ulp...
rewrite ulp_neq_0.
-unfold canonic_exp.
-rewrite <- ln_beta_minus1 by easy.
+unfold cexp.
+rewrite <- mag_minus1 by easy.
unfold FLX_exp; apply bpow_le.
-destruct (ln_beta beta x) as (n,Hn); simpl.
-assert (e < n)%Z; try omega.
+destruct (mag beta x) as (n,Hn); simpl.
+assert (e + prec < n)%Z; try omega.
apply lt_bpow with beta.
apply Rle_lt_trans with (1:=He).
now apply Hn.
@@ -536,3 +579,28 @@ apply radix_pos.
Qed.
End Fprop_plus_ge_ulp.
+
+Section Fprop_plus_le_ops.
+
+Variable beta : radix.
+Variable fexp : Z -> Z.
+Context { valid_exp : Valid_exp fexp }.
+Variable choice : Z -> bool.
+
+Lemma plus_error_le_l :
+ forall x y,
+ generic_format beta fexp x -> generic_format beta fexp y ->
+ (Rabs (round beta fexp (Znearest choice) (x + y) - (x + y)) <= Rabs x)%R.
+Proof.
+intros x y Fx Fy.
+apply (Rle_trans _ (Rabs (y - (x + y)))); [now apply round_N_pt|].
+rewrite Rabs_minus_sym; right; f_equal; ring.
+Qed.
+
+Lemma plus_error_le_r :
+ forall x y,
+ generic_format beta fexp x -> generic_format beta fexp y ->
+ (Rabs (round beta fexp (Znearest choice) (x + y) - (x + y)) <= Rabs y)%R.
+Proof. now intros x y Fx Fy; rewrite Rplus_comm; apply plus_error_le_l. Qed.
+
+End Fprop_plus_le_ops.
diff --git a/flocq/Prop/Fprop_relative.v b/flocq/Prop/Relative.v
index 276ccd3b..b936f2f7 100644
--- a/flocq/Prop/Fprop_relative.v
+++ b/flocq/Prop/Relative.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2010-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2010-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -18,7 +18,8 @@ COPYING file for more details.
*)
(** * Relative error of the roundings *)
-Require Import Fcore.
+Require Import Core.
+Require Import Psatz. (* for lra *)
Section Fprop_relative.
@@ -88,6 +89,32 @@ rewrite Rinv_l with (1 := Hx0).
now rewrite Rabs_R1, Rmult_1_r.
Qed.
+Lemma relative_error_le_conversion_inv :
+ forall x b,
+ (exists eps,
+ (Rabs eps <= b)%R /\ round beta fexp rnd x = (x * (1 + eps))%R) ->
+ (Rabs (round beta fexp rnd x - x) <= b * Rabs x)%R.
+Proof with auto with typeclass_instances.
+intros x b (eps, (Beps, Heps)).
+assert (Pb : (0 <= b)%R); [now revert Beps; apply Rle_trans, Rabs_pos|].
+rewrite Heps; replace (_ - _)%R with (eps * x)%R; [|ring].
+now rewrite Rabs_mult; apply Rmult_le_compat_r; [apply Rabs_pos|].
+Qed.
+
+Lemma relative_error_le_conversion_round_inv :
+ forall x b,
+ (exists eps,
+ (Rabs eps <= b)%R /\ x = (round beta fexp rnd x * (1 + eps))%R) ->
+ (Rabs (round beta fexp rnd x - x) <= b * Rabs (round beta fexp rnd x))%R.
+Proof with auto with typeclass_instances.
+intros x b.
+set (rx := round _ _ _ _).
+intros (eps, (Beps, Heps)).
+assert (Pb : (0 <= b)%R); [now revert Beps; apply Rle_trans, Rabs_pos|].
+rewrite Heps; replace (_ - _)%R with (- (eps * rx))%R; [|ring].
+now rewrite Rabs_Ropp, Rabs_mult; apply Rmult_le_compat_r; [apply Rabs_pos|].
+Qed.
+
End relative_error_conversion.
Variable emin p : Z.
@@ -108,8 +135,8 @@ apply Rlt_not_le, bpow_gt_0.
apply Rlt_le_trans with (ulp beta fexp x)%R.
now apply error_lt_ulp...
rewrite ulp_neq_0; trivial.
-unfold canonic_exp.
-destruct (ln_beta beta x) as (ex, He).
+unfold cexp.
+destruct (mag beta x) as (ex, He).
simpl.
specialize (He Hx').
apply Rle_trans with (bpow (-p + 1) * bpow (ex - 1))%R.
@@ -150,7 +177,7 @@ apply relative_error.
unfold x.
rewrite <- F2R_Zabs.
apply bpow_le_F2R.
-apply F2R_lt_reg with beta emin.
+apply lt_F2R with beta emin.
rewrite F2R_0, F2R_Zabs.
now apply Rabs_pos_lt.
Qed.
@@ -179,8 +206,8 @@ apply Rlt_not_le, bpow_gt_0.
apply Rlt_le_trans with (ulp beta fexp x)%R.
now apply error_lt_ulp.
rewrite ulp_neq_0; trivial.
-unfold canonic_exp.
-destruct (ln_beta beta x) as (ex, He).
+unfold cexp.
+destruct (mag beta x) as (ex, He).
simpl.
specialize (He Hx').
assert (He': (emin < ex)%Z).
@@ -218,7 +245,7 @@ exact Hp.
unfold x.
rewrite <- F2R_Zabs.
apply bpow_le_F2R.
-apply F2R_lt_reg with beta emin.
+apply lt_F2R with beta emin.
rewrite F2R_0, F2R_Zabs.
now apply Rabs_pos_lt.
Qed.
@@ -237,15 +264,15 @@ rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply Rlt_le.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
assert (Hx': (x <> 0)%R).
intros H.
apply Rlt_not_le with (2 := Hx).
rewrite H, Rabs_R0.
apply bpow_gt_0.
rewrite ulp_neq_0; trivial.
-unfold canonic_exp.
-destruct (ln_beta beta x) as (ex, He).
+unfold cexp.
+destruct (mag beta x) as (ex, He).
simpl.
specialize (He Hx').
apply Rle_trans with (bpow (-p + 1) * bpow (ex - 1))%R.
@@ -274,7 +301,7 @@ apply relative_error_le_conversion...
apply Rlt_le.
apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
apply bpow_gt_0.
now apply relative_error_N.
Qed.
@@ -296,7 +323,7 @@ apply relative_error_N.
unfold x.
rewrite <- F2R_Zabs.
apply bpow_le_F2R.
-apply F2R_lt_reg with beta emin.
+apply lt_F2R with beta emin.
rewrite F2R_0, F2R_Zabs.
now apply Rabs_pos_lt.
Qed.
@@ -311,7 +338,7 @@ apply relative_error_le_conversion...
apply Rlt_le.
apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
apply bpow_gt_0.
now apply relative_error_N_F2R_emin.
Qed.
@@ -329,15 +356,15 @@ rewrite Rmult_assoc.
apply Rmult_le_compat_l.
apply Rlt_le.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
assert (Hx': (x <> 0)%R).
intros H.
apply Rlt_not_le with (2 := Hx).
rewrite H, Rabs_R0.
apply bpow_gt_0.
rewrite ulp_neq_0; trivial.
-unfold canonic_exp.
-destruct (ln_beta beta x) as (ex, He).
+unfold cexp.
+destruct (mag beta x) as (ex, He).
simpl.
specialize (He Hx').
assert (He': (emin < ex)%Z).
@@ -381,17 +408,250 @@ apply relative_error_N_round with (1 := Hp).
unfold x.
rewrite <- F2R_Zabs.
apply bpow_le_F2R.
-apply F2R_lt_reg with beta emin.
+apply lt_F2R with beta emin.
rewrite F2R_0, F2R_Zabs.
now apply Rabs_pos_lt.
Qed.
End Fprop_relative_generic.
+Section Fprop_relative_FLX.
+
+Variable prec : Z.
+Variable Hp : Z.lt 0 prec.
+
+Lemma relative_error_FLX_aux :
+ forall k, (prec <= k - FLX_exp prec k)%Z.
+Proof.
+intros k.
+unfold FLX_exp.
+omega.
+Qed.
+
+Variable rnd : R -> Z.
+Context { valid_rnd : Valid_rnd rnd }.
+
+Theorem relative_error_FLX :
+ forall x,
+ (x <> 0)%R ->
+ (Rabs (round beta (FLX_exp prec) rnd x - x) < bpow (-prec + 1) * Rabs x)%R.
+Proof with auto with typeclass_instances.
+intros x Hx.
+destruct (mag beta x) as (ex, He).
+specialize (He Hx).
+apply relative_error with (ex - 1)%Z...
+intros k _.
+apply relative_error_FLX_aux.
+apply He.
+Qed.
+
+(** 1+#&epsilon;# property in any rounding in FLX *)
+Theorem relative_error_FLX_ex :
+ forall x,
+ exists eps,
+ (Rabs eps < bpow (-prec + 1))%R /\ round beta (FLX_exp prec) rnd x = (x * (1 + eps))%R.
+Proof with auto with typeclass_instances.
+intros x.
+apply relative_error_lt_conversion...
+apply bpow_gt_0.
+now apply relative_error_FLX.
+Qed.
+
+Theorem relative_error_FLX_round :
+ forall x,
+ (x <> 0)%R ->
+ (Rabs (round beta (FLX_exp prec) rnd x - x) < bpow (-prec + 1) * Rabs (round beta (FLX_exp prec) rnd x))%R.
+Proof with auto with typeclass_instances.
+intros x Hx.
+destruct (mag beta x) as (ex, He).
+specialize (He Hx).
+apply relative_error_round with (ex - 1)%Z...
+intros k _.
+apply relative_error_FLX_aux.
+apply He.
+Qed.
+
+Variable choice : Z -> bool.
+
+Theorem relative_error_N_FLX :
+ forall x,
+ (Rabs (round beta (FLX_exp prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs x)%R.
+Proof with auto with typeclass_instances.
+intros x.
+destruct (Req_dec x 0) as [Hx|Hx].
+(* . *)
+rewrite Hx, round_0...
+unfold Rminus.
+rewrite Rplus_0_l, Rabs_Ropp, Rabs_R0.
+rewrite Rmult_0_r.
+apply Rle_refl.
+(* . *)
+destruct (mag beta x) as (ex, He).
+specialize (He Hx).
+apply relative_error_N with (ex - 1)%Z...
+intros k _.
+apply relative_error_FLX_aux.
+apply He.
+Qed.
+
+(** unit roundoff *)
+Definition u_ro := (/2 * bpow (-prec + 1))%R.
+
+Lemma u_ro_pos : (0 <= u_ro)%R.
+Proof. apply Rmult_le_pos; [lra|apply bpow_ge_0]. Qed.
+
+Lemma u_ro_lt_1 : (u_ro < 1)%R.
+Proof.
+unfold u_ro; apply (Rmult_lt_reg_l 2); [lra|].
+rewrite <-Rmult_assoc, Rinv_r, Rmult_1_l, Rmult_1_r; [|lra].
+apply (Rle_lt_trans _ (bpow 0));
+ [apply bpow_le; omega|simpl; lra].
+Qed.
+
+Lemma u_rod1pu_ro_pos : (0 <= u_ro / (1 + u_ro))%R.
+Proof.
+apply Rmult_le_pos; [|apply Rlt_le, Rinv_0_lt_compat];
+assert (H := u_ro_pos); lra.
+Qed.
+
+Lemma u_rod1pu_ro_le_u_ro : (u_ro / (1 + u_ro) <= u_ro)%R.
+Proof.
+assert (Pu_ro := u_ro_pos).
+apply (Rmult_le_reg_r (1 + u_ro)); [lra|].
+unfold Rdiv; rewrite Rmult_assoc, Rinv_l; [|lra].
+assert (0 <= u_ro * u_ro)%R; [apply Rmult_le_pos|]; lra.
+Qed.
+
+Theorem relative_error_N_FLX' :
+ forall x,
+ (Rabs (round beta (FLX_exp prec) (Znearest choice) x - x)
+ <= u_ro / (1 + u_ro) * Rabs x)%R.
+Proof with auto with typeclass_instances.
+intro x.
+assert (Pu_ro : (0 <= u_ro)%R).
+{ apply Rmult_le_pos; [lra|apply bpow_ge_0]. }
+destruct (Req_dec x 0) as [Zx|Nzx].
+{ rewrite Zx, Rabs_R0, Rmult_0_r, round_0...
+ now unfold Rminus; rewrite Rplus_0_l, Rabs_Ropp, Rabs_R0; right. }
+set (ufpx := bpow (mag beta x - 1)%Z).
+set (rx := round _ _ _ _).
+assert (Pufpx : (0 <= ufpx)%R); [now apply bpow_ge_0|].
+assert (H_2_1 : (Rabs (rx - x) <= u_ro * ufpx)%R).
+{ refine (Rle_trans _ _ _ (error_le_half_ulp _ _ _ _) _);
+ [now apply FLX_exp_valid|right].
+ unfold ulp, cexp, FLX_exp, u_ro, ufpx; rewrite (Req_bool_false _ _ Nzx).
+ rewrite Rmult_assoc, <-bpow_plus; do 2 f_equal; ring. }
+assert (H_2_3 : (ufpx + Rabs (rx - x) <= Rabs x)%R).
+{ apply (Rplus_le_reg_r (- ufpx)); ring_simplify.
+ destruct (Rle_or_lt 0 x) as [Sx|Sx].
+ { apply (Rle_trans _ (Rabs (ufpx - x))).
+ { apply round_N_pt; [now apply FLX_exp_valid|].
+ apply generic_format_bpow; unfold FLX_exp; lia. }
+ rewrite Rabs_minus_sym, Rabs_pos_eq.
+ { now rewrite Rabs_pos_eq; [right; ring|]. }
+ apply (Rplus_le_reg_r ufpx); ring_simplify.
+ now rewrite <-(Rabs_pos_eq _ Sx); apply bpow_mag_le. }
+ apply (Rle_trans _ (Rabs (- ufpx - x))).
+ { apply round_N_pt; [now apply FLX_exp_valid|].
+ apply generic_format_opp, generic_format_bpow; unfold FLX_exp; lia. }
+ rewrite Rabs_pos_eq; [now rewrite Rabs_left; [right|]|].
+ apply (Rplus_le_reg_r x); ring_simplify.
+ rewrite <-(Ropp_involutive x); apply Ropp_le_contravar; unfold ufpx.
+ rewrite <-mag_opp, <-Rabs_pos_eq; [apply bpow_mag_le|]; lra. }
+assert (H : (Rabs ((rx - x) / x) <= u_ro / (1 + u_ro))%R).
+{ assert (H : (0 < ufpx + Rabs (rx - x))%R).
+ { apply Rplus_lt_le_0_compat; [apply bpow_gt_0|apply Rabs_pos]. }
+ apply (Rle_trans _ (Rabs (rx - x) / (ufpx + Rabs (rx - x)))).
+ { unfold Rdiv; rewrite Rabs_mult; apply Rmult_le_compat_l; [apply Rabs_pos|].
+ now rewrite (Rabs_Rinv _ Nzx); apply Rinv_le. }
+ apply (Rmult_le_reg_r ((ufpx + Rabs (rx - x)) * (1 + u_ro))).
+ { apply Rmult_lt_0_compat; lra. }
+ field_simplify; [unfold Rdiv; rewrite Rinv_1, !Rmult_1_r| |]; lra. }
+revert H; unfold Rdiv; rewrite Rabs_mult, (Rabs_Rinv _ Nzx); intro H.
+apply (Rmult_le_reg_r (/ Rabs x)); [now apply Rinv_0_lt_compat, Rabs_pos_lt|].
+now apply (Rle_trans _ _ _ H); right; field; split; [apply Rabs_no_R0|lra].
+Qed.
+
+(** 1+#&epsilon;# property in rounding to nearest in FLX *)
+Theorem relative_error_N_FLX_ex :
+ forall x,
+ exists eps,
+ (Rabs eps <= /2 * bpow (-prec + 1))%R /\ round beta (FLX_exp prec) (Znearest choice) x = (x * (1 + eps))%R.
+Proof with auto with typeclass_instances.
+intros x.
+apply relative_error_le_conversion...
+apply Rlt_le.
+apply Rmult_lt_0_compat.
+apply Rinv_0_lt_compat.
+now apply IZR_lt.
+apply bpow_gt_0.
+now apply relative_error_N_FLX.
+Qed.
+
+Theorem relative_error_N_FLX'_ex :
+ forall x,
+ exists eps,
+ (Rabs eps <= u_ro / (1 + u_ro))%R /\
+ round beta (FLX_exp prec) (Znearest choice) x = (x * (1 + eps))%R.
+Proof with auto with typeclass_instances.
+intros x.
+apply relative_error_le_conversion...
+{ apply u_rod1pu_ro_pos. }
+now apply relative_error_N_FLX'.
+Qed.
+
+Lemma relative_error_N_round_ex_derive :
+ forall x rx,
+ (exists eps, (Rabs eps <= u_ro / (1 + u_ro))%R /\ rx = (x * (1 + eps))%R) ->
+ exists eps, (Rabs eps <= u_ro)%R /\ x = (rx * (1 + eps))%R.
+Proof.
+intros x rx (d, (Bd, Hd)).
+assert (Pu_ro := u_ro_pos).
+assert (H := Rabs_le_inv _ _ Bd).
+assert (H' := u_rod1pu_ro_le_u_ro); assert (H'' := u_ro_lt_1).
+destruct (Req_dec rx 0) as [Zfx|Nzfx].
+{ exists 0%R; split; [now rewrite Rabs_R0|].
+ rewrite Rplus_0_r, Rmult_1_r, Zfx.
+ now rewrite Zfx in Hd; destruct (Rmult_integral _ _ (sym_eq Hd)); [|lra]. }
+destruct (Req_dec x 0) as [Zx|Nzx].
+{ now exfalso; revert Hd; rewrite Zx, Rmult_0_l. }
+set (d' := ((x - rx) / rx)%R).
+assert (Hd' : (Rabs d' <= u_ro)%R).
+{ unfold d'; rewrite Hd.
+ replace (_ / _)%R with (- d / (1 + d))%R; [|now field; split; lra].
+ unfold Rdiv; rewrite Rabs_mult, Rabs_Ropp.
+ rewrite (Rabs_pos_eq (/ _)); [|apply Rlt_le, Rinv_0_lt_compat; lra].
+ apply (Rmult_le_reg_r (1 + d)); [lra|].
+ rewrite Rmult_assoc, Rinv_l, Rmult_1_r; [|lra].
+ apply (Rle_trans _ _ _ Bd).
+ unfold Rdiv; apply Rmult_le_compat_l; [now apply u_ro_pos|].
+ apply (Rle_trans _ (1 - u_ro / (1 + u_ro))); [right; field|]; lra. }
+now exists d'; split; [|unfold d'; field].
+Qed.
+
+Theorem relative_error_N_FLX_round_ex :
+ forall x,
+ exists eps,
+ (Rabs eps <= u_ro)%R /\
+ x = (round beta (FLX_exp prec) (Znearest choice) x * (1 + eps))%R.
+Proof.
+intro x; apply relative_error_N_round_ex_derive, relative_error_N_FLX'_ex.
+Qed.
+
+Theorem relative_error_N_FLX_round :
+ forall x,
+ (Rabs (round beta (FLX_exp prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs(round beta (FLX_exp prec) (Znearest choice) x))%R.
+Proof.
+intro x.
+apply relative_error_le_conversion_round_inv, relative_error_N_FLX_round_ex.
+Qed.
+
+End Fprop_relative_FLX.
+
Section Fprop_relative_FLT.
Variable emin prec : Z.
-Variable Hp : Zlt 0 prec.
+Variable Hp : Z.lt 0 prec.
Lemma relative_error_FLT_aux :
forall k, (emin + prec - 1 < k)%Z -> (prec <= k - FLT_exp emin prec k)%Z.
@@ -486,7 +746,7 @@ apply relative_error_le_conversion...
apply Rlt_le.
apply Rmult_lt_0_compat.
apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
+now apply IZR_lt.
apply bpow_gt_0.
now apply relative_error_N_FLT.
Qed.
@@ -607,23 +867,84 @@ apply Rlt_le, pos_half_prf.
rewrite ulp_neq_0.
2: now apply Rgt_not_eq.
apply bpow_le.
-unfold FLT_exp, canonic_exp.
+unfold FLT_exp, cexp.
rewrite Zmax_right.
omega.
-destruct (ln_beta beta x) as (e,He); simpl.
+destruct (mag beta x) as (e,He); simpl.
assert (e-1 < emin+prec)%Z.
apply (lt_bpow beta).
apply Rle_lt_trans with (2:=Hx).
-rewrite <- (Rabs_right x).
-apply He; auto with real.
-apply Rle_ge; now left.
+rewrite <- (Rabs_pos_eq x) by now apply Rlt_le.
+now apply He, Rgt_not_eq.
omega.
-split;ring.
+split ; ring.
+Qed.
+
+Theorem relative_error_N_FLT'_ex :
+ forall x,
+ exists eps eta : R,
+ (Rabs eps <= u_ro prec / (1 + u_ro prec))%R /\
+ (Rabs eta <= /2 * bpow emin)%R /\
+ (eps * eta = 0)%R /\
+ round beta (FLT_exp emin prec) (Znearest choice) x
+ = (x * (1 + eps) + eta)%R.
+Proof.
+intro x.
+set (rx := round _ _ _ x).
+assert (Pb := u_rod1pu_ro_pos prec).
+destruct (Rle_or_lt (bpow (emin + prec - 1)) (Rabs x)) as [MX|Mx].
+{ destruct (relative_error_N_FLX'_ex prec Hp choice x) as (d, (Bd, Hd)).
+ exists d, 0%R; split; [exact Bd|]; split.
+ { rewrite Rabs_R0; apply Rmult_le_pos; [lra|apply bpow_ge_0]. }
+ rewrite Rplus_0_r, Rmult_0_r; split; [reflexivity|].
+ now rewrite <- Hd; apply round_FLT_FLX. }
+assert (H : (Rabs (rx - x) <= /2 * bpow emin)%R).
+{ refine (Rle_trans _ _ _ (error_le_half_ulp _ _ _ _) _);
+ [now apply FLT_exp_valid|].
+ rewrite ulp_FLT_small; [now right|now simpl|].
+ apply (Rlt_le_trans _ _ _ Mx), bpow_le; lia. }
+exists 0%R, (rx - x)%R; split; [now rewrite Rabs_R0|]; split; [exact H|].
+now rewrite Rmult_0_l, Rplus_0_r, Rmult_1_r; split; [|ring].
+Qed.
+
+Theorem relative_error_N_FLT'_ex_separate :
+ forall x,
+ exists x' : R,
+ round beta (FLT_exp emin prec) (Znearest choice) x'
+ = round beta (FLT_exp emin prec) (Znearest choice) x /\
+ (exists eta, Rabs eta <= /2 * bpow emin /\ x' = x + eta)%R /\
+ (exists eps, Rabs eps <= u_ro prec / (1 + u_ro prec) /\
+ round beta (FLT_exp emin prec) (Znearest choice) x'
+ = x' * (1 + eps))%R.
+Proof.
+intro x.
+set (rx := round _ _ _ x).
+destruct (relative_error_N_FLT'_ex x) as (d, (e, (Bd, (Be, (Hde0, Hde))))).
+destruct (Rlt_or_le (Rabs (d * x)) (Rabs e)) as [HdxLte|HeLedx].
+{ exists rx; split; [|split].
+ { apply round_generic; [now apply valid_rnd_N|].
+ now apply generic_format_round; [apply FLT_exp_valid|apply valid_rnd_N]. }
+ { exists e; split; [exact Be|].
+ unfold rx; rewrite Hde; destruct (Rmult_integral _ _ Hde0) as [Zd|Ze].
+ { now rewrite Zd, Rplus_0_r, Rmult_1_r. }
+ exfalso; revert HdxLte; rewrite Ze, Rabs_R0; apply Rle_not_lt, Rabs_pos. }
+ exists 0%R; split; [now rewrite Rabs_R0; apply u_rod1pu_ro_pos|].
+ rewrite Rplus_0_r, Rmult_1_r; apply round_generic; [now apply valid_rnd_N|].
+ now apply generic_format_round; [apply FLT_exp_valid|apply valid_rnd_N]. }
+exists x; split; [now simpl|split].
+{ exists 0%R; split;
+ [rewrite Rabs_R0; apply Rmult_le_pos; [lra|apply bpow_ge_0]|ring]. }
+exists d; rewrite Hde; destruct (Rmult_integral _ _ Hde0) as [Zd|Ze].
+{ split; [exact Bd|].
+ assert (Ze : e = 0%R); [|now rewrite Ze, Rplus_0_r].
+ apply Rabs_eq_R0, Rle_antisym; [|now apply Rabs_pos].
+ now revert HeLedx; rewrite Zd, Rmult_0_l, Rabs_R0. }
+now rewrite Ze, Rplus_0_r.
Qed.
End Fprop_relative_FLT.
-Lemma error_N_FLT :
+Theorem error_N_FLT :
forall (emin prec : Z), (0 < prec)%Z ->
forall (choice : Z -> bool),
forall (x : R),
@@ -638,9 +959,9 @@ intros emin prec Pprec choice x.
destruct (Rtotal_order x 0) as [Nx|[Zx|Px]].
{ assert (Pmx : (0 < - x)%R).
{ now rewrite <- Ropp_0; apply Ropp_lt_contravar. }
- destruct (error_N_FLT_aux emin prec Pprec
- (fun t : Z => negb (choice (- (t + 1))%Z))
- (- x)%R Pmx)
+ destruct (@error_N_FLT_aux emin prec Pprec
+ (fun t : Z => negb (choice (- (t + 1))%Z))
+ (- x)%R Pmx)
as (d,(e,(Hd,(He,(Hde,Hr))))).
exists d; exists (- e)%R; split; [exact Hd|split; [|split]].
{ now rewrite Rabs_Ropp. }
@@ -659,124 +980,4 @@ destruct (Rtotal_order x 0) as [Nx|[Zx|Px]].
now apply error_N_FLT_aux.
Qed.
-Section Fprop_relative_FLX.
-
-Variable prec : Z.
-Variable Hp : Zlt 0 prec.
-
-Lemma relative_error_FLX_aux :
- forall k, (prec <= k - FLX_exp prec k)%Z.
-Proof.
-intros k.
-unfold FLX_exp.
-omega.
-Qed.
-
-Variable rnd : R -> Z.
-Context { valid_rnd : Valid_rnd rnd }.
-
-Theorem relative_error_FLX :
- forall x,
- (x <> 0)%R ->
- (Rabs (round beta (FLX_exp prec) rnd x - x) < bpow (-prec + 1) * Rabs x)%R.
-Proof with auto with typeclass_instances.
-intros x Hx.
-destruct (ln_beta beta x) as (ex, He).
-specialize (He Hx).
-apply relative_error with (ex - 1)%Z...
-intros k _.
-apply relative_error_FLX_aux.
-apply He.
-Qed.
-
-(** 1+#&epsilon;# property in any rounding in FLX *)
-Theorem relative_error_FLX_ex :
- forall x,
- exists eps,
- (Rabs eps < bpow (-prec + 1))%R /\ round beta (FLX_exp prec) rnd x = (x * (1 + eps))%R.
-Proof with auto with typeclass_instances.
-intros x.
-apply relative_error_lt_conversion...
-apply bpow_gt_0.
-now apply relative_error_FLX.
-Qed.
-
-Theorem relative_error_FLX_round :
- forall x,
- (x <> 0)%R ->
- (Rabs (round beta (FLX_exp prec) rnd x - x) < bpow (-prec + 1) * Rabs (round beta (FLX_exp prec) rnd x))%R.
-Proof with auto with typeclass_instances.
-intros x Hx.
-destruct (ln_beta beta x) as (ex, He).
-specialize (He Hx).
-apply relative_error_round with (ex - 1)%Z...
-intros k _.
-apply relative_error_FLX_aux.
-apply He.
-Qed.
-
-Variable choice : Z -> bool.
-
-Theorem relative_error_N_FLX :
- forall x,
- (Rabs (round beta (FLX_exp prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs x)%R.
-Proof with auto with typeclass_instances.
-intros x.
-destruct (Req_dec x 0) as [Hx|Hx].
-(* . *)
-rewrite Hx, round_0...
-unfold Rminus.
-rewrite Rplus_0_l, Rabs_Ropp, Rabs_R0.
-rewrite Rmult_0_r.
-apply Rle_refl.
-(* . *)
-destruct (ln_beta beta x) as (ex, He).
-specialize (He Hx).
-apply relative_error_N with (ex - 1)%Z...
-intros k _.
-apply relative_error_FLX_aux.
-apply He.
-Qed.
-
-(** 1+#&epsilon;# property in rounding to nearest in FLX *)
-Theorem relative_error_N_FLX_ex :
- forall x,
- exists eps,
- (Rabs eps <= /2 * bpow (-prec + 1))%R /\ round beta (FLX_exp prec) (Znearest choice) x = (x * (1 + eps))%R.
-Proof with auto with typeclass_instances.
-intros x.
-apply relative_error_le_conversion...
-apply Rlt_le.
-apply Rmult_lt_0_compat.
-apply Rinv_0_lt_compat.
-now apply (Z2R_lt 0 2).
-apply bpow_gt_0.
-now apply relative_error_N_FLX.
-Qed.
-
-Theorem relative_error_N_FLX_round :
- forall x,
- (Rabs (round beta (FLX_exp prec) (Znearest choice) x - x) <= /2 * bpow (-prec + 1) * Rabs (round beta (FLX_exp prec) (Znearest choice) x))%R.
-Proof with auto with typeclass_instances.
-intros x.
-destruct (Req_dec x 0) as [Hx|Hx].
-(* . *)
-rewrite Hx, round_0...
-unfold Rminus.
-rewrite Rplus_0_l, Rabs_Ropp, Rabs_R0.
-rewrite Rmult_0_r.
-apply Rle_refl.
-(* . *)
-destruct (ln_beta beta x) as (ex, He).
-specialize (He Hx).
-apply relative_error_N_round with (ex - 1)%Z.
-now apply FLX_exp_valid.
-intros k _.
-apply relative_error_FLX_aux.
-exact Hp.
-apply He.
-Qed.
-
-End Fprop_relative_FLX.
-
-End Fprop_relative. \ No newline at end of file
+End Fprop_relative.
diff --git a/flocq/Appli/Fappli_rnd_odd.v b/flocq/Prop/Round_odd.v
index 273c1000..df2952cc 100644
--- a/flocq/Appli/Fappli_rnd_odd.v
+++ b/flocq/Prop/Round_odd.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2013-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2013-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -21,12 +21,11 @@ COPYING file for more details.
between rnd_NE and double rounding with rnd_odd and then rnd_NE *)
Require Import Reals Psatz.
-Require Import Fcore.
-Require Import Fcalc_ops.
+Require Import Core Operations.
-Definition Zrnd_odd x := match Req_EM_T x (Z2R (Zfloor x)) with
+Definition Zrnd_odd x := match Req_EM_T x (IZR (Zfloor x)) with
| left _ => Zfloor x
- | right _ => match (Zeven (Zfloor x)) with
+ | right _ => match (Z.even (Zfloor x)) with
| true => Zceil x
| false => Zfloor x
end
@@ -41,64 +40,120 @@ split.
intros x y Hxy.
assert (Zfloor x <= Zrnd_odd y)%Z.
(* .. *)
-apply Zle_trans with (Zfloor y).
+apply Z.le_trans with (Zfloor y).
now apply Zfloor_le.
-unfold Zrnd_odd; destruct (Req_EM_T y (Z2R (Zfloor y))).
-now apply Zle_refl.
-case (Zeven (Zfloor y)).
-apply le_Z2R.
+unfold Zrnd_odd; destruct (Req_EM_T y (IZR (Zfloor y))).
+now apply Z.le_refl.
+case (Z.even (Zfloor y)).
+apply le_IZR.
apply Rle_trans with y.
apply Zfloor_lb.
apply Zceil_ub.
-now apply Zle_refl.
+now apply Z.le_refl.
unfold Zrnd_odd at 1.
(* . *)
-destruct (Req_EM_T x (Z2R (Zfloor x))) as [Hx|Hx].
+destruct (Req_EM_T x (IZR (Zfloor x))) as [Hx|Hx].
(* .. *)
apply H.
(* .. *)
-case_eq (Zeven (Zfloor x)); intros Hx2.
+case_eq (Z.even (Zfloor x)); intros Hx2.
2: apply H.
-unfold Zrnd_odd; destruct (Req_EM_T y (Z2R (Zfloor y))) as [Hy|Hy].
+unfold Zrnd_odd; destruct (Req_EM_T y (IZR (Zfloor y))) as [Hy|Hy].
apply Zceil_glb.
now rewrite <- Hy.
-case_eq (Zeven (Zfloor y)); intros Hy2.
+case_eq (Z.even (Zfloor y)); intros Hy2.
now apply Zceil_le.
apply Zceil_glb.
assert (H0:(Zfloor x <= Zfloor y)%Z) by now apply Zfloor_le.
case (Zle_lt_or_eq _ _ H0); intros H1.
apply Rle_trans with (1:=Zceil_ub _).
rewrite Zceil_floor_neq.
-apply Z2R_le; omega.
+apply IZR_le; omega.
now apply sym_not_eq.
contradict Hy2.
rewrite <- H1, Hx2; discriminate.
(* . *)
intros n; unfold Zrnd_odd.
-rewrite Zfloor_Z2R, Zceil_Z2R.
-destruct (Req_EM_T (Z2R n) (Z2R n)); trivial.
-case (Zeven n); trivial.
+rewrite Zfloor_IZR, Zceil_IZR.
+destruct (Req_EM_T (IZR n) (IZR n)); trivial.
+case (Z.even n); trivial.
Qed.
-Lemma Zrnd_odd_Zodd: forall x, x <> (Z2R (Zfloor x)) ->
- (Zeven (Zrnd_odd x)) = false.
+Lemma Zrnd_odd_Zodd: forall x, x <> (IZR (Zfloor x)) ->
+ (Z.even (Zrnd_odd x)) = false.
Proof.
intros x Hx; unfold Zrnd_odd.
-destruct (Req_EM_T x (Z2R (Zfloor x))) as [H|H].
+destruct (Req_EM_T x (IZR (Zfloor x))) as [H|H].
now contradict H.
-case_eq (Zeven (Zfloor x)).
+case_eq (Z.even (Zfloor x)).
(* difficult case *)
intros H'.
rewrite Zceil_floor_neq.
-rewrite Zeven_plus, H'.
+rewrite Z.even_add, H'.
reflexivity.
now apply sym_not_eq.
trivial.
Qed.
+Lemma Zfloor_plus: forall (n:Z) y,
+ (Zfloor (IZR n+y) = n + Zfloor y)%Z.
+Proof.
+intros n y; unfold Zfloor.
+unfold Zminus; rewrite Zplus_assoc; f_equal.
+apply sym_eq, tech_up.
+rewrite plus_IZR.
+apply Rplus_lt_compat_l.
+apply archimed.
+rewrite plus_IZR, Rplus_assoc.
+apply Rplus_le_compat_l.
+apply Rplus_le_reg_r with (-y)%R.
+ring_simplify (y+1+-y)%R.
+apply archimed.
+Qed.
+
+Lemma Zceil_plus: forall (n:Z) y,
+ (Zceil (IZR n+y) = n + Zceil y)%Z.
+Proof.
+intros n y; unfold Zceil.
+rewrite Ropp_plus_distr, <- Ropp_Ropp_IZR.
+rewrite Zfloor_plus.
+ring.
+Qed.
+
+
+Lemma Zeven_abs: forall z, Z.even (Z.abs z) = Z.even z.
+Proof.
+intros z; case (Zle_or_lt z 0); intros H1.
+rewrite Z.abs_neq; try assumption.
+apply Z.even_opp.
+rewrite Z.abs_eq; auto with zarith.
+Qed.
+
+
+
+
+Lemma Zrnd_odd_plus: forall x y, (x = IZR (Zfloor x)) ->
+ Z.even (Zfloor x) = true ->
+ (IZR (Zrnd_odd (x+y)) = x+IZR (Zrnd_odd y))%R.
+Proof.
+intros x y Hx H.
+unfold Zrnd_odd; rewrite Hx, Zfloor_plus.
+case (Req_EM_T y (IZR (Zfloor y))); intros Hy.
+rewrite Hy; repeat rewrite <- plus_IZR.
+repeat rewrite Zfloor_IZR.
+case (Req_EM_T _ _); intros K; easy.
+case (Req_EM_T _ _); intros K.
+contradict Hy.
+apply Rplus_eq_reg_l with (IZR (Zfloor x)).
+now rewrite K, plus_IZR.
+rewrite Z.even_add, H; simpl.
+case (Z.even (Zfloor y)).
+now rewrite Zceil_plus, plus_IZR.
+now rewrite plus_IZR.
+Qed.
Section Fcore_rnd_odd.
@@ -113,20 +168,19 @@ Context { valid_exp : Valid_exp fexp }.
Context { exists_NE_ : Exists_NE beta fexp }.
Notation format := (generic_format beta fexp).
-Notation canonic := (canonic beta fexp).
-Notation cexp := (canonic_exp beta fexp).
+Notation canonical := (canonical beta fexp).
+Notation cexp := (cexp beta fexp).
Definition Rnd_odd_pt (x f : R) :=
format f /\ ((f = x)%R \/
((Rnd_DN_pt format x f \/ Rnd_UP_pt format x f) /\
- exists g : float beta, f = F2R g /\ canonic g /\ Zeven (Fnum g) = false)).
+ exists g : float beta, f = F2R g /\ canonical g /\ Z.even (Fnum g) = false)).
Definition Rnd_odd (rnd : R -> R) :=
forall x : R, Rnd_odd_pt x (rnd x).
-
-Theorem Rnd_odd_pt_sym : forall x f : R,
+Theorem Rnd_odd_pt_opp_inv : forall x f : R,
Rnd_odd_pt (-x) (-f) -> Rnd_odd_pt x f.
Proof with auto with typeclass_instances.
intros x f (H1,H2).
@@ -144,12 +198,12 @@ destruct H2.
right.
replace f with (-(-f))%R by ring.
replace x with (-(-x))%R by ring.
-apply Rnd_DN_UP_pt_sym...
+apply Rnd_UP_pt_opp...
apply generic_format_opp.
left.
replace f with (-(-f))%R by ring.
replace x with (-(-x))%R by ring.
-apply Rnd_UP_DN_pt_sym...
+apply Rnd_DN_pt_opp...
apply generic_format_opp.
exists (Float beta (-Fnum g) (Fexp g)).
split.
@@ -157,15 +211,15 @@ rewrite F2R_Zopp.
replace f with (-(-f))%R by ring.
rewrite Hg1; reflexivity.
split.
-now apply canonic_opp.
+now apply canonical_opp.
simpl.
-now rewrite Zeven_opp.
+now rewrite Z.even_opp.
Qed.
Theorem round_odd_opp :
forall x,
- (round beta fexp Zrnd_odd (-x) = (- round beta fexp Zrnd_odd x))%R.
+ round beta fexp Zrnd_odd (-x) = (- round beta fexp Zrnd_odd x)%R.
Proof.
intros x; unfold round.
rewrite <- F2R_Zopp.
@@ -174,36 +228,36 @@ apply f_equal2; apply f_equal.
rewrite scaled_mantissa_opp.
generalize (scaled_mantissa beta fexp x); intros r.
unfold Zrnd_odd.
-case (Req_EM_T (- r) (Z2R (Zfloor (- r)))).
-case (Req_EM_T r (Z2R (Zfloor r))).
+case (Req_EM_T (- r) (IZR (Zfloor (- r)))).
+case (Req_EM_T r (IZR (Zfloor r))).
intros Y1 Y2.
-apply eq_Z2R.
-now rewrite Z2R_opp, <- Y1, <-Y2.
+apply eq_IZR.
+now rewrite opp_IZR, <- Y1, <-Y2.
intros Y1 Y2.
-absurd (r=Z2R (Zfloor r)); trivial.
+absurd (r=IZR (Zfloor r)); trivial.
pattern r at 2; replace r with (-(-r))%R by ring.
-rewrite Y2, <- Z2R_opp.
-rewrite Zfloor_Z2R.
-rewrite Z2R_opp, <- Y2.
+rewrite Y2, <- opp_IZR.
+rewrite Zfloor_IZR.
+rewrite opp_IZR, <- Y2.
ring.
-case (Req_EM_T r (Z2R (Zfloor r))).
+case (Req_EM_T r (IZR (Zfloor r))).
intros Y1 Y2.
-absurd (-r=Z2R (Zfloor (-r)))%R; trivial.
+absurd (-r=IZR (Zfloor (-r)))%R; trivial.
pattern r at 2; rewrite Y1.
-rewrite <- Z2R_opp, Zfloor_Z2R.
-now rewrite Z2R_opp, <- Y1.
+rewrite <- opp_IZR, Zfloor_IZR.
+now rewrite opp_IZR, <- Y1.
intros Y1 Y2.
unfold Zceil; rewrite Ropp_involutive.
-replace (Zeven (Zfloor (- r))) with (negb (Zeven (Zfloor r))).
-case (Zeven (Zfloor r)); simpl; ring.
-apply trans_eq with (Zeven (Zceil r)).
+replace (Z.even (Zfloor (- r))) with (negb (Z.even (Zfloor r))).
+case (Z.even (Zfloor r)); simpl; ring.
+apply trans_eq with (Z.even (Zceil r)).
rewrite Zceil_floor_neq.
-rewrite Zeven_plus.
-destruct (Zeven (Zfloor r)); reflexivity.
+rewrite Z.even_add.
+destruct (Z.even (Zfloor r)); reflexivity.
now apply sym_not_eq.
-rewrite <- (Zeven_opp (Zfloor (- r))).
+rewrite <- (Z.even_opp (Zfloor (- r))).
reflexivity.
-apply canonic_exp_opp.
+apply cexp_opp.
Qed.
@@ -221,7 +275,7 @@ rewrite round_0...
split.
apply generic_format_0.
now left.
-intros Hx; apply Rnd_odd_pt_sym.
+intros Hx; apply Rnd_odd_pt_opp_inv.
rewrite <- round_odd_opp.
apply H.
auto with real.
@@ -248,7 +302,7 @@ right; apply round_UP_pt...
(* *)
unfold o, Zrnd_odd, round.
case (Req_EM_T (scaled_mantissa beta fexp x)
- (Z2R (Zfloor (scaled_mantissa beta fexp x)))).
+ (IZR (Zfloor (scaled_mantissa beta fexp x)))).
intros T.
absurd (o=x); trivial.
apply round_generic...
@@ -260,20 +314,20 @@ apply Rmult_le_pos.
now left.
apply bpow_ge_0.
intros L.
-case_eq (Zeven (Zfloor (scaled_mantissa beta fexp x))).
+case_eq (Z.even (Zfloor (scaled_mantissa beta fexp x))).
(* . *)
generalize (generic_format_round beta fexp Zceil x).
unfold generic_format.
set (f:=round beta fexp Zceil x).
-set (ef := canonic_exp beta fexp f).
+set (ef := cexp f).
set (mf := Ztrunc (scaled_mantissa beta fexp f)).
exists (Float beta mf ef).
-unfold Fcore_generic_fmt.canonic.
+unfold canonical.
rewrite <- H0.
repeat split; try assumption.
-apply trans_eq with (negb (Zeven (Zfloor (scaled_mantissa beta fexp x)))).
+apply trans_eq with (negb (Z.even (Zfloor (scaled_mantissa beta fexp x)))).
2: rewrite H1; reflexivity.
-apply trans_eq with (negb (Zeven (Fnum
+apply trans_eq with (negb (Z.even (Fnum
(Float beta (Zfloor (scaled_mantissa beta fexp x)) (cexp x))))).
2: reflexivity.
case (Rle_lt_or_eq_dec 0 (round beta fexp Zfloor x)).
@@ -294,10 +348,10 @@ assumption.
apply Rmult_le_pos.
now left.
apply bpow_ge_0.
-unfold Fcore_generic_fmt.canonic.
+unfold canonical.
simpl.
-apply sym_eq, canonic_exp_DN...
-unfold Fcore_generic_fmt.canonic.
+apply sym_eq, cexp_DN...
+unfold canonical.
rewrite <- H0; reflexivity.
reflexivity.
apply trans_eq with (round beta fexp Ztrunc (round beta fexp Zceil x)).
@@ -305,7 +359,7 @@ reflexivity.
apply round_generic...
intros Y.
replace (Fnum {| Fnum := Zfloor (scaled_mantissa beta fexp x); Fexp := cexp x |})
- with (Fnum (Float beta 0 (fexp (ln_beta beta 0)))).
+ with (Fnum (Float beta 0 (fexp (mag beta 0)))).
generalize (DN_UP_parity_generic beta fexp)...
unfold DN_UP_parity_prop.
intros T; apply T with x; clear T.
@@ -319,15 +373,15 @@ assumption.
apply Rmult_le_pos.
now left.
apply bpow_ge_0.
-apply canonic_0.
-unfold Fcore_generic_fmt.canonic.
+apply canonical_0.
+unfold canonical.
rewrite <- H0; reflexivity.
rewrite <- Y; unfold F2R; simpl; ring.
apply trans_eq with (round beta fexp Ztrunc (round beta fexp Zceil x)).
reflexivity.
apply round_generic...
simpl.
-apply eq_Z2R, Rmult_eq_reg_r with (bpow (cexp x)).
+apply eq_IZR, Rmult_eq_reg_r with (bpow (cexp x)).
unfold round, F2R in Y; simpl in Y; rewrite <- Y.
simpl; ring.
apply Rgt_not_eq, bpow_gt_0.
@@ -338,27 +392,25 @@ rewrite <- round_0 with beta fexp Zfloor...
apply round_le...
now left.
intros Hrx.
-set (ef := canonic_exp beta fexp x).
+set (ef := cexp x).
set (mf := Zfloor (scaled_mantissa beta fexp x)).
exists (Float beta mf ef).
-unfold Fcore_generic_fmt.canonic.
+unfold canonical.
repeat split; try assumption.
simpl.
apply trans_eq with (cexp (round beta fexp Zfloor x )).
-apply sym_eq, canonic_exp_DN...
+apply sym_eq, cexp_DN...
reflexivity.
intros Hrx; contradict Y.
replace (Zfloor (scaled_mantissa beta fexp x)) with 0%Z.
simpl; discriminate.
-apply eq_Z2R, Rmult_eq_reg_r with (bpow (cexp x)).
+apply eq_IZR, Rmult_eq_reg_r with (bpow (cexp x)).
unfold round, F2R in Hrx; simpl in Hrx; rewrite <- Hrx.
simpl; ring.
apply Rgt_not_eq, bpow_gt_0.
Qed.
-
-
-Theorem Rnd_odd_pt_unicity :
+Theorem Rnd_odd_pt_unique :
forall x f1 f2 : R,
Rnd_odd_pt x f1 -> Rnd_odd_pt x f2 ->
f1 = f2.
@@ -381,61 +433,56 @@ contradict L; now rewrite <- H1.
destruct H2 as [H2|(H2,H2')].
contradict L; now rewrite <- H2.
destruct H1 as [H1|H1]; destruct H2 as [H2|H2].
-apply Rnd_DN_pt_unicity with format x; assumption.
+apply Rnd_DN_pt_unique with format x; assumption.
destruct H1' as (ff,(K1,(K2,K3))).
destruct H2' as (gg,(L1,(L2,L3))).
absurd (true = false); try discriminate.
rewrite <- L3.
-apply trans_eq with (negb (Zeven (Fnum ff))).
+apply trans_eq with (negb (Z.even (Fnum ff))).
rewrite K3; easy.
apply sym_eq.
generalize (DN_UP_parity_generic beta fexp).
unfold DN_UP_parity_prop; intros T; apply (T x); clear T; try assumption...
-rewrite <- K1; apply Rnd_DN_pt_unicity with (generic_format beta fexp) x; try easy...
+rewrite <- K1; apply Rnd_DN_pt_unique with (generic_format beta fexp) x; try easy...
now apply round_DN_pt...
-rewrite <- L1; apply Rnd_UP_pt_unicity with (generic_format beta fexp) x; try easy...
+rewrite <- L1; apply Rnd_UP_pt_unique with (generic_format beta fexp) x; try easy...
now apply round_UP_pt...
(* *)
destruct H1' as (ff,(K1,(K2,K3))).
destruct H2' as (gg,(L1,(L2,L3))).
absurd (true = false); try discriminate.
rewrite <- K3.
-apply trans_eq with (negb (Zeven (Fnum gg))).
+apply trans_eq with (negb (Z.even (Fnum gg))).
rewrite L3; easy.
apply sym_eq.
generalize (DN_UP_parity_generic beta fexp).
unfold DN_UP_parity_prop; intros T; apply (T x); clear T; try assumption...
-rewrite <- L1; apply Rnd_DN_pt_unicity with (generic_format beta fexp) x; try easy...
+rewrite <- L1; apply Rnd_DN_pt_unique with (generic_format beta fexp) x; try easy...
now apply round_DN_pt...
-rewrite <- K1; apply Rnd_UP_pt_unicity with (generic_format beta fexp) x; try easy...
+rewrite <- K1; apply Rnd_UP_pt_unique with (generic_format beta fexp) x; try easy...
now apply round_UP_pt...
-apply Rnd_UP_pt_unicity with format x; assumption.
+apply Rnd_UP_pt_unique with format x; assumption.
Qed.
-
-
Theorem Rnd_odd_pt_monotone :
round_pred_monotone (Rnd_odd_pt).
Proof with auto with typeclass_instances.
intros x y f g H1 H2 Hxy.
apply Rle_trans with (round beta fexp Zrnd_odd x).
-right; apply Rnd_odd_pt_unicity with x; try assumption.
+right; apply Rnd_odd_pt_unique with x; try assumption.
apply round_odd_pt.
apply Rle_trans with (round beta fexp Zrnd_odd y).
apply round_le...
-right; apply Rnd_odd_pt_unicity with y; try assumption.
+right; apply Rnd_odd_pt_unique with y; try assumption.
apply round_odd_pt.
Qed.
-
-
-
End Fcore_rnd_odd.
Section Odd_prop_aux.
Variable beta : radix.
-Hypothesis Even_beta: Zeven (radix_val beta)=true.
+Hypothesis Even_beta: Z.even (radix_val beta)=true.
Notation bpow e := (bpow beta e).
@@ -454,26 +501,26 @@ Lemma generic_format_fexpe_fexp: forall x,
generic_format beta fexp x -> generic_format beta fexpe x.
Proof.
intros x Hx.
-apply generic_inclusion_ln_beta with fexp; trivial; intros Hx2.
-generalize (fexpe_fexp (ln_beta beta x)).
+apply generic_inclusion_mag with fexp; trivial; intros Hx2.
+generalize (fexpe_fexp (mag beta x)).
omega.
Qed.
Lemma exists_even_fexp_lt: forall (c:Z->Z), forall (x:R),
- (exists f:float beta, F2R f = x /\ (c (ln_beta beta x) < Fexp f)%Z) ->
- exists f:float beta, F2R f =x /\ canonic beta c f /\ Zeven (Fnum f) = true.
+ (exists f:float beta, F2R f = x /\ (c (mag beta x) < Fexp f)%Z) ->
+ exists f:float beta, F2R f =x /\ canonical beta c f /\ Z.even (Fnum f) = true.
Proof with auto with typeclass_instances.
intros c x (g,(Hg1,Hg2)).
exists (Float beta
- (Fnum g*Z.pow (radix_val beta) (Fexp g - c (ln_beta beta x)))
- (c (ln_beta beta x))).
+ (Fnum g*Z.pow (radix_val beta) (Fexp g - c (mag beta x)))
+ (c (mag beta x))).
assert (F2R (Float beta
- (Fnum g*Z.pow (radix_val beta) (Fexp g - c (ln_beta beta x)))
- (c (ln_beta beta x))) = x).
+ (Fnum g*Z.pow (radix_val beta) (Fexp g - c (mag beta x)))
+ (c (mag beta x))) = x).
unfold F2R; simpl.
-rewrite Z2R_mult, Z2R_Zpower.
+rewrite mult_IZR, IZR_Zpower.
rewrite Rmult_assoc, <- bpow_plus.
rewrite <- Hg1; unfold F2R.
apply f_equal, f_equal.
@@ -481,11 +528,11 @@ ring.
omega.
split; trivial.
split.
-unfold canonic, canonic_exp.
+unfold canonical, cexp.
now rewrite H.
simpl.
-rewrite Zeven_mult.
-rewrite Zeven_Zpower.
+rewrite Z.even_mul.
+rewrite Z.even_pow.
rewrite Even_beta.
apply Bool.orb_true_intro.
now right.
@@ -499,9 +546,9 @@ Variable x:R.
Variable d u: float beta.
Hypothesis Hd: Rnd_DN_pt (generic_format beta fexp) x (F2R d).
-Hypothesis Cd: canonic beta fexp d.
+Hypothesis Cd: canonical beta fexp d.
Hypothesis Hu: Rnd_UP_pt (generic_format beta fexp) x (F2R u).
-Hypothesis Cu: canonic beta fexp u.
+Hypothesis Cu: canonical beta fexp u.
Hypothesis xPos: (0 < x)%R.
@@ -511,14 +558,14 @@ Let m:= ((F2R d+F2R u)/2)%R.
Lemma d_eq: F2R d= round beta fexp Zfloor x.
Proof with auto with typeclass_instances.
-apply Rnd_DN_pt_unicity with (generic_format beta fexp) x...
+apply Rnd_DN_pt_unique with (generic_format beta fexp) x...
apply round_DN_pt...
Qed.
Lemma u_eq: F2R u= round beta fexp Zceil x.
Proof with auto with typeclass_instances.
-apply Rnd_UP_pt_unicity with (generic_format beta fexp) x...
+apply Rnd_UP_pt_unique with (generic_format beta fexp) x...
apply round_UP_pt...
Qed.
@@ -532,47 +579,47 @@ Qed.
-Lemma ln_beta_d: (0< F2R d)%R ->
- (ln_beta beta (F2R d) = ln_beta beta x :>Z).
+Lemma mag_d: (0< F2R d)%R ->
+ (mag beta (F2R d) = mag beta x :>Z).
Proof with auto with typeclass_instances.
intros Y.
-rewrite d_eq; apply ln_beta_DN...
+rewrite d_eq; apply mag_DN...
now rewrite <- d_eq.
Qed.
-Lemma Fexp_d: (0 < F2R d)%R -> Fexp d =fexp (ln_beta beta x).
+Lemma Fexp_d: (0 < F2R d)%R -> Fexp d =fexp (mag beta x).
Proof with auto with typeclass_instances.
intros Y.
-now rewrite Cd, <- ln_beta_d.
+now rewrite Cd, <- mag_d.
Qed.
Lemma format_bpow_x: (0 < F2R d)%R
- -> generic_format beta fexp (bpow (ln_beta beta x)).
+ -> generic_format beta fexp (bpow (mag beta x)).
Proof with auto with typeclass_instances.
intros Y.
apply generic_format_bpow.
apply valid_exp.
rewrite <- Fexp_d; trivial.
-apply Zlt_le_trans with (ln_beta beta (F2R d))%Z.
-rewrite Cd; apply ln_beta_generic_gt...
+apply Z.lt_le_trans with (mag beta (F2R d))%Z.
+rewrite Cd; apply mag_generic_gt...
now apply Rgt_not_eq.
apply Hd.
-apply ln_beta_le; trivial.
+apply mag_le; trivial.
apply Hd.
Qed.
Lemma format_bpow_d: (0 < F2R d)%R ->
- generic_format beta fexp (bpow (ln_beta beta (F2R d))).
+ generic_format beta fexp (bpow (mag beta (F2R d))).
Proof with auto with typeclass_instances.
intros Y; apply generic_format_bpow.
apply valid_exp.
-apply ln_beta_generic_gt...
+apply mag_generic_gt...
now apply Rgt_not_eq.
-now apply generic_format_canonic.
+now apply generic_format_canonical.
Qed.
@@ -596,12 +643,12 @@ unfold m.
lra.
Qed.
-Lemma ln_beta_m: (0 < F2R d)%R -> (ln_beta beta m =ln_beta beta (F2R d) :>Z).
+Lemma mag_m: (0 < F2R d)%R -> (mag beta m =mag beta (F2R d) :>Z).
Proof with auto with typeclass_instances.
-intros dPos; apply ln_beta_unique_pos.
+intros dPos; apply mag_unique_pos.
split.
apply Rle_trans with (F2R d).
-destruct (ln_beta beta (F2R d)) as (e,He).
+destruct (mag beta (F2R d)) as (e,He).
simpl.
rewrite Rabs_right in He.
apply He.
@@ -614,13 +661,13 @@ rewrite u_eq.
apply round_le_generic...
apply generic_format_bpow.
apply valid_exp.
-apply ln_beta_generic_gt...
+apply mag_generic_gt...
now apply Rgt_not_eq.
-now apply generic_format_canonic.
-case (Rle_or_lt x (bpow (ln_beta beta (F2R d)))); trivial; intros Z.
-absurd ((bpow (ln_beta beta (F2R d)) <= (F2R d)))%R.
+now apply generic_format_canonical.
+case (Rle_or_lt x (bpow (mag beta (F2R d)))); trivial; intros Z.
+absurd ((bpow (mag beta (F2R d)) <= (F2R d)))%R.
apply Rlt_not_le.
-destruct (ln_beta beta (F2R d)) as (e,He).
+destruct (mag beta (F2R d)) as (e,He).
simpl in *; rewrite Rabs_right in He.
apply He.
now apply Rgt_not_eq.
@@ -630,12 +677,12 @@ apply Rle_trans with (round beta fexp Zfloor x).
apply round_ge_generic...
apply generic_format_bpow.
apply valid_exp.
-apply ln_beta_generic_gt...
+apply mag_generic_gt...
now apply Rgt_not_eq.
-now apply generic_format_canonic.
+now apply generic_format_canonical.
now left.
replace m with (F2R d).
-destruct (ln_beta beta (F2R d)) as (e,He).
+destruct (mag beta (F2R d)) as (e,He).
simpl in *; rewrite Rabs_right in He.
apply He.
now apply Rgt_not_eq.
@@ -645,17 +692,17 @@ lra.
Qed.
-Lemma ln_beta_m_0: (0 = F2R d)%R
- -> (ln_beta beta m =ln_beta beta (F2R u)-1:>Z)%Z.
+Lemma mag_m_0: (0 = F2R d)%R
+ -> (mag beta m =mag beta (F2R u)-1:>Z)%Z.
Proof with auto with typeclass_instances.
intros Y.
-apply ln_beta_unique_pos.
+apply mag_unique_pos.
unfold m; rewrite <- Y, Rplus_0_l.
rewrite u_eq.
-destruct (ln_beta beta x) as (e,He).
+destruct (mag beta x) as (e,He).
rewrite Rabs_pos_eq in He by now apply Rlt_le.
rewrite round_UP_small_pos with (ex:=e).
-rewrite ln_beta_bpow.
+rewrite mag_bpow.
ring_simplify (fexp e + 1 - 1)%Z.
split.
unfold Zminus; rewrite bpow_plus.
@@ -664,7 +711,7 @@ apply bpow_ge_0.
simpl; unfold Z.pow_pos; simpl.
rewrite Zmult_1_r; apply Rinv_le.
exact Rlt_0_2.
-apply (Z2R_le 2).
+apply IZR_le.
specialize (radix_gt_1 beta).
omega.
apply Rlt_le_trans with (bpow (fexp e)*1)%R.
@@ -691,29 +738,29 @@ simpl; now rewrite Fexp_d.
Qed.
-
-
-Lemma m_eq: (0 < F2R d)%R -> exists f:float beta,
- F2R f = m /\ (Fexp f = fexp (ln_beta beta x) -1)%Z.
+Lemma m_eq :
+ (0 < F2R d)%R ->
+ exists f:float beta,
+ F2R f = m /\ (Fexp f = fexp (mag beta x) - 1)%Z.
Proof with auto with typeclass_instances.
intros Y.
specialize (Zeven_ex (radix_val beta)); rewrite Even_beta.
intros (b, Hb); rewrite Zplus_0_r in Hb.
destruct u'_eq as (u', (Hu'1,Hu'2)); trivial.
-exists (Fmult beta (Float beta b (-1)) (Fplus beta d u'))%R.
+exists (Fmult (Float beta b (-1)) (Fplus d u'))%R.
split.
rewrite F2R_mult, F2R_plus, Hu'1.
unfold m; rewrite Rmult_comm.
unfold Rdiv; apply f_equal.
unfold F2R; simpl; unfold Z.pow_pos; simpl.
-rewrite Zmult_1_r, Hb, Z2R_mult.
+rewrite Zmult_1_r, Hb, mult_IZR.
simpl; field.
apply Rgt_not_eq, Rmult_lt_reg_l with (1 := Rlt_0_2).
-rewrite Rmult_0_r, <- (Z2R_mult 2), <-Hb.
+rewrite Rmult_0_r, <- (mult_IZR 2), <-Hb.
apply radix_pos.
-apply trans_eq with (-1+Fexp (Fplus beta d u'))%Z.
+apply trans_eq with (-1+Fexp (Fplus d u'))%Z.
unfold Fmult.
-destruct (Fplus beta d u'); reflexivity.
+destruct (Fplus d u'); reflexivity.
rewrite Zplus_comm; unfold Zminus; apply f_equal2.
2: reflexivity.
rewrite Fexp_Fplus.
@@ -723,21 +770,21 @@ rewrite Hu'2; omega.
Qed.
Lemma m_eq_0: (0 = F2R d)%R -> exists f:float beta,
- F2R f = m /\ (Fexp f = fexp (ln_beta beta (F2R u)) -1)%Z.
+ F2R f = m /\ (Fexp f = fexp (mag beta (F2R u)) -1)%Z.
Proof with auto with typeclass_instances.
intros Y.
specialize (Zeven_ex (radix_val beta)); rewrite Even_beta.
intros (b, Hb); rewrite Zplus_0_r in Hb.
-exists (Fmult beta (Float beta b (-1)) u)%R.
+exists (Fmult (Float beta b (-1)) u)%R.
split.
rewrite F2R_mult; unfold m; rewrite <- Y, Rplus_0_l.
rewrite Rmult_comm.
unfold Rdiv; apply f_equal.
unfold F2R; simpl; unfold Z.pow_pos; simpl.
-rewrite Zmult_1_r, Hb, Z2R_mult.
+rewrite Zmult_1_r, Hb, mult_IZR.
simpl; field.
apply Rgt_not_eq, Rmult_lt_reg_l with (1 := Rlt_0_2).
-rewrite Rmult_0_r, <- (Z2R_mult 2), <-Hb.
+rewrite Rmult_0_r, <- (mult_IZR 2), <-Hb.
apply radix_pos.
apply trans_eq with (-1+Fexp u)%Z.
unfold Fmult.
@@ -746,12 +793,12 @@ rewrite Zplus_comm, Cu; unfold Zminus; now apply f_equal2.
Qed.
Lemma fexp_m_eq_0: (0 = F2R d)%R ->
- (fexp (ln_beta beta (F2R u)-1) < fexp (ln_beta beta (F2R u))+1)%Z.
+ (fexp (mag beta (F2R u)-1) < fexp (mag beta (F2R u))+1)%Z.
Proof with auto with typeclass_instances.
intros Y.
-assert ((fexp (ln_beta beta (F2R u) - 1) <= fexp (ln_beta beta (F2R u))))%Z.
+assert ((fexp (mag beta (F2R u) - 1) <= fexp (mag beta (F2R u))))%Z.
2: omega.
-destruct (ln_beta beta x) as (e,He).
+destruct (mag beta x) as (e,He).
rewrite Rabs_right in He.
2: now left.
assert (e <= fexp e)%Z.
@@ -760,7 +807,7 @@ now apply He, Rgt_not_eq.
now rewrite <- d_eq, Y.
rewrite u_eq, round_UP_small_pos with (ex:=e); trivial.
2: now apply He, Rgt_not_eq.
-rewrite ln_beta_bpow.
+rewrite mag_bpow.
ring_simplify (fexp e + 1 - 1)%Z.
replace (fexp (fexp e)) with (fexp e).
case exists_NE_; intros V.
@@ -770,33 +817,34 @@ apply sym_eq, valid_exp; omega.
Qed.
Lemma Fm: generic_format beta fexpe m.
+Proof.
case (d_ge_0); intros Y.
(* *)
destruct m_eq as (g,(Hg1,Hg2)); trivial.
apply generic_format_F2R' with g.
now apply sym_eq.
-intros H; unfold canonic_exp; rewrite Hg2.
-rewrite ln_beta_m; trivial.
+intros H; unfold cexp; rewrite Hg2.
+rewrite mag_m; trivial.
rewrite <- Fexp_d; trivial.
rewrite Cd.
-unfold canonic_exp.
-generalize (fexpe_fexp (ln_beta beta (F2R d))).
+unfold cexp.
+generalize (fexpe_fexp (mag beta (F2R d))).
omega.
(* *)
destruct m_eq_0 as (g,(Hg1,Hg2)); trivial.
apply generic_format_F2R' with g.
assumption.
-intros H; unfold canonic_exp; rewrite Hg2.
-rewrite ln_beta_m_0; try assumption.
-apply Zle_trans with (1:=fexpe_fexp _).
-assert (fexp (ln_beta beta (F2R u)-1) < fexp (ln_beta beta (F2R u))+1)%Z;[idtac|omega].
-now apply fexp_m_eq_0.
+intros H; unfold cexp; rewrite Hg2.
+rewrite mag_m_0; try assumption.
+apply Z.le_trans with (1:=fexpe_fexp _).
+generalize (fexp_m_eq_0 Y).
+omega.
Qed.
Lemma Zm:
- exists g : float beta, F2R g = m /\ canonic beta fexpe g /\ Zeven (Fnum g) = true.
+ exists g : float beta, F2R g = m /\ canonical beta fexpe g /\ Z.even (Fnum g) = true.
Proof with auto with typeclass_instances.
case (d_ge_0); intros Y.
(* *)
@@ -804,26 +852,27 @@ destruct m_eq as (g,(Hg1,Hg2)); trivial.
apply exists_even_fexp_lt.
exists g; split; trivial.
rewrite Hg2.
-rewrite ln_beta_m; trivial.
+rewrite mag_m; trivial.
rewrite <- Fexp_d; trivial.
rewrite Cd.
-unfold canonic_exp.
-generalize (fexpe_fexp (ln_beta beta (F2R d))).
+unfold cexp.
+generalize (fexpe_fexp (mag beta (F2R d))).
omega.
(* *)
destruct m_eq_0 as (g,(Hg1,Hg2)); trivial.
apply exists_even_fexp_lt.
exists g; split; trivial.
rewrite Hg2.
-rewrite ln_beta_m_0; trivial.
-apply Zle_lt_trans with (1:=fexpe_fexp _).
-assert (fexp (ln_beta beta (F2R u)-1) < fexp (ln_beta beta (F2R u))+1)%Z;[idtac|omega].
-now apply fexp_m_eq_0.
+rewrite mag_m_0; trivial.
+apply Z.le_lt_trans with (1:=fexpe_fexp _).
+generalize (fexp_m_eq_0 Y).
+omega.
Qed.
-Lemma DN_odd_d_aux: forall z, (F2R d<= z< F2R u)%R ->
- Rnd_DN_pt (generic_format beta fexp) z (F2R d).
+Lemma DN_odd_d_aux :
+ forall z, (F2R d <= z < F2R u)%R ->
+ Rnd_DN_pt (generic_format beta fexp) z (F2R d).
Proof with auto with typeclass_instances.
intros z Hz1.
replace (F2R d) with (round beta fexp Zfloor z).
@@ -834,22 +883,21 @@ intros Y; apply Rle_antisym; trivial.
apply round_DN_pt...
apply Hd.
apply Hz1.
-intros Y; absurd (z < z)%R.
-auto with real.
+intros Y ; elim (Rlt_irrefl z).
apply Rlt_le_trans with (1:=proj2 Hz1), Rle_trans with (1:=Y).
apply round_DN_pt...
Qed.
-Lemma UP_odd_d_aux: forall z, (F2R d< z <= F2R u)%R ->
- Rnd_UP_pt (generic_format beta fexp) z (F2R u).
+Lemma UP_odd_d_aux :
+ forall z, (F2R d < z <= F2R u)%R ->
+ Rnd_UP_pt (generic_format beta fexp) z (F2R u).
Proof with auto with typeclass_instances.
intros z Hz1.
replace (F2R u) with (round beta fexp Zceil z).
apply round_UP_pt...
case (Rnd_DN_UP_pt_split _ _ _ _ Hd Hu (round beta fexp Zceil z)).
apply generic_format_round...
-intros Y; absurd (z < z)%R.
-auto with real.
+intros Y ; elim (Rlt_irrefl z).
apply Rle_lt_trans with (2:=proj1 Hz1), Rle_trans with (2:=Y).
apply round_UP_pt...
intros Y; apply Rle_antisym; trivial.
@@ -859,7 +907,7 @@ apply Hz1.
Qed.
-Theorem round_odd_prop_pos:
+Lemma round_N_odd_pos :
round beta fexp (Znearest choice) (round beta fexpe Zrnd_odd x) =
round beta fexp (Znearest choice) x.
Proof with auto with typeclass_instances.
@@ -889,7 +937,7 @@ absurd (true=false).
discriminate.
rewrite <- Hk3, <- Hk'3.
apply f_equal, f_equal.
-apply canonic_unicity with fexpe...
+apply canonical_unique with fexpe...
now rewrite Hk'1, <- Y2.
assert (generic_format beta fexp o -> (forall P:Prop, P)).
intros Y.
@@ -902,14 +950,14 @@ destruct H as (_,(k,(Hk1,(Hk2,Hk3)))).
destruct (exists_even_fexp_lt fexpe o) as (k',(Hk'1,(Hk'2,Hk'3))).
eexists; split.
apply sym_eq, Y.
-simpl; unfold canonic_exp.
-apply Zle_lt_trans with (1:=fexpe_fexp _).
+simpl; unfold cexp.
+apply Z.le_lt_trans with (1:=fexpe_fexp _).
omega.
absurd (true=false).
discriminate.
rewrite <- Hk3, <- Hk'3.
apply f_equal, f_equal.
-apply canonic_unicity with fexpe...
+apply canonical_unique with fexpe...
now rewrite Hk'1, <- Hk1.
case K1; clear K1; intros K1.
2: apply H; rewrite <- K1; apply Hd.
@@ -957,7 +1005,7 @@ End Odd_prop_aux.
Section Odd_prop.
Variable beta : radix.
-Hypothesis Even_beta: Zeven (radix_val beta)=true.
+Hypothesis Even_beta: Z.even (radix_val beta)=true.
Variable fexp : Z -> Z.
Variable fexpe : Z -> Z.
@@ -970,25 +1018,8 @@ Context { exists_NE_e : Exists_NE beta fexpe }. (* for defining rounding to odd
Hypothesis fexpe_fexp: forall e, (fexpe e <= fexp e -2)%Z.
-
-Theorem canonizer: forall f, generic_format beta fexp f
- -> exists g : float beta, f = F2R g /\ canonic beta fexp g.
-Proof with auto with typeclass_instances.
-intros f Hf.
-exists (Float beta (Ztrunc (scaled_mantissa beta fexp f)) (canonic_exp beta fexp f)).
-assert (L:(f = F2R (Float beta (Ztrunc (scaled_mantissa beta fexp f)) (canonic_exp beta fexp f)))).
-apply trans_eq with (round beta fexp Ztrunc f).
-apply sym_eq, round_generic...
-reflexivity.
-split; trivial.
-unfold canonic; rewrite <- L.
-reflexivity.
-Qed.
-
-
-
-
-Theorem round_odd_prop: forall x,
+Theorem round_N_odd :
+ forall x,
round beta fexp (Znearest choice) (round beta fexpe Zrnd_odd x) =
round beta fexp (Znearest choice) x.
Proof with auto with typeclass_instances.
@@ -998,25 +1029,192 @@ rewrite <- (Ropp_involutive x).
rewrite round_odd_opp.
rewrite 2!round_N_opp.
apply f_equal.
-destruct (canonizer (round beta fexp Zfloor (-x))) as (d,(Hd1,Hd2)).
+destruct (canonical_generic_format beta fexp (round beta fexp Zfloor (-x))) as (d,(Hd1,Hd2)).
apply generic_format_round...
-destruct (canonizer (round beta fexp Zceil (-x))) as (u,(Hu1,Hu2)).
+destruct (canonical_generic_format beta fexp (round beta fexp Zceil (-x))) as (u,(Hu1,Hu2)).
apply generic_format_round...
-apply round_odd_prop_pos with d u...
+apply round_N_odd_pos with d u...
rewrite <- Hd1; apply round_DN_pt...
rewrite <- Hu1; apply round_UP_pt...
auto with real.
(* . *)
rewrite H; repeat rewrite round_0...
(* . *)
-destruct (canonizer (round beta fexp Zfloor x)) as (d,(Hd1,Hd2)).
+destruct (canonical_generic_format beta fexp (round beta fexp Zfloor x)) as (d,(Hd1,Hd2)).
apply generic_format_round...
-destruct (canonizer (round beta fexp Zceil x)) as (u,(Hu1,Hu2)).
+destruct (canonical_generic_format beta fexp (round beta fexp Zceil x)) as (u,(Hu1,Hu2)).
apply generic_format_round...
-apply round_odd_prop_pos with d u...
+apply round_N_odd_pos with d u...
rewrite <- Hd1; apply round_DN_pt...
rewrite <- Hu1; apply round_UP_pt...
Qed.
-
End Odd_prop.
+
+
+Section Odd_propbis.
+
+Variable beta : radix.
+Hypothesis Even_beta: Z.even (radix_val beta)=true.
+
+Variable emin prec:Z.
+Variable choice:Z->bool.
+
+Hypothesis prec_gt_1: (1 < prec)%Z.
+
+
+Notation format := (generic_format beta (FLT_exp emin prec)).
+Notation round_flt :=(round beta (FLT_exp emin prec) (Znearest choice)).
+Notation cexp_flt := (cexp beta (FLT_exp emin prec)).
+Notation fexpe k := (FLT_exp (emin-k) (prec+k)).
+
+
+
+Lemma Zrnd_odd_plus': forall x y,
+ (exists n:Z, exists e:Z, (x = IZR n*bpow beta e)%R /\ (1 <= e)%Z) ->
+ (IZR (Zrnd_odd (x+y)) = x+IZR (Zrnd_odd y))%R.
+Proof.
+intros x y (n,(e,(H1,H2))).
+apply Zrnd_odd_plus.
+rewrite H1.
+rewrite <- IZR_Zpower.
+2: auto with zarith.
+now rewrite <- mult_IZR, Zfloor_IZR.
+rewrite H1, <- IZR_Zpower.
+2: auto with zarith.
+rewrite <- mult_IZR, Zfloor_IZR.
+rewrite Z.even_mul.
+rewrite Z.even_pow.
+2: auto with zarith.
+rewrite Even_beta.
+apply Bool.orb_true_iff; now right.
+Qed.
+
+
+
+Theorem mag_round_odd: forall (x:R),
+ (emin < mag beta x)%Z ->
+ (mag_val beta _ (mag beta (round beta (FLT_exp emin prec) Zrnd_odd x))
+ = mag_val beta x (mag beta x))%Z.
+Proof with auto with typeclass_instances.
+intros x.
+assert (T:Prec_gt_0 prec).
+unfold Prec_gt_0; auto with zarith.
+case (Req_dec x 0); intros Zx.
+intros _; rewrite Zx, round_0...
+destruct (mag beta x) as (e,He); simpl; intros H.
+apply mag_unique; split.
+apply abs_round_ge_generic...
+apply FLT_format_bpow...
+auto with zarith.
+now apply He.
+assert (V:
+ (Rabs (round beta (FLT_exp emin prec) Zrnd_odd x) <= bpow beta e)%R).
+apply abs_round_le_generic...
+apply FLT_format_bpow...
+auto with zarith.
+left; now apply He.
+case V; try easy; intros K.
+assert (H0:Rnd_odd_pt beta (FLT_exp emin prec) x (round beta (FLT_exp emin prec) Zrnd_odd x)).
+apply round_odd_pt...
+destruct H0 as (_,HH); destruct HH as [H0|(H0,(g,(Hg1,(Hg2,Hg3))))].
+absurd (Rabs x < bpow beta e)%R.
+apply Rle_not_lt; right.
+now rewrite <- H0,K.
+now apply He.
+pose (gg:=Float beta (Zpower beta (e-FLT_exp emin prec (e+1))) (FLT_exp emin prec (e+1))).
+assert (Y1: F2R gg = bpow beta e).
+unfold F2R; simpl.
+rewrite IZR_Zpower.
+rewrite <- bpow_plus.
+f_equal; ring.
+assert (FLT_exp emin prec (e+1) <= e)%Z; [idtac|auto with zarith].
+unfold FLT_exp.
+apply Z.max_case_strong; auto with zarith.
+assert (Y2: canonical beta (FLT_exp emin prec) gg).
+unfold canonical; rewrite Y1; unfold gg; simpl.
+unfold cexp; now rewrite mag_bpow.
+assert (Y3: Fnum gg = Z.abs (Fnum g)).
+apply trans_eq with (Fnum (Fabs g)).
+2: destruct g; unfold Fabs; now simpl.
+f_equal.
+apply canonical_unique with (FLT_exp emin prec); try assumption.
+destruct g; unfold Fabs; apply canonical_abs; easy.
+now rewrite Y1, F2R_abs, <- Hg1,K.
+assert (Y4: Z.even (Fnum gg) = true).
+unfold gg; simpl.
+rewrite Z.even_pow; try assumption.
+assert (FLT_exp emin prec (e+1) < e)%Z; [idtac|auto with zarith].
+unfold FLT_exp.
+apply Z.max_case_strong; auto with zarith.
+absurd (true = false).
+discriminate.
+rewrite <- Hg3.
+rewrite <- Zeven_abs.
+now rewrite <- Y3.
+Qed.
+
+Theorem fexp_round_odd: forall (x:R),
+ (cexp_flt (round beta (FLT_exp emin prec) Zrnd_odd x)
+ = cexp_flt x)%Z.
+Proof with auto with typeclass_instances.
+intros x.
+assert (G0:Valid_exp (FLT_exp emin prec)).
+apply FLT_exp_valid; unfold Prec_gt_0; auto with zarith.
+case (Req_dec x 0); intros Zx.
+rewrite Zx, round_0...
+case (Zle_or_lt (mag beta x) emin).
+unfold cexp; destruct (mag beta x) as (e,He); simpl.
+intros H; unfold FLT_exp at 4.
+rewrite Z.max_r.
+2: auto with zarith.
+apply Z.max_r.
+assert (G: Rabs (round beta (FLT_exp emin prec) Zrnd_odd x) = bpow beta emin).
+assert (G1: (Rabs (round beta (FLT_exp emin prec) Zrnd_odd x) <= bpow beta emin)%R).
+apply abs_round_le_generic...
+apply generic_format_bpow'...
+unfold FLT_exp; rewrite Z.max_r; auto with zarith.
+left; apply Rlt_le_trans with (bpow beta e).
+now apply He.
+now apply bpow_le.
+assert (G2: (0 <= Rabs (round beta (FLT_exp emin prec) Zrnd_odd x))%R).
+apply Rabs_pos.
+assert (G3: (Rabs (round beta (FLT_exp emin prec) Zrnd_odd x) <> 0)%R).
+assert (H0:Rnd_odd_pt beta (FLT_exp emin prec) x
+ (round beta (FLT_exp emin prec) Zrnd_odd x)).
+apply round_odd_pt...
+destruct H0 as (_,H0); destruct H0 as [H0|(_,(g,(Hg1,(Hg2,Hg3))))].
+apply Rgt_not_eq; rewrite H0.
+apply Rlt_le_trans with (bpow beta (e-1)).
+apply bpow_gt_0.
+now apply He.
+rewrite Hg1; intros K.
+contradict Hg3.
+replace (Fnum g) with 0%Z.
+easy.
+case (Z.eq_dec (Fnum g) Z0); intros W; try easy.
+contradict K.
+apply Rabs_no_R0.
+now apply F2R_neq_0.
+apply Rle_antisym; try assumption.
+apply Rle_trans with (succ beta (FLT_exp emin prec) 0).
+right; rewrite succ_0.
+rewrite ulp_FLT_small; try easy.
+unfold Prec_gt_0; auto with zarith.
+rewrite Rabs_R0; apply bpow_gt_0.
+apply succ_le_lt...
+apply generic_format_0.
+apply generic_format_abs; apply generic_format_round...
+case G2; [easy|intros; now contradict G3].
+rewrite <- mag_abs.
+rewrite G, mag_bpow; auto with zarith.
+intros H; unfold cexp.
+now rewrite mag_round_odd.
+Qed.
+
+
+
+
+End Odd_propbis.
+
+
diff --git a/flocq/Prop/Fprop_Sterbenz.v b/flocq/Prop/Sterbenz.v
index 4e74f889..746b7026 100644
--- a/flocq/Prop/Fprop_Sterbenz.v
+++ b/flocq/Prop/Sterbenz.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2010-2013 Sylvie Boldo
+Copyright (C) 2010-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2010-2013 Guillaume Melquiond
+Copyright (C) 2010-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -19,10 +19,7 @@ COPYING file for more details.
(** * Sterbenz conditions for exact subtraction *)
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_generic_fmt.
-Require Import Fcalc_ops.
+Require Import Raux Defs Generic_fmt Operations.
Section Fprop_Sterbenz.
@@ -37,7 +34,7 @@ Notation format := (generic_format beta fexp).
Theorem generic_format_plus :
forall x y,
format x -> format y ->
- (Rabs (x + y) < bpow (Zmin (ln_beta beta x) (ln_beta beta y)))%R ->
+ (Rabs (x + y) <= bpow (Z.min (mag beta x) (mag beta y)))%R ->
format (x + y)%R.
Proof.
intros x y Fx Fy Hxy.
@@ -48,44 +45,51 @@ destruct (Req_dec x R0) as [Zx|Zx].
now rewrite Zx, Rplus_0_l.
destruct (Req_dec y R0) as [Zy|Zy].
now rewrite Zy, Rplus_0_r.
+destruct Hxy as [Hxy|Hxy].
revert Hxy.
-destruct (ln_beta beta x) as (ex, Ex). simpl.
+destruct (mag beta x) as (ex, Ex). simpl.
specialize (Ex Zx).
-destruct (ln_beta beta y) as (ey, Ey). simpl.
+destruct (mag beta y) as (ey, Ey). simpl.
specialize (Ey Zy).
intros Hxy.
set (fx := Float beta (Ztrunc (scaled_mantissa beta fexp x)) (fexp ex)).
assert (Hx: x = F2R fx).
rewrite Fx at 1.
-unfold canonic_exp.
-now rewrite ln_beta_unique with (1 := Ex).
+unfold cexp.
+now rewrite mag_unique with (1 := Ex).
set (fy := Float beta (Ztrunc (scaled_mantissa beta fexp y)) (fexp ey)).
assert (Hy: y = F2R fy).
rewrite Fy at 1.
-unfold canonic_exp.
-now rewrite ln_beta_unique with (1 := Ey).
+unfold cexp.
+now rewrite mag_unique with (1 := Ey).
rewrite Hx, Hy.
rewrite <- F2R_plus.
apply generic_format_F2R.
intros _.
-case_eq (Fplus beta fx fy).
+case_eq (Fplus fx fy).
intros mxy exy Pxy.
rewrite <- Pxy, F2R_plus, <- Hx, <- Hy.
-unfold canonic_exp.
-replace exy with (fexp (Zmin ex ey)).
+unfold cexp.
+replace exy with (fexp (Z.min ex ey)).
apply monotone_exp.
-now apply ln_beta_le_bpow.
-replace exy with (Fexp (Fplus beta fx fy)) by exact (f_equal Fexp Pxy).
+now apply mag_le_bpow.
+replace exy with (Fexp (Fplus fx fy)) by exact (f_equal Fexp Pxy).
rewrite Fexp_Fplus.
simpl. clear -monotone_exp.
apply sym_eq.
destruct (Zmin_spec ex ey) as [(H1,H2)|(H1,H2)] ; rewrite H2.
-apply Zmin_l.
+apply Z.min_l.
now apply monotone_exp.
-apply Zmin_r.
+apply Z.min_r.
apply monotone_exp.
apply Zlt_le_weak.
-now apply Zgt_lt.
+now apply Z.gt_lt.
+apply generic_format_abs_inv.
+rewrite Hxy.
+apply generic_format_bpow.
+apply valid_exp.
+case (Zmin_spec (mag beta x) (mag beta y)); intros (H1,H2);
+ rewrite H2; now apply mag_generic_gt.
Qed.
Theorem generic_format_plus_weak :
@@ -100,17 +104,17 @@ now rewrite Zx, Rplus_0_l.
destruct (Req_dec y R0) as [Zy|Zy].
now rewrite Zy, Rplus_0_r.
apply generic_format_plus ; try assumption.
-apply Rle_lt_trans with (1 := Hxy).
+apply Rle_trans with (1 := Hxy).
unfold Rmin.
destruct (Rle_dec (Rabs x) (Rabs y)) as [Hxy'|Hxy'].
-rewrite Zmin_l.
-destruct (ln_beta beta x) as (ex, Hx).
-now apply Hx.
-now apply ln_beta_le_abs.
-rewrite Zmin_r.
-destruct (ln_beta beta y) as (ex, Hy).
-now apply Hy.
-apply ln_beta_le_abs.
+rewrite Z.min_l.
+destruct (mag beta x) as (ex, Hx).
+apply Rlt_le; now apply Hx.
+now apply mag_le_abs.
+rewrite Z.min_r.
+destruct (mag beta y) as (ex, Hy).
+apply Rlt_le; now apply Hy.
+apply mag_le_abs.
exact Zy.
apply Rlt_le.
now apply Rnot_le_lt.
diff --git a/flocq/Flocq_version.v b/flocq/Version.v
index 72d4fe20..d0e36a57 100644
--- a/flocq/Flocq_version.v
+++ b/flocq/Version.v
@@ -2,9 +2,9 @@
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
-Copyright (C) 2011-2013 Sylvie Boldo
+Copyright (C) 2011-2018 Sylvie Boldo
#<br />#
-Copyright (C) 2011-2013 Guillaume Melquiond
+Copyright (C) 2011-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -29,4 +29,4 @@ Definition Flocq_version := Eval vm_compute in
parse t major (minor * 10 + N_of_ascii h - N_of_ascii "0"%char)%N
| Empty_string => (major * 100 + minor)%N
end in
- parse "2.6.1"%string N0 N0.
+ parse "3.1.0"%string N0 N0.