aboutsummaryrefslogtreecommitdiffstats
path: root/MenhirLib/Alphabet.v
diff options
context:
space:
mode:
Diffstat (limited to 'MenhirLib/Alphabet.v')
-rw-r--r--MenhirLib/Alphabet.v247
1 files changed, 247 insertions, 0 deletions
diff --git a/MenhirLib/Alphabet.v b/MenhirLib/Alphabet.v
new file mode 100644
index 00000000..29070e3d
--- /dev/null
+++ b/MenhirLib/Alphabet.v
@@ -0,0 +1,247 @@
+(****************************************************************************)
+(* *)
+(* Menhir *)
+(* *)
+(* Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud *)
+(* *)
+(* Copyright Inria. All rights reserved. This file is distributed under *)
+(* the terms of the GNU Lesser General Public License as published by the *)
+(* Free Software Foundation, either version 3 of the License, or (at your *)
+(* option) any later version, as described in the file LICENSE. *)
+(* *)
+(****************************************************************************)
+
+From Coq Require Import Omega List Syntax Relations RelationClasses.
+
+Local Obligation Tactic := intros.
+
+(** A comparable type is equiped with a [compare] function, that define an order
+ relation. **)
+Class Comparable (A:Type) := {
+ compare : A -> A -> comparison;
+ compare_antisym : forall x y, CompOpp (compare x y) = compare y x;
+ compare_trans : forall x y z c,
+ (compare x y) = c -> (compare y z) = c -> (compare x z) = c
+}.
+
+Theorem compare_refl {A:Type} (C: Comparable A) :
+ forall x, compare x x = Eq.
+Proof.
+intros.
+pose proof (compare_antisym x x).
+destruct (compare x x); intuition; try discriminate.
+Qed.
+
+(** The corresponding order is a strict order. **)
+Definition comparableLt {A:Type} (C: Comparable A) : relation A :=
+ fun x y => compare x y = Lt.
+
+Instance ComparableLtStrictOrder {A:Type} (C: Comparable A) :
+ StrictOrder (comparableLt C).
+Proof.
+apply Build_StrictOrder.
+unfold Irreflexive, Reflexive, complement, comparableLt.
+intros.
+pose proof H.
+rewrite <- compare_antisym in H.
+rewrite H0 in H.
+discriminate H.
+unfold Transitive, comparableLt.
+intros x y z.
+apply compare_trans.
+Qed.
+
+(** nat is comparable. **)
+Program Instance natComparable : Comparable nat :=
+ { compare := Nat.compare }.
+Next Obligation.
+symmetry.
+destruct (Nat.compare x y) as [] eqn:?.
+rewrite Nat.compare_eq_iff in Heqc.
+destruct Heqc.
+rewrite Nat.compare_eq_iff.
+trivial.
+rewrite <- nat_compare_lt in *.
+rewrite <- nat_compare_gt in *.
+trivial.
+rewrite <- nat_compare_lt in *.
+rewrite <- nat_compare_gt in *.
+trivial.
+Qed.
+Next Obligation.
+destruct c.
+rewrite Nat.compare_eq_iff in *; destruct H; assumption.
+rewrite <- nat_compare_lt in *.
+apply (Nat.lt_trans _ _ _ H H0).
+rewrite <- nat_compare_gt in *.
+apply (gt_trans _ _ _ H H0).
+Qed.
+
+(** A pair of comparable is comparable. **)
+Program Instance PairComparable {A:Type} (CA:Comparable A) {B:Type} (CB:Comparable B) :
+ Comparable (A*B) :=
+ { compare := fun x y =>
+ let (xa, xb) := x in let (ya, yb) := y in
+ match compare xa ya return comparison with
+ | Eq => compare xb yb
+ | x => x
+ end }.
+Next Obligation.
+destruct x, y.
+rewrite <- (compare_antisym a a0).
+rewrite <- (compare_antisym b b0).
+destruct (compare a a0); intuition.
+Qed.
+Next Obligation.
+destruct x, y, z.
+destruct (compare a a0) as [] eqn:?, (compare a0 a1) as [] eqn:?;
+try (rewrite <- H0 in H; discriminate);
+try (destruct (compare a a1) as [] eqn:?;
+ try (rewrite <- compare_antisym in Heqc0;
+ rewrite CompOpp_iff in Heqc0;
+ rewrite (compare_trans _ _ _ _ Heqc0 Heqc2) in Heqc1;
+ discriminate);
+ try (rewrite <- compare_antisym in Heqc1;
+ rewrite CompOpp_iff in Heqc1;
+ rewrite (compare_trans _ _ _ _ Heqc2 Heqc1) in Heqc0;
+ discriminate);
+ assumption);
+rewrite (compare_trans _ _ _ _ Heqc0 Heqc1);
+try assumption.
+apply (compare_trans _ _ _ _ H H0).
+Qed.
+
+(** Special case of comparable, where equality is Leibniz equality. **)
+Class ComparableLeibnizEq {A:Type} (C: Comparable A) :=
+ compare_eq : forall x y, compare x y = Eq -> x = y.
+
+(** Boolean equality for a [Comparable]. **)
+Definition compare_eqb {A:Type} {C:Comparable A} (x y:A) :=
+ match compare x y with
+ | Eq => true
+ | _ => false
+ end.
+
+Theorem compare_eqb_iff {A:Type} {C:Comparable A} {U:ComparableLeibnizEq C} :
+ forall x y, compare_eqb x y = true <-> x = y.
+Proof.
+unfold compare_eqb.
+intuition.
+apply compare_eq.
+destruct (compare x y); intuition; discriminate.
+destruct H.
+rewrite compare_refl; intuition.
+Qed.
+
+Instance NComparableLeibnizEq : ComparableLeibnizEq natComparable := Nat.compare_eq.
+
+(** A pair of ComparableLeibnizEq is ComparableLeibnizEq **)
+Instance PairComparableLeibnizEq
+ {A:Type} {CA:Comparable A} (UA:ComparableLeibnizEq CA)
+ {B:Type} {CB:Comparable B} (UB:ComparableLeibnizEq CB) :
+ ComparableLeibnizEq (PairComparable CA CB).
+Proof.
+intros x y; destruct x, y; simpl.
+pose proof (compare_eq a a0); pose proof (compare_eq b b0).
+destruct (compare a a0); try discriminate.
+intuition.
+destruct H2, H0.
+reflexivity.
+Qed.
+
+(** An [Finite] type is a type with the list of all elements. **)
+Class Finite (A:Type) := {
+ all_list : list A;
+ all_list_forall : forall x:A, In x all_list
+}.
+
+(** An alphabet is both [ComparableLeibnizEq] and [Finite]. **)
+Class Alphabet (A:Type) := {
+ AlphabetComparable :> Comparable A;
+ AlphabetComparableLeibnizEq :> ComparableLeibnizEq AlphabetComparable;
+ AlphabetFinite :> Finite A
+}.
+
+(** The [Numbered] class provides a conveniant way to build [Alphabet] instances,
+ with a good computationnal complexity. It is mainly a injection from it to
+ [positive] **)
+Class Numbered (A:Type) := {
+ inj : A -> positive;
+ surj : positive -> A;
+ surj_inj_compat : forall x, surj (inj x) = x;
+ inj_bound : positive;
+ inj_bound_spec : forall x, (inj x < Pos.succ inj_bound)%positive
+}.
+
+Program Instance NumberedAlphabet {A:Type} (N:Numbered A) : Alphabet A :=
+ { AlphabetComparable := {| compare := fun x y => Pos.compare (inj x) (inj y) |};
+ AlphabetFinite :=
+ {| all_list := fst (Pos.iter
+ (fun '(l, p) => (surj p::l, Pos.succ p))
+ ([], 1%positive) inj_bound) |} }.
+Next Obligation. simpl. now rewrite <- Pos.compare_antisym. Qed.
+Next Obligation.
+ match goal with c : comparison |- _ => destruct c end.
+ - rewrite Pos.compare_eq_iff in *. congruence.
+ - rewrite Pos.compare_lt_iff in *. eauto using Pos.lt_trans.
+ - rewrite Pos.compare_gt_iff in *. eauto using Pos.lt_trans.
+Qed.
+Next Obligation.
+ intros x y. unfold compare. intros Hxy.
+ assert (Hxy' : inj x = inj y).
+ (* We do not use [Pos.compare_eq_iff] directly to make sure the
+ proof is executable. *)
+ { destruct (Pos.eq_dec (inj x) (inj y)) as [|[]]; [now auto|].
+ now apply Pos.compare_eq_iff. }
+ (* Using rewrite here leads to non-executable proofs. *)
+ transitivity (surj (inj x)).
+ { apply eq_sym, surj_inj_compat. }
+ transitivity (surj (inj y)); cycle 1.
+ { apply surj_inj_compat. }
+ apply f_equal, Hxy'.
+Defined.
+Next Obligation.
+ rewrite <-(surj_inj_compat x).
+ generalize (inj_bound_spec x). generalize (inj x). clear x. intros x.
+ match goal with |- ?Hx -> In ?s (fst ?p) =>
+ assert ((Hx -> In s (fst p)) /\ snd p = Pos.succ inj_bound); [|now intuition] end.
+ rewrite Pos.lt_succ_r.
+ induction inj_bound as [|y [IH1 IH2]] using Pos.peano_ind;
+ (split; [intros Hx|]); simpl.
+ - rewrite (Pos.le_antisym _ _ Hx); auto using Pos.le_1_l.
+ - auto.
+ - rewrite Pos.iter_succ. destruct Pos.iter; simpl in *. subst.
+ rewrite Pos.le_lteq in Hx. destruct Hx as [?%Pos.lt_succ_r| ->]; now auto.
+ - rewrite Pos.iter_succ. destruct Pos.iter. simpl in IH2. subst. reflexivity.
+Qed.
+
+(** Definitions of [FSet]/[FMap] from [Comparable] **)
+Require Import OrderedTypeAlt.
+Require FSetAVL.
+Require FMapAVL.
+Import OrderedType.
+
+Module Type ComparableM.
+ Parameter t : Type.
+ Declare Instance tComparable : Comparable t.
+End ComparableM.
+
+Module OrderedTypeAlt_from_ComparableM (C:ComparableM) <: OrderedTypeAlt.
+ Definition t := C.t.
+ Definition compare : t -> t -> comparison := compare.
+
+ Infix "?=" := compare (at level 70, no associativity).
+
+ Lemma compare_sym x y : (y?=x) = CompOpp (x?=y).
+ Proof. exact (Logic.eq_sym (compare_antisym x y)). Qed.
+ Lemma compare_trans c x y z :
+ (x?=y) = c -> (y?=z) = c -> (x?=z) = c.
+ Proof.
+ apply compare_trans.
+ Qed.
+End OrderedTypeAlt_from_ComparableM.
+
+Module OrderedType_from_ComparableM (C:ComparableM) <: OrderedType.
+ Module Alt := OrderedTypeAlt_from_ComparableM C.
+ Include (OrderedType_from_Alt Alt).
+End OrderedType_from_ComparableM.