aboutsummaryrefslogtreecommitdiffstats
path: root/MenhirLib
diff options
context:
space:
mode:
Diffstat (limited to 'MenhirLib')
-rw-r--r--MenhirLib/Alphabet.v247
-rw-r--r--MenhirLib/Automaton.v164
-rw-r--r--MenhirLib/Grammar.v162
-rw-r--r--MenhirLib/Interpreter.v453
-rw-r--r--MenhirLib/Interpreter_complete.v825
-rw-r--r--MenhirLib/Interpreter_correct.v175
-rw-r--r--MenhirLib/Main.v79
-rw-r--r--MenhirLib/Validator_classes.v74
-rw-r--r--MenhirLib/Validator_complete.v394
-rw-r--r--MenhirLib/Validator_safe.v234
10 files changed, 2807 insertions, 0 deletions
diff --git a/MenhirLib/Alphabet.v b/MenhirLib/Alphabet.v
new file mode 100644
index 00000000..29070e3d
--- /dev/null
+++ b/MenhirLib/Alphabet.v
@@ -0,0 +1,247 @@
+(****************************************************************************)
+(* *)
+(* Menhir *)
+(* *)
+(* Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud *)
+(* *)
+(* Copyright Inria. All rights reserved. This file is distributed under *)
+(* the terms of the GNU Lesser General Public License as published by the *)
+(* Free Software Foundation, either version 3 of the License, or (at your *)
+(* option) any later version, as described in the file LICENSE. *)
+(* *)
+(****************************************************************************)
+
+From Coq Require Import Omega List Syntax Relations RelationClasses.
+
+Local Obligation Tactic := intros.
+
+(** A comparable type is equiped with a [compare] function, that define an order
+ relation. **)
+Class Comparable (A:Type) := {
+ compare : A -> A -> comparison;
+ compare_antisym : forall x y, CompOpp (compare x y) = compare y x;
+ compare_trans : forall x y z c,
+ (compare x y) = c -> (compare y z) = c -> (compare x z) = c
+}.
+
+Theorem compare_refl {A:Type} (C: Comparable A) :
+ forall x, compare x x = Eq.
+Proof.
+intros.
+pose proof (compare_antisym x x).
+destruct (compare x x); intuition; try discriminate.
+Qed.
+
+(** The corresponding order is a strict order. **)
+Definition comparableLt {A:Type} (C: Comparable A) : relation A :=
+ fun x y => compare x y = Lt.
+
+Instance ComparableLtStrictOrder {A:Type} (C: Comparable A) :
+ StrictOrder (comparableLt C).
+Proof.
+apply Build_StrictOrder.
+unfold Irreflexive, Reflexive, complement, comparableLt.
+intros.
+pose proof H.
+rewrite <- compare_antisym in H.
+rewrite H0 in H.
+discriminate H.
+unfold Transitive, comparableLt.
+intros x y z.
+apply compare_trans.
+Qed.
+
+(** nat is comparable. **)
+Program Instance natComparable : Comparable nat :=
+ { compare := Nat.compare }.
+Next Obligation.
+symmetry.
+destruct (Nat.compare x y) as [] eqn:?.
+rewrite Nat.compare_eq_iff in Heqc.
+destruct Heqc.
+rewrite Nat.compare_eq_iff.
+trivial.
+rewrite <- nat_compare_lt in *.
+rewrite <- nat_compare_gt in *.
+trivial.
+rewrite <- nat_compare_lt in *.
+rewrite <- nat_compare_gt in *.
+trivial.
+Qed.
+Next Obligation.
+destruct c.
+rewrite Nat.compare_eq_iff in *; destruct H; assumption.
+rewrite <- nat_compare_lt in *.
+apply (Nat.lt_trans _ _ _ H H0).
+rewrite <- nat_compare_gt in *.
+apply (gt_trans _ _ _ H H0).
+Qed.
+
+(** A pair of comparable is comparable. **)
+Program Instance PairComparable {A:Type} (CA:Comparable A) {B:Type} (CB:Comparable B) :
+ Comparable (A*B) :=
+ { compare := fun x y =>
+ let (xa, xb) := x in let (ya, yb) := y in
+ match compare xa ya return comparison with
+ | Eq => compare xb yb
+ | x => x
+ end }.
+Next Obligation.
+destruct x, y.
+rewrite <- (compare_antisym a a0).
+rewrite <- (compare_antisym b b0).
+destruct (compare a a0); intuition.
+Qed.
+Next Obligation.
+destruct x, y, z.
+destruct (compare a a0) as [] eqn:?, (compare a0 a1) as [] eqn:?;
+try (rewrite <- H0 in H; discriminate);
+try (destruct (compare a a1) as [] eqn:?;
+ try (rewrite <- compare_antisym in Heqc0;
+ rewrite CompOpp_iff in Heqc0;
+ rewrite (compare_trans _ _ _ _ Heqc0 Heqc2) in Heqc1;
+ discriminate);
+ try (rewrite <- compare_antisym in Heqc1;
+ rewrite CompOpp_iff in Heqc1;
+ rewrite (compare_trans _ _ _ _ Heqc2 Heqc1) in Heqc0;
+ discriminate);
+ assumption);
+rewrite (compare_trans _ _ _ _ Heqc0 Heqc1);
+try assumption.
+apply (compare_trans _ _ _ _ H H0).
+Qed.
+
+(** Special case of comparable, where equality is Leibniz equality. **)
+Class ComparableLeibnizEq {A:Type} (C: Comparable A) :=
+ compare_eq : forall x y, compare x y = Eq -> x = y.
+
+(** Boolean equality for a [Comparable]. **)
+Definition compare_eqb {A:Type} {C:Comparable A} (x y:A) :=
+ match compare x y with
+ | Eq => true
+ | _ => false
+ end.
+
+Theorem compare_eqb_iff {A:Type} {C:Comparable A} {U:ComparableLeibnizEq C} :
+ forall x y, compare_eqb x y = true <-> x = y.
+Proof.
+unfold compare_eqb.
+intuition.
+apply compare_eq.
+destruct (compare x y); intuition; discriminate.
+destruct H.
+rewrite compare_refl; intuition.
+Qed.
+
+Instance NComparableLeibnizEq : ComparableLeibnizEq natComparable := Nat.compare_eq.
+
+(** A pair of ComparableLeibnizEq is ComparableLeibnizEq **)
+Instance PairComparableLeibnizEq
+ {A:Type} {CA:Comparable A} (UA:ComparableLeibnizEq CA)
+ {B:Type} {CB:Comparable B} (UB:ComparableLeibnizEq CB) :
+ ComparableLeibnizEq (PairComparable CA CB).
+Proof.
+intros x y; destruct x, y; simpl.
+pose proof (compare_eq a a0); pose proof (compare_eq b b0).
+destruct (compare a a0); try discriminate.
+intuition.
+destruct H2, H0.
+reflexivity.
+Qed.
+
+(** An [Finite] type is a type with the list of all elements. **)
+Class Finite (A:Type) := {
+ all_list : list A;
+ all_list_forall : forall x:A, In x all_list
+}.
+
+(** An alphabet is both [ComparableLeibnizEq] and [Finite]. **)
+Class Alphabet (A:Type) := {
+ AlphabetComparable :> Comparable A;
+ AlphabetComparableLeibnizEq :> ComparableLeibnizEq AlphabetComparable;
+ AlphabetFinite :> Finite A
+}.
+
+(** The [Numbered] class provides a conveniant way to build [Alphabet] instances,
+ with a good computationnal complexity. It is mainly a injection from it to
+ [positive] **)
+Class Numbered (A:Type) := {
+ inj : A -> positive;
+ surj : positive -> A;
+ surj_inj_compat : forall x, surj (inj x) = x;
+ inj_bound : positive;
+ inj_bound_spec : forall x, (inj x < Pos.succ inj_bound)%positive
+}.
+
+Program Instance NumberedAlphabet {A:Type} (N:Numbered A) : Alphabet A :=
+ { AlphabetComparable := {| compare := fun x y => Pos.compare (inj x) (inj y) |};
+ AlphabetFinite :=
+ {| all_list := fst (Pos.iter
+ (fun '(l, p) => (surj p::l, Pos.succ p))
+ ([], 1%positive) inj_bound) |} }.
+Next Obligation. simpl. now rewrite <- Pos.compare_antisym. Qed.
+Next Obligation.
+ match goal with c : comparison |- _ => destruct c end.
+ - rewrite Pos.compare_eq_iff in *. congruence.
+ - rewrite Pos.compare_lt_iff in *. eauto using Pos.lt_trans.
+ - rewrite Pos.compare_gt_iff in *. eauto using Pos.lt_trans.
+Qed.
+Next Obligation.
+ intros x y. unfold compare. intros Hxy.
+ assert (Hxy' : inj x = inj y).
+ (* We do not use [Pos.compare_eq_iff] directly to make sure the
+ proof is executable. *)
+ { destruct (Pos.eq_dec (inj x) (inj y)) as [|[]]; [now auto|].
+ now apply Pos.compare_eq_iff. }
+ (* Using rewrite here leads to non-executable proofs. *)
+ transitivity (surj (inj x)).
+ { apply eq_sym, surj_inj_compat. }
+ transitivity (surj (inj y)); cycle 1.
+ { apply surj_inj_compat. }
+ apply f_equal, Hxy'.
+Defined.
+Next Obligation.
+ rewrite <-(surj_inj_compat x).
+ generalize (inj_bound_spec x). generalize (inj x). clear x. intros x.
+ match goal with |- ?Hx -> In ?s (fst ?p) =>
+ assert ((Hx -> In s (fst p)) /\ snd p = Pos.succ inj_bound); [|now intuition] end.
+ rewrite Pos.lt_succ_r.
+ induction inj_bound as [|y [IH1 IH2]] using Pos.peano_ind;
+ (split; [intros Hx|]); simpl.
+ - rewrite (Pos.le_antisym _ _ Hx); auto using Pos.le_1_l.
+ - auto.
+ - rewrite Pos.iter_succ. destruct Pos.iter; simpl in *. subst.
+ rewrite Pos.le_lteq in Hx. destruct Hx as [?%Pos.lt_succ_r| ->]; now auto.
+ - rewrite Pos.iter_succ. destruct Pos.iter. simpl in IH2. subst. reflexivity.
+Qed.
+
+(** Definitions of [FSet]/[FMap] from [Comparable] **)
+Require Import OrderedTypeAlt.
+Require FSetAVL.
+Require FMapAVL.
+Import OrderedType.
+
+Module Type ComparableM.
+ Parameter t : Type.
+ Declare Instance tComparable : Comparable t.
+End ComparableM.
+
+Module OrderedTypeAlt_from_ComparableM (C:ComparableM) <: OrderedTypeAlt.
+ Definition t := C.t.
+ Definition compare : t -> t -> comparison := compare.
+
+ Infix "?=" := compare (at level 70, no associativity).
+
+ Lemma compare_sym x y : (y?=x) = CompOpp (x?=y).
+ Proof. exact (Logic.eq_sym (compare_antisym x y)). Qed.
+ Lemma compare_trans c x y z :
+ (x?=y) = c -> (y?=z) = c -> (x?=z) = c.
+ Proof.
+ apply compare_trans.
+ Qed.
+End OrderedTypeAlt_from_ComparableM.
+
+Module OrderedType_from_ComparableM (C:ComparableM) <: OrderedType.
+ Module Alt := OrderedTypeAlt_from_ComparableM C.
+ Include (OrderedType_from_Alt Alt).
+End OrderedType_from_ComparableM.
diff --git a/MenhirLib/Automaton.v b/MenhirLib/Automaton.v
new file mode 100644
index 00000000..c310fc61
--- /dev/null
+++ b/MenhirLib/Automaton.v
@@ -0,0 +1,164 @@
+(****************************************************************************)
+(* *)
+(* Menhir *)
+(* *)
+(* Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud *)
+(* *)
+(* Copyright Inria. All rights reserved. This file is distributed under *)
+(* the terms of the GNU Lesser General Public License as published by the *)
+(* Free Software Foundation, either version 3 of the License, or (at your *)
+(* option) any later version, as described in the file LICENSE. *)
+(* *)
+(****************************************************************************)
+
+Require Grammar.
+Require Export Alphabet.
+From Coq Require Import Orders.
+From Coq Require Export List Syntax.
+
+Module Type AutInit.
+ (** The grammar of the automaton. **)
+ Declare Module Gram:Grammar.T.
+ Export Gram.
+
+ (** The set of non initial state is considered as an alphabet. **)
+ Parameter noninitstate : Type.
+ Declare Instance NonInitStateAlph : Alphabet noninitstate.
+
+ Parameter initstate : Type.
+ Declare Instance InitStateAlph : Alphabet initstate.
+
+ (** When we are at this state, we know that this symbol is the top of the
+ stack. **)
+ Parameter last_symb_of_non_init_state: noninitstate -> symbol.
+End AutInit.
+
+Module Types(Import Init:AutInit).
+ (** In many ways, the behaviour of the initial state is different from the
+ behaviour of the other states. So we have chosen to explicitaly separate
+ them: the user has to provide the type of non initial states. **)
+ Inductive state :=
+ | Init: initstate -> state
+ | Ninit: noninitstate -> state.
+
+ Program Instance StateAlph : Alphabet state :=
+ { AlphabetComparable := {| compare := fun x y =>
+ match x, y return comparison with
+ | Init _, Ninit _ => Lt
+ | Init x, Init y => compare x y
+ | Ninit _, Init _ => Gt
+ | Ninit x, Ninit y => compare x y
+ end |};
+ AlphabetFinite := {| all_list := map Init all_list ++ map Ninit all_list |} }.
+ Local Obligation Tactic := intros.
+ Next Obligation.
+ destruct x, y; intuition; apply compare_antisym.
+ Qed.
+ Next Obligation.
+ destruct x, y, z; intuition.
+ apply (compare_trans _ i0); intuition.
+ congruence.
+ congruence.
+ apply (compare_trans _ n0); intuition.
+ Qed.
+ Next Obligation.
+ intros x y.
+ destruct x, y; intuition; try discriminate.
+ rewrite (compare_eq i i0); intuition.
+ rewrite (compare_eq n n0); intuition.
+ Qed.
+ Next Obligation.
+ apply in_or_app; destruct x; intuition;
+ [left|right]; apply in_map; apply all_list_forall.
+ Qed.
+
+ Coercion Ninit : noninitstate >-> state.
+ Coercion Init : initstate >-> state.
+
+ (** For an LR automaton, there are four kind of actions that can be done at a
+ given state:
+ - Shifting, that is reading a token and putting it into the stack,
+ - Reducing a production, that is popping the right hand side of the
+ production from the stack, and pushing the left hand side,
+ - Failing
+ - Accepting the word (special case of reduction)
+
+ As in the menhir parser generator, we do not want our parser to read after
+ the end of stream. That means that once the parser has read a word in the
+ grammar language, it should stop without peeking the input stream. So, for
+ the automaton to be complete, the grammar must be particular: if a word is
+ in its language, then it is not a prefix of an other word of the language
+ (otherwise, menhir reports an end of stream conflict).
+
+ As a consequence of that, there is two notions of action: the first one is
+ an action performed before having read the stream, the second one is after
+ **)
+
+ Inductive lookahead_action (term:terminal) :=
+ | Shift_act: forall s:noninitstate,
+ T term = last_symb_of_non_init_state s -> lookahead_action term
+ | Reduce_act: production -> lookahead_action term
+ | Fail_act: lookahead_action term.
+ Arguments Shift_act [term].
+ Arguments Reduce_act [term].
+ Arguments Fail_act [term].
+
+ Inductive action :=
+ | Default_reduce_act: production -> action
+ | Lookahead_act : (forall term:terminal, lookahead_action term) -> action.
+
+ (** Types used for the annotations of the automaton. **)
+
+ (** An item is a part of the annotations given to the validator.
+ It is acually a set of LR(1) items sharing the same core. It is needed
+ to validate completeness. **)
+ Record item := {
+ (** The pseudo-production of the item. **)
+ prod_item: production;
+
+ (** The position of the dot. **)
+ dot_pos_item: nat;
+
+ (** The lookahead symbol of the item. We are using a list, so we can store
+ together multiple LR(1) items sharing the same core. **)
+ lookaheads_item: list terminal
+ }.
+End Types.
+
+Module Type T.
+ Include AutInit <+ Types.
+ Module Export GramDefs := Grammar.Defs Gram.
+
+ (** For each initial state, the non terminal it recognizes. **)
+ Parameter start_nt: initstate -> nonterminal.
+
+ (** The action table maps a state to either a map terminal -> action. **)
+ Parameter action_table:
+ state -> action.
+ (** The goto table of an LR(1) automaton. **)
+ Parameter goto_table: state -> forall nt:nonterminal,
+ option { s:noninitstate | NT nt = last_symb_of_non_init_state s }.
+
+ (** Some annotations on the automaton to help the validation. **)
+
+ (** When we are at this state, we know that these symbols are just below
+ the top of the stack. The list is ordered such that the head correspond
+ to the (almost) top of the stack. **)
+ Parameter past_symb_of_non_init_state: noninitstate -> list symbol.
+
+ (** When we are at this state, the (strictly) previous states verify these
+ predicates. **)
+ Parameter past_state_of_non_init_state: noninitstate -> list (state -> bool).
+
+ (** The items of the state. **)
+ Parameter items_of_state: state -> list item.
+
+ (** The nullable predicate for non terminals :
+ true if and only if the symbol produces the empty string **)
+ Parameter nullable_nterm: nonterminal -> bool.
+
+ (** The first predicates for non terminals, symbols or words of symbols. A
+ terminal is in the returned list if, and only if the parameter produces a
+ word that begins with the given terminal **)
+ Parameter first_nterm: nonterminal -> list terminal.
+End T.
diff --git a/MenhirLib/Grammar.v b/MenhirLib/Grammar.v
new file mode 100644
index 00000000..a371318b
--- /dev/null
+++ b/MenhirLib/Grammar.v
@@ -0,0 +1,162 @@
+(****************************************************************************)
+(* *)
+(* Menhir *)
+(* *)
+(* Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud *)
+(* *)
+(* Copyright Inria. All rights reserved. This file is distributed under *)
+(* the terms of the GNU Lesser General Public License as published by the *)
+(* Free Software Foundation, either version 3 of the License, or (at your *)
+(* option) any later version, as described in the file LICENSE. *)
+(* *)
+(****************************************************************************)
+
+From Coq Require Import List Syntax Orders.
+Require Import Alphabet.
+
+(** The terminal non-terminal alphabets of the grammar. **)
+Module Type Alphs.
+ Parameters terminal nonterminal : Type.
+ Declare Instance TerminalAlph: Alphabet terminal.
+ Declare Instance NonTerminalAlph: Alphabet nonterminal.
+End Alphs.
+
+(** Definition of the alphabet of symbols, given the alphabet of terminals
+ and the alphabet of non terminals **)
+Module Symbol(Import A:Alphs).
+
+ Inductive symbol :=
+ | T: terminal -> symbol
+ | NT: nonterminal -> symbol.
+
+ Program Instance SymbolAlph : Alphabet symbol :=
+ { AlphabetComparable := {| compare := fun x y =>
+ match x, y return comparison with
+ | T _, NT _ => Gt
+ | NT _, T _ => Lt
+ | T x, T y => compare x y
+ | NT x, NT y => compare x y
+ end |};
+ AlphabetFinite := {| all_list :=
+ map T all_list++map NT all_list |} }.
+ Next Obligation.
+ destruct x; destruct y; intuition; apply compare_antisym.
+ Qed.
+ Next Obligation.
+ destruct x; destruct y; destruct z; intuition; try discriminate.
+ apply (compare_trans _ t0); intuition.
+ apply (compare_trans _ n0); intuition.
+ Qed.
+ Next Obligation.
+ intros x y.
+ destruct x; destruct y; try discriminate; intros.
+ rewrite (compare_eq t t0); now intuition.
+ rewrite (compare_eq n n0); now intuition.
+ Defined.
+ Next Obligation.
+ rewrite in_app_iff.
+ destruct x; [left | right]; apply in_map; apply all_list_forall.
+ Qed.
+
+End Symbol.
+
+(** A curryfied function with multiple parameters **)
+Definition arrows_right: Type -> list Type -> Type :=
+ fold_right (fun A B => A -> B).
+
+Module Type T.
+ Include Alphs <+ Symbol.
+
+ (** [symbol_semantic_type] maps a symbols to the type of its semantic
+ values. **)
+ Parameter symbol_semantic_type: symbol -> Type.
+
+ (** The type of productions identifiers **)
+ Parameter production : Type.
+ Declare Instance ProductionAlph : Alphabet production.
+
+ (** Accessors for productions: left hand side, right hand side,
+ and semantic action. The semantic actions are given in the form
+ of curryfied functions, that take arguments in the reverse order. **)
+ Parameter prod_lhs: production -> nonterminal.
+ (* The RHS of a production is given in reversed order, so that symbols *)
+ Parameter prod_rhs_rev: production -> list symbol.
+ Parameter prod_action:
+ forall p:production,
+ arrows_right
+ (symbol_semantic_type (NT (prod_lhs p)))
+ (map symbol_semantic_type (prod_rhs_rev p)).
+
+ (** Tokens are the atomic elements of the input stream: they contain
+ a terminal and a semantic value of the type corresponding to this
+ terminal. *)
+ Parameter token : Type.
+ Parameter token_term : token -> terminal.
+ Parameter token_sem :
+ forall tok : token, symbol_semantic_type (T (token_term tok)).
+End T.
+
+Module Defs(Import G:T).
+
+ (** The semantics of a grammar is defined in two stages. First, we
+ define the notion of parse tree, which represents one way of
+ recognizing a word with a head symbol. Semantic values are stored
+ at the leaves.
+
+ This notion is defined in two mutually recursive flavours:
+ either for a single head symbol, or for a list of head symbols. *)
+ Inductive parse_tree:
+ forall (head_symbol:symbol) (word:list token), Type :=
+
+ (** Parse tree for a terminal symbol. *)
+ | Terminal_pt:
+ forall (tok:token), parse_tree (T (token_term tok)) [tok]
+
+ (** Parse tree for a non-terminal symbol. *)
+ | Non_terminal_pt:
+ forall (prod:production) {word:list token},
+ parse_tree_list (prod_rhs_rev prod) word ->
+ parse_tree (NT (prod_lhs prod)) word
+
+ (* Note : the list head_symbols_rev is reversed. *)
+ with parse_tree_list:
+ forall (head_symbols_rev:list symbol) (word:list token), Type :=
+
+ | Nil_ptl: parse_tree_list [] []
+
+ | Cons_ptl:
+ forall {head_symbolsq:list symbol} {wordq:list token},
+ parse_tree_list head_symbolsq wordq ->
+
+ forall {head_symbolt:symbol} {wordt:list token},
+ parse_tree head_symbolt wordt ->
+
+ parse_tree_list (head_symbolt::head_symbolsq) (wordq++wordt).
+
+ (** We can now finish the definition of the semantics of a grammar,
+ by giving the semantic value assotiated with a parse tree. *)
+ Fixpoint pt_sem {head_symbol word} (tree:parse_tree head_symbol word) :
+ symbol_semantic_type head_symbol :=
+ match tree with
+ | Terminal_pt tok => token_sem tok
+ | Non_terminal_pt prod ptl => ptl_sem ptl (prod_action prod)
+ end
+ with ptl_sem {A head_symbols word} (tree:parse_tree_list head_symbols word) :
+ arrows_right A (map symbol_semantic_type head_symbols) -> A :=
+ match tree with
+ | Nil_ptl => fun act => act
+ | Cons_ptl q t => fun act => ptl_sem q (act (pt_sem t))
+ end.
+
+ Fixpoint pt_size {head_symbol word} (tree:parse_tree head_symbol word) :=
+ match tree with
+ | Terminal_pt _ => 1
+ | Non_terminal_pt _ l => S (ptl_size l)
+ end
+ with ptl_size {head_symbols word} (tree:parse_tree_list head_symbols word) :=
+ match tree with
+ | Nil_ptl => 0
+ | Cons_ptl q t =>
+ pt_size t + ptl_size q
+ end.
+End Defs.
diff --git a/MenhirLib/Interpreter.v b/MenhirLib/Interpreter.v
new file mode 100644
index 00000000..568597ba
--- /dev/null
+++ b/MenhirLib/Interpreter.v
@@ -0,0 +1,453 @@
+(****************************************************************************)
+(* *)
+(* Menhir *)
+(* *)
+(* Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud *)
+(* *)
+(* Copyright Inria. All rights reserved. This file is distributed under *)
+(* the terms of the GNU Lesser General Public License as published by the *)
+(* Free Software Foundation, either version 3 of the License, or (at your *)
+(* option) any later version, as described in the file LICENSE. *)
+(* *)
+(****************************************************************************)
+
+From Coq Require Import List Syntax.
+From Coq.ssr Require Import ssreflect.
+Require Automaton.
+Require Import Alphabet Grammar Validator_safe.
+
+Module Make(Import A:Automaton.T).
+Module Import ValidSafe := Validator_safe.Make A.
+
+(** A few helpers for dependent types. *)
+
+(** Decidable propositions. *)
+Class Decidable (P : Prop) := decide : {P} + {~P}.
+Arguments decide _ {_}.
+
+(** A [Comparable] type has decidable equality. *)
+Instance comparable_decidable_eq T `{ComparableLeibnizEq T} (x y : T) :
+ Decidable (x = y).
+Proof.
+ unfold Decidable.
+ destruct (compare x y) eqn:EQ; [left; apply compare_eq; intuition | ..];
+ right; intros ->; by rewrite compare_refl in EQ.
+Defined.
+
+Instance list_decidable_eq T :
+ (forall x y : T, Decidable (x = y)) ->
+ (forall l1 l2 : list T, Decidable (l1 = l2)).
+Proof. unfold Decidable. decide equality. Defined.
+
+Ltac subst_existT :=
+ repeat
+ match goal with
+ | _ => progress subst
+ | H : @existT ?A ?P ?x ?y1 = @existT ?A ?P ?x ?y2 |- _ =>
+ let DEC := fresh in
+ assert (DEC : forall u1 u2 : A, Decidable (u1 = u2)) by apply _;
+ apply Eqdep_dec.inj_pair2_eq_dec in H; [|by apply DEC];
+ clear DEC
+ end.
+
+(** The interpreter is written using dependent types. In order to
+ avoid reducing proof terms while executing the parser, we thunk all
+ the propositions behind an arrow.
+ Note that thunkP is still in Prop so that it is erased by
+ extraction.
+ *)
+Definition thunkP (P : Prop) : Prop := True -> P.
+
+(** Sometimes, we actually need a reduced proof in a program (for
+ example when using an equality to cast a value). In that case,
+ instead of reducing the proof we already have, we reprove the
+ assertion by using decidability. *)
+Definition reprove {P} `{Decidable P} (p : thunkP P) : P :=
+ match decide P with
+ | left p => p
+ | right np => False_ind _ (np (p I))
+ end.
+
+(** Combination of reprove with eq_rect. *)
+Definition cast {T : Type} (F : T -> Type) {x y : T} (eq : thunkP (x = y))
+ {DEC : unit -> Decidable (x = y)}:
+ F x -> F y :=
+ fun a => eq_rect x F a y (@reprove _ (DEC ()) eq).
+
+Lemma cast_eq T F (x : T) (eq : thunkP (x = x)) `{forall x y, Decidable (x = y)} a :
+ cast F eq a = a.
+Proof. by rewrite /cast -Eqdep_dec.eq_rect_eq_dec. Qed.
+
+(** Input buffers and operations on them. **)
+CoInductive buffer : Type :=
+ Buf_cons { buf_head : token; buf_tail : buffer }.
+
+Delimit Scope buffer_scope with buf.
+Bind Scope buffer_scope with buffer.
+
+Infix "::" := Buf_cons (at level 60, right associativity) : buffer_scope.
+
+(** Concatenation of a list and an input buffer **)
+Fixpoint app_buf (l:list token) (buf:buffer) :=
+ match l with
+ | nil => buf
+ | cons t q => (t :: app_buf q buf)%buf
+ end.
+Infix "++" := app_buf (at level 60, right associativity) : buffer_scope.
+
+Lemma app_buf_assoc (l1 l2:list token) (buf:buffer) :
+ (l1 ++ (l2 ++ buf) = (l1 ++ l2) ++ buf)%buf.
+Proof. induction l1 as [|?? IH]=>//=. rewrite IH //. Qed.
+
+(** The type of a non initial state: the type of semantic values associated
+ with the last symbol of this state. *)
+Definition noninitstate_type state :=
+ symbol_semantic_type (last_symb_of_non_init_state state).
+
+(** The stack of the automaton : it can be either nil or contains a non
+ initial state, a semantic value for the symbol associted with this state,
+ and a nested stack. **)
+Definition stack := list (sigT noninitstate_type). (* eg. list {state & state_type state} *)
+
+Section Interpreter.
+
+Hypothesis safe: safe.
+
+(* Properties of the automaton deduced from safety validation. *)
+Proposition shift_head_symbs: shift_head_symbs.
+Proof. pose proof safe; unfold ValidSafe.safe in H; intuition. Qed.
+Proposition goto_head_symbs: goto_head_symbs.
+Proof. pose proof safe; unfold ValidSafe.safe in H; intuition. Qed.
+Proposition shift_past_state: shift_past_state.
+Proof. pose proof safe; unfold ValidSafe.safe in H; intuition. Qed.
+Proposition goto_past_state: goto_past_state.
+Proof. pose proof safe; unfold ValidSafe.safe in H; intuition. Qed.
+Proposition reduce_ok: reduce_ok.
+Proof. pose proof safe; unfold ValidSafe.safe in H; intuition. Qed.
+
+Variable init : initstate.
+
+(** The top state of a stack **)
+Definition state_of_stack (stack:stack): state :=
+ match stack with
+ | [] => init
+ | existT _ s _::_ => s
+ end.
+
+(** The stack of states of an automaton stack **)
+Definition state_stack_of_stack (stack:stack) :=
+ (List.map
+ (fun cell:sigT noninitstate_type => singleton_state_pred (projT1 cell))
+ stack ++ [singleton_state_pred init])%list.
+
+(** The stack of symbols of an automaton stack **)
+Definition symb_stack_of_stack (stack:stack) :=
+ List.map
+ (fun cell:sigT noninitstate_type => last_symb_of_non_init_state (projT1 cell))
+ stack.
+
+(** The stack invariant : it basically states that the assumptions on the
+ states are true. **)
+Inductive stack_invariant: stack -> Prop :=
+ | stack_invariant_constr:
+ forall stack,
+ prefix (head_symbs_of_state (state_of_stack stack))
+ (symb_stack_of_stack stack) ->
+ prefix_pred (head_states_of_state (state_of_stack stack))
+ (state_stack_of_stack stack) ->
+ stack_invariant_next stack ->
+ stack_invariant stack
+with stack_invariant_next: stack -> Prop :=
+ | stack_invariant_next_nil:
+ stack_invariant_next []
+ | stack_invariant_next_cons:
+ forall state_cur st stack_rec,
+ stack_invariant stack_rec ->
+ stack_invariant_next (existT _ state_cur st::stack_rec).
+
+(** [pop] pops some symbols from the stack. It returns the popped semantic
+ values using [sem_popped] as an accumulator and discards the popped
+ states.**)
+Fixpoint pop (symbols_to_pop:list symbol) {A:Type} (stk:stack) :
+ thunkP (prefix symbols_to_pop (symb_stack_of_stack stk)) ->
+ forall (action:arrows_right A (map symbol_semantic_type symbols_to_pop)),
+ stack * A.
+unshelve refine
+ (match symbols_to_pop
+ return
+ (thunkP (prefix symbols_to_pop (symb_stack_of_stack stk))) ->
+ forall (action:arrows_right A (map _ symbols_to_pop)), stack * A
+ with
+ | [] => fun _ action => (stk, action)
+ | t::q => fun Hp action =>
+ match stk
+ return thunkP (prefix (t::q) (symb_stack_of_stack stk)) -> stack * A
+ with
+ | existT _ state_cur sem::stack_rec => fun Hp =>
+ let sem_conv := cast symbol_semantic_type _ sem in
+ pop q _ stack_rec _ (action sem_conv)
+ | [] => fun Hp => False_rect _ _
+ end Hp
+ end).
+Proof.
+ - simpl in Hp. clear -Hp. abstract (intros _ ; specialize (Hp I); now inversion Hp).
+ - clear -Hp. abstract (specialize (Hp I); now inversion Hp).
+ - simpl in Hp. clear -Hp. abstract (intros _ ; specialize (Hp I); now inversion Hp).
+Defined.
+
+(* Equivalent declarative specification for pop, so that we avoid
+ (part of) the dependent types nightmare. *)
+Inductive pop_spec {A:Type} :
+ forall (symbols_to_pop:list symbol) (stk : stack)
+ (action : arrows_right A (map symbol_semantic_type symbols_to_pop))
+ (stk' : stack) (sem : A),
+ Prop :=
+ | Nil_pop_spec stk sem : pop_spec [] stk sem stk sem
+ | Cons_pop_spec symbols_to_pop st stk action sem stk' res :
+ pop_spec symbols_to_pop stk (action sem) stk' res ->
+ pop_spec (last_symb_of_non_init_state st::symbols_to_pop)
+ (existT _ st sem :: stk) action stk' res.
+
+Lemma pop_spec_ok {A:Type} symbols_to_pop stk Hp action stk' res:
+ pop symbols_to_pop stk Hp action = (stk', res) <->
+ pop_spec (A:=A) symbols_to_pop stk action stk' res.
+Proof.
+ revert stk Hp action.
+ induction symbols_to_pop as [|t symbols_to_pop IH]=>stk Hp action /=.
+ - split.
+ + intros [= <- <-]. constructor.
+ + intros H. inversion H. by subst_existT.
+ - destruct stk as [|[st sem]]=>/=; [by destruct pop_subproof0|].
+ remember (pop_subproof t symbols_to_pop stk st Hp) as EQ eqn:eq. clear eq.
+ generalize EQ. revert Hp action. rewrite <-(EQ I)=>Hp action ?.
+ rewrite cast_eq. rewrite IH. split.
+ + intros. by constructor.
+ + intros H. inversion H. by subst_existT.
+Qed.
+
+
+Lemma pop_preserves_invariant symbols_to_pop stk Hp A action :
+ stack_invariant stk ->
+ stack_invariant (fst (pop symbols_to_pop stk Hp (A:=A) action)).
+Proof.
+ revert stk Hp A action. induction symbols_to_pop as [|t q IH]=>//=.
+ intros stk Hp A action Hi.
+ destruct Hi as [stack Hp' Hpp [|state st stk']].
+ - destruct pop_subproof0.
+ - now apply IH.
+Qed.
+
+Lemma pop_state_valid symbols_to_pop stk Hp A action lpred :
+ prefix_pred lpred (state_stack_of_stack stk) ->
+ let stk' := fst (pop symbols_to_pop stk Hp (A:=A) action) in
+ state_valid_after_pop (state_of_stack stk') symbols_to_pop lpred.
+Proof.
+ revert stk Hp A action lpred. induction symbols_to_pop as [|t q IH]=>/=.
+ - intros stk Hp A a lpred Hpp. destruct lpred as [|pred lpred]; constructor.
+ inversion Hpp as [|? lpred' ? pred' Himpl Hpp' eq1 eq2]; subst.
+ specialize (Himpl (state_of_stack stk)).
+ destruct (pred' (state_of_stack stk)) as [] eqn:Heqpred'=>//.
+ destruct stk as [|[]]; simpl in *.
+ + inversion eq2; subst; clear eq2.
+ unfold singleton_state_pred in Heqpred'.
+ now rewrite compare_refl in Heqpred'; discriminate.
+ + inversion eq2; subst; clear eq2.
+ unfold singleton_state_pred in Heqpred'.
+ now rewrite compare_refl in Heqpred'; discriminate.
+ - intros stk Hp A a lpred Hpp. destruct stk as [|[] stk]=>//=.
+ + destruct pop_subproof0.
+ + destruct lpred as [|pred lpred]; [by constructor|].
+ constructor. apply IH. by inversion Hpp.
+Qed.
+
+(** [step_result] represents the result of one step of the automaton : it can
+ fail, accept or progress. [Fail_sr] means that the input is incorrect.
+ [Accept_sr] means that this is the last step of the automaton, and it
+ returns the semantic value of the input word. [Progress_sr] means that
+ some progress has been made, but new steps are needed in order to accept
+ a word.
+
+ For [Accept_sr] and [Progress_sr], the result contains the new input buffer.
+
+ [Fail_sr] means that the input word is rejected by the automaton. It is
+ different to [Err] (from the error monad), which mean that the automaton is
+ bogus and has perfomed a forbidden action. **)
+Inductive step_result :=
+ | Fail_sr: step_result
+ | Accept_sr: symbol_semantic_type (NT (start_nt init)) -> buffer -> step_result
+ | Progress_sr: stack -> buffer -> step_result.
+
+(** [reduce_step] does a reduce action :
+ - pops some elements from the stack
+ - execute the action of the production
+ - follows the goto for the produced non terminal symbol **)
+Definition reduce_step stk prod (buffer : buffer)
+ (Hval : thunkP (valid_for_reduce (state_of_stack stk) prod))
+ (Hi : thunkP (stack_invariant stk))
+ : step_result.
+refine
+ ((let '(stk', sem) as ss := pop (prod_rhs_rev prod) stk _ (prod_action prod)
+ return thunkP (state_valid_after_pop (state_of_stack (fst ss)) _
+ (head_states_of_state (state_of_stack stk))) -> _
+ in fun Hval' =>
+ match goto_table (state_of_stack stk') (prod_lhs prod) as goto
+ return (thunkP (goto = None ->
+ match state_of_stack stk' with
+ | Init i => prod_lhs prod = start_nt i
+ | Ninit _ => False
+ end)) -> _
+ with
+ | Some (exist _ state_new e) => fun _ =>
+ let sem := eq_rect _ _ sem _ e in
+ Progress_sr (existT noninitstate_type state_new sem::stk') buffer
+ | None => fun Hval =>
+ let sem := cast symbol_semantic_type _ sem in
+ Accept_sr sem buffer
+ end (fun _ => _))
+ (fun _ => pop_state_valid _ _ _ _ _ _ _)).
+Proof.
+ - clear -Hi Hval.
+ abstract (intros _; destruct Hi=>//; eapply prefix_trans; [by apply Hval|eassumption]).
+ - clear -Hval.
+ abstract (intros _; f_equal; specialize (Hval I eq_refl); destruct stk' as [|[]]=>//).
+ - simpl in Hval'. clear -Hval Hval'.
+ abstract (move : Hval => /(_ I) [_ /(_ _ (Hval' I))] Hval2 Hgoto; by rewrite Hgoto in Hval2).
+ - clear -Hi. abstract by destruct Hi.
+Defined.
+
+Lemma reduce_step_stack_invariant_preserved stk prod buffer Hv Hi stk' buffer':
+ reduce_step stk prod buffer Hv Hi = Progress_sr stk' buffer' ->
+ stack_invariant stk'.
+Proof.
+ unfold reduce_step.
+ match goal with
+ | |- context [pop ?symbols_to_pop stk ?Hp ?action] =>
+ assert (Hi':=pop_preserves_invariant symbols_to_pop stk Hp _ action (Hi I));
+ generalize (pop_state_valid symbols_to_pop stk Hp _ action)
+ end.
+ destruct pop as [stk0 sem]=>/=. simpl in Hi'. intros Hv'.
+ assert (Hgoto1:=goto_head_symbs (state_of_stack stk0) (prod_lhs prod)).
+ assert (Hgoto2:=goto_past_state (state_of_stack stk0) (prod_lhs prod)).
+ match goal with | |- context [fun _ : True => ?X] => generalize X end.
+ destruct goto_table as [[state_new e]|] eqn:EQgoto=>//.
+ intros _ [= <- <-]. constructor=>/=.
+ - constructor. eapply prefix_trans. apply Hgoto1. by destruct Hi'.
+ - unfold state_stack_of_stack; simpl; constructor.
+ + intros ?. by destruct singleton_state_pred.
+ + eapply prefix_pred_trans. apply Hgoto2. by destruct Hi'.
+ - by constructor.
+Qed.
+
+(** One step of parsing. **)
+Definition step stk buffer (Hi : thunkP (stack_invariant stk)): step_result :=
+ match action_table (state_of_stack stk) as a return
+ thunkP
+ match a return Prop with
+ | Default_reduce_act prod => _
+ | Lookahead_act awt => forall t : terminal,
+ match awt t with
+ | Reduce_act p => _
+ | _ => True
+ end
+ end -> _
+ with
+ | Default_reduce_act prod => fun Hv =>
+ reduce_step stk prod buffer Hv Hi
+ | Lookahead_act awt => fun Hv =>
+ match buf_head buffer with
+ | tok =>
+ match awt (token_term tok) as a return
+ thunkP match a return Prop with Reduce_act p => _ | _ => _ end -> _
+ with
+ | Shift_act state_new e => fun _ =>
+ let sem_conv := eq_rect _ symbol_semantic_type (token_sem tok) _ e in
+ Progress_sr (existT noninitstate_type state_new sem_conv::stk)
+ (buf_tail buffer)
+ | Reduce_act prod => fun Hv =>
+ reduce_step stk prod buffer Hv Hi
+ | Fail_act => fun _ =>
+ Fail_sr
+ end (fun _ => Hv I (token_term tok))
+ end
+ end (fun _ => reduce_ok _).
+
+Lemma step_stack_invariant_preserved stk buffer Hi stk' buffer':
+ step stk buffer Hi = Progress_sr stk' buffer' ->
+ stack_invariant stk'.
+Proof.
+ unfold step.
+ generalize (reduce_ok (state_of_stack stk))=>Hred.
+ assert (Hshift1 := shift_head_symbs (state_of_stack stk)).
+ assert (Hshift2 := shift_past_state (state_of_stack stk)).
+ destruct action_table as [prod|awt]=>/=.
+ - eauto using reduce_step_stack_invariant_preserved.
+ - set (term := token_term (buf_head buffer)).
+ generalize (Hred term). clear Hred. intros Hred.
+ specialize (Hshift1 term). specialize (Hshift2 term).
+ destruct (awt term) as [state_new e|prod|]=>//.
+ + intros [= <- <-]. constructor=>/=.
+ * constructor. eapply prefix_trans. apply Hshift1. by destruct Hi.
+ * unfold state_stack_of_stack; simpl; constructor.
+ -- intros ?. by destruct singleton_state_pred.
+ -- eapply prefix_pred_trans. apply Hshift2. by destruct Hi.
+ * constructor; by apply Hi.
+ + eauto using reduce_step_stack_invariant_preserved.
+Qed.
+
+(** The parsing use a [nat] fuel parameter [log_n_steps], so that we
+ do not have to prove terminaison, which is difficult.
+
+ Note that [log_n_steps] is *not* the fuel in the conventionnal
+ sense: this parameter contains the logarithm (in base 2) of the
+ number of steps to perform. Hence, a value of, e.g., 50 will
+ usually be enough to ensure termination. *)
+Fixpoint parse_fix stk buffer (log_n_steps : nat) (Hi : thunkP (stack_invariant stk)):
+ { sr : step_result |
+ forall stk' buffer', sr = Progress_sr stk' buffer' -> stack_invariant stk' } :=
+ match log_n_steps with
+ | O => exist _ (step stk buffer Hi)
+ (step_stack_invariant_preserved _ _ Hi)
+ | S log_n_steps =>
+ match parse_fix stk buffer log_n_steps Hi with
+ | exist _ (Progress_sr stk buffer) Hi' =>
+ parse_fix stk buffer log_n_steps (fun _ => Hi' _ buffer eq_refl)
+ | sr => sr
+ end
+ end.
+
+(** The final result of a parsing is either a failure (the automaton
+ has rejected the input word), either a timeout (the automaton has
+ spent all the given [2^log_n_steps]), either a parsed semantic value
+ with a rest of the input buffer.
+
+ Note that we do not make parse_result depend on start_nt for the
+ result type, so that this inductive is extracted without the use
+ of Obj.t in OCaml. **)
+Inductive parse_result {A : Type} :=
+ | Fail_pr: parse_result
+ | Timeout_pr: parse_result
+ | Parsed_pr: A -> buffer -> parse_result.
+Global Arguments parse_result _ : clear implicits.
+
+Definition parse (buffer : buffer) (log_n_steps : nat):
+ parse_result (symbol_semantic_type (NT (start_nt init))).
+refine (match proj1_sig (parse_fix [] buffer log_n_steps _) with
+ | Fail_sr => Fail_pr
+ | Accept_sr sem buffer' => Parsed_pr sem buffer'
+ | Progress_sr _ _ => Timeout_pr
+ end).
+Proof.
+ abstract (repeat constructor; intros; by destruct singleton_state_pred).
+Defined.
+
+End Interpreter.
+
+Arguments Fail_sr {init}.
+Arguments Accept_sr {init} _ _.
+Arguments Progress_sr {init} _ _.
+
+End Make.
+
+Module Type T(A:Automaton.T).
+ Include (Make A).
+End T.
diff --git a/MenhirLib/Interpreter_complete.v b/MenhirLib/Interpreter_complete.v
new file mode 100644
index 00000000..ec69592b
--- /dev/null
+++ b/MenhirLib/Interpreter_complete.v
@@ -0,0 +1,825 @@
+(****************************************************************************)
+(* *)
+(* Menhir *)
+(* *)
+(* Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud *)
+(* *)
+(* Copyright Inria. All rights reserved. This file is distributed under *)
+(* the terms of the GNU Lesser General Public License as published by the *)
+(* Free Software Foundation, either version 3 of the License, or (at your *)
+(* option) any later version, as described in the file LICENSE. *)
+(* *)
+(****************************************************************************)
+
+From Coq Require Import List Syntax Arith.
+From Coq.ssr Require Import ssreflect.
+Require Import Alphabet Grammar.
+Require Automaton Interpreter Validator_complete.
+
+Module Make(Import A:Automaton.T) (Import Inter:Interpreter.T A).
+Module Import Valid := Validator_complete.Make A.
+
+(** * Completeness Proof **)
+
+Section Completeness_Proof.
+
+Hypothesis safe: Inter.ValidSafe.safe.
+Hypothesis complete: complete.
+
+(* Properties of the automaton deduced from completeness validation. *)
+Proposition nullable_stable: nullable_stable.
+Proof. pose proof complete; unfold Valid.complete in H; intuition. Qed.
+Proposition first_stable: first_stable.
+Proof. pose proof complete; unfold Valid.complete in H; intuition. Qed.
+Proposition start_future: start_future.
+Proof. pose proof complete; unfold Valid.complete in H; intuition. Qed.
+Proposition terminal_shift: terminal_shift.
+Proof. pose proof complete; unfold Valid.complete in H; intuition. Qed.
+Proposition end_reduce: end_reduce.
+Proof. pose proof complete; unfold Valid.complete in H; intuition. Qed.
+Proposition start_goto: start_goto.
+Proof. pose proof complete; unfold Valid.complete in H; intuition. Qed.
+Proposition non_terminal_goto: non_terminal_goto.
+Proof. pose proof complete; unfold Valid.complete in H; intuition. Qed.
+Proposition non_terminal_closed: non_terminal_closed.
+Proof. pose proof complete; unfold Valid.complete in H; intuition. Qed.
+
+(** If the nullable predicate has been validated, then it is correct. **)
+Lemma nullable_correct head word :
+ word = [] -> parse_tree head word -> nullable_symb head = true
+with nullable_correct_list heads word :
+ word = [] ->
+ parse_tree_list heads word -> nullable_word heads = true.
+Proof.
+ - destruct 2=>//. assert (Hnull := nullable_stable prod).
+ erewrite nullable_correct_list in Hnull; eauto.
+ - intros Hword. destruct 1=>//=. destruct (app_eq_nil _ _ Hword).
+ eauto using andb_true_intro.
+Qed.
+
+(** Auxiliary lemma for first_correct. *)
+Lemma first_word_set_app t word1 word2 :
+ TerminalSet.In t (first_word_set (word1 ++ word2)) <->
+ TerminalSet.In t (first_word_set word1) \/
+ TerminalSet.In t (first_word_set word2) /\ nullable_word (rev word1) = true.
+Proof.
+ induction word1 as [|s word1 IH]=>/=.
+ - split; [tauto|]. move=>[/TerminalSet.empty_1 ?|[? _]]//.
+ - rewrite /nullable_word forallb_app /=. destruct nullable_symb=>/=.
+ + rewrite Bool.andb_true_r. split.
+ * move=>/TerminalSet.union_1. rewrite IH.
+ move=>[?|[?|[??]]]; auto using TerminalSet.union_2, TerminalSet.union_3.
+ * destruct IH.
+ move=>[/TerminalSet.union_1 [?|?]|[??]];
+ auto using TerminalSet.union_2, TerminalSet.union_3.
+ + rewrite Bool.andb_false_r. by intuition.
+Qed.
+
+(** If the first predicate has been validated, then it is correct. **)
+Lemma first_correct head word t q :
+ word = t::q ->
+ parse_tree head word ->
+ TerminalSet.In (token_term t) (first_symb_set head)
+with first_correct_list heads word t q :
+ word = t::q ->
+ parse_tree_list heads word ->
+ TerminalSet.In (token_term t) (first_word_set (rev' heads)).
+Proof.
+ - intros Hword. destruct 1=>//.
+ + inversion Hword. subst. apply TerminalSet.singleton_2, compare_refl.
+ + eapply first_stable. eauto.
+ - intros Hword. destruct 1 as [|symq wordq ptl symt wordt pt]=>//=.
+ rewrite /rev' -rev_alt /= first_word_set_app /= rev_involutive rev_alt.
+ destruct wordq; [right|left].
+ + destruct nullable_symb; eauto using TerminalSet.union_2, nullable_correct_list.
+ + inversion Hword. subst. fold (rev' symq). eauto.
+Qed.
+
+(** A PTL is compatible with a stack if the top of the stack contains
+ data representing to this PTL. *)
+Fixpoint ptl_stack_compat {symbs word}
+ (stk0 : stack) (ptl : parse_tree_list symbs word) (stk : stack) : Prop :=
+ match ptl with
+ | Nil_ptl => stk0 = stk
+ | @Cons_ptl _ _ ptl sym _ pt =>
+ match stk with
+ | [] => False
+ | existT _ _ sem::stk =>
+ ptl_stack_compat stk0 ptl stk /\
+ exists e,
+ sem = eq_rect _ symbol_semantic_type (pt_sem pt) _ e
+ end
+ end.
+
+(** .. and when a PTL is compatible with a stack, then calling the pop
+ function return the semantic value of this PTL. *)
+Lemma pop_stack_compat_pop_spec {A symbs word}
+ (ptl:parse_tree_list symbs word) (stk:stack) (stk0:stack) action :
+ ptl_stack_compat stk0 ptl stk ->
+ pop_spec symbs stk action stk0 (ptl_sem (A:=A) ptl action).
+Proof.
+ revert stk. induction ptl=>stk /= Hstk.
+ - subst. constructor.
+ - destruct stk as [|[st sem] stk]=>//. destruct Hstk as [Hstk [??]]. subst.
+ simpl. constructor. eauto.
+Qed.
+
+Variable init: initstate.
+
+(** In order to prove compleness, we first fix a word to be parsed
+ together with the content of the parser at the end of the parsing. *)
+Variable full_word: list token.
+Variable buffer_end: buffer.
+
+(** Completeness is proved by following the traversal of the parse
+ tree which is performed by the parser. Each step of parsing
+ correspond to one step of traversal. In order to represent the state
+ of the traversal, we define the notion of "dotted" parse tree, which
+ is a parse tree with one dot on one of its node. The place of the
+ dot represents the place of the next action to be executed.
+
+ Such a dotted parse tree is decomposed into two part: a "regular"
+ parse tree, which is the parse tree placed under the dot, and a
+ "parse tree zipper", which is the part of the parse tree placed
+ above the dot. Therefore, a parse tree zipper is a parse tree with a
+ hole. Moreover, for easier manipulation, a parse tree zipper is
+ represented "upside down". That is, the root of the parse tree is
+ actually a leaf of the zipper, while the root of the zipper is the
+ hole.
+ *)
+Inductive pt_zipper:
+ forall (hole_symb:symbol) (hole_word:list token), Type :=
+| Top_ptz:
+ pt_zipper (NT (start_nt init)) full_word
+| Cons_ptl_ptz:
+ forall {head_symbolsq:list symbol} {wordq:list token},
+ parse_tree_list head_symbolsq wordq ->
+
+ forall {head_symbolt:symbol} {wordt:list token},
+
+ ptl_zipper (head_symbolt::head_symbolsq) (wordq++wordt) ->
+ pt_zipper head_symbolt wordt
+with ptl_zipper:
+ forall (hole_symbs:list symbol) (hole_word:list token), Type :=
+| Non_terminal_pt_ptlz:
+ forall {p:production} {word:list token},
+ pt_zipper (NT (prod_lhs p)) word ->
+ ptl_zipper (prod_rhs_rev p) word
+
+| Cons_ptl_ptlz:
+ forall {head_symbolsq:list symbol} {wordq:list token},
+
+ forall {head_symbolt:symbol} {wordt:list token},
+ parse_tree head_symbolt wordt ->
+
+ ptl_zipper (head_symbolt::head_symbolsq) (wordq++wordt) ->
+
+ ptl_zipper head_symbolsq wordq.
+
+(** A dotted parse tree is the combination of a parse tree zipper with
+ a parse tree. It can be intwo flavors, depending on which is the next
+ action to be executed (shift or reduce). *)
+Inductive pt_dot: Type :=
+| Reduce_ptd: forall {prod word},
+ parse_tree_list (prod_rhs_rev prod) word ->
+ pt_zipper (NT (prod_lhs prod)) word ->
+ pt_dot
+| Shift_ptd: forall (tok : token) {symbolsq wordq},
+ parse_tree_list symbolsq wordq ->
+ ptl_zipper (T (token_term tok)::symbolsq) (wordq++[tok]) ->
+ pt_dot.
+
+(** We can compute the full semantic value of a parse tree when
+ represented as a dotted ptd. *)
+
+Fixpoint ptlz_sem {hole_symbs hole_word}
+ (ptlz:ptl_zipper hole_symbs hole_word) :
+ (forall A, arrows_right A (map symbol_semantic_type hole_symbs) -> A) ->
+ (symbol_semantic_type (NT (start_nt init))) :=
+ match ptlz with
+ | @Non_terminal_pt_ptlz prod _ ptz =>
+ fun k => ptz_sem ptz (k _ (prod_action prod))
+ | Cons_ptl_ptlz pt ptlz =>
+ fun k => ptlz_sem ptlz (fun _ f => k _ (f (pt_sem pt)))
+ end
+with ptz_sem {hole_symb hole_word}
+ (ptz:pt_zipper hole_symb hole_word):
+ symbol_semantic_type hole_symb -> symbol_semantic_type (NT (start_nt init)) :=
+ match ptz with
+ | Top_ptz => fun sem => sem
+ | Cons_ptl_ptz ptl ptlz =>
+ fun sem => ptlz_sem ptlz (fun _ f => ptl_sem ptl (f sem))
+ end.
+
+Definition ptd_sem (ptd : pt_dot) :=
+ match ptd with
+ | @Reduce_ptd prod _ ptl ptz =>
+ ptz_sem ptz (ptl_sem ptl (prod_action prod))
+ | Shift_ptd tok ptl ptlz =>
+ ptlz_sem ptlz (fun _ f => ptl_sem ptl (f (token_sem tok)))
+ end.
+
+(** The buffer associated with a dotted parse tree corresponds to the
+ buffer left to be read by the parser when at the state represented
+ by the dotted parse tree. *)
+Fixpoint ptlz_buffer {hole_symbs hole_word}
+ (ptlz:ptl_zipper hole_symbs hole_word): buffer :=
+ match ptlz with
+ | Non_terminal_pt_ptlz ptz =>
+ ptz_buffer ptz
+ | @Cons_ptl_ptlz _ _ _ wordt _ ptlz' =>
+ wordt ++ ptlz_buffer ptlz'
+ end
+with ptz_buffer {hole_symb hole_word}
+ (ptz:pt_zipper hole_symb hole_word): buffer :=
+ match ptz with
+ | Top_ptz => buffer_end
+ | Cons_ptl_ptz _ ptlz =>
+ ptlz_buffer ptlz
+ end.
+
+Definition ptd_buffer (ptd:pt_dot) :=
+ match ptd with
+ | Reduce_ptd _ ptz => ptz_buffer ptz
+ | @Shift_ptd tok _ wordq _ ptlz => (tok::ptlz_buffer ptlz)%buf
+ end.
+
+(** We are now ready to define the main invariant of the proof of
+ completeness: we need to specify when a stack is compatible with a
+ dotted parse tree. Informally, a stack is compatible with a dotted
+ parse tree when it is the concatenation stack fragments which are
+ compatible with each of the partially recognized productions
+ appearing in the parse tree zipper. Moreover, the head of each of
+ these stack fragment contains a state which has an item predicted by
+ the corresponding zipper.
+
+ More formally, the compatibility relation first needs the following
+ auxiliary definitions: *)
+Fixpoint ptlz_prod {hole_symbs hole_word}
+ (ptlz:ptl_zipper hole_symbs hole_word): production :=
+ match ptlz with
+ | @Non_terminal_pt_ptlz prod _ _ => prod
+ | Cons_ptl_ptlz _ ptlz' => ptlz_prod ptlz'
+ end.
+
+Fixpoint ptlz_future {hole_symbs hole_word}
+ (ptlz:ptl_zipper hole_symbs hole_word): list symbol :=
+ match ptlz with
+ | Non_terminal_pt_ptlz _ => []
+ | @Cons_ptl_ptlz _ _ s _ _ ptlz' => s::ptlz_future ptlz'
+ end.
+
+Fixpoint ptlz_lookahead {hole_symbs hole_word}
+ (ptlz:ptl_zipper hole_symbs hole_word) : terminal :=
+ match ptlz with
+ | Non_terminal_pt_ptlz ptz => token_term (buf_head (ptz_buffer ptz))
+ | Cons_ptl_ptlz _ ptlz' => ptlz_lookahead ptlz'
+ end.
+
+Fixpoint ptz_stack_compat {hole_symb hole_word}
+ (stk : stack) (ptz : pt_zipper hole_symb hole_word) : Prop :=
+ match ptz with
+ | Top_ptz => stk = []
+ | Cons_ptl_ptz ptl ptlz =>
+ exists stk0,
+ state_has_future (state_of_stack init stk) (ptlz_prod ptlz)
+ (hole_symb::ptlz_future ptlz) (ptlz_lookahead ptlz) /\
+ ptl_stack_compat stk0 ptl stk /\
+ ptlz_stack_compat stk0 ptlz
+ end
+with ptlz_stack_compat {hole_symbs hole_word}
+ (stk : stack) (ptlz : ptl_zipper hole_symbs hole_word) : Prop :=
+ match ptlz with
+ | Non_terminal_pt_ptlz ptz => ptz_stack_compat stk ptz
+ | Cons_ptl_ptlz _ ptlz => ptlz_stack_compat stk ptlz
+ end.
+
+Definition ptd_stack_compat (ptd:pt_dot) (stk:stack): Prop :=
+ match ptd with
+ | @Reduce_ptd prod _ ptl ptz =>
+ exists stk0,
+ state_has_future (state_of_stack init stk) prod []
+ (token_term (buf_head (ptz_buffer ptz))) /\
+ ptl_stack_compat stk0 ptl stk /\
+ ptz_stack_compat stk0 ptz
+ | Shift_ptd tok ptl ptlz =>
+ exists stk0,
+ state_has_future (state_of_stack init stk) (ptlz_prod ptlz)
+ (T (token_term tok) :: ptlz_future ptlz) (ptlz_lookahead ptlz) /\
+ ptl_stack_compat stk0 ptl stk /\
+ ptlz_stack_compat stk0 ptlz
+ end.
+
+Lemma ptz_stack_compat_cons_state_has_future {symbsq wordq symbt wordt} stk
+ (ptl : parse_tree_list symbsq wordq)
+ (ptlz : ptl_zipper (symbt :: symbsq) (wordq ++ wordt)) :
+ ptz_stack_compat stk (Cons_ptl_ptz ptl ptlz) ->
+ state_has_future (state_of_stack init stk) (ptlz_prod ptlz)
+ (symbt::ptlz_future ptlz) (ptlz_lookahead ptlz).
+Proof. move=>[stk0 [? [? ?]]] //. Qed.
+
+Lemma ptlz_future_ptlz_prod hole_symbs hole_word
+ (ptlz:ptl_zipper hole_symbs hole_word) :
+ rev_append (ptlz_future ptlz) hole_symbs = prod_rhs_rev (ptlz_prod ptlz).
+Proof. induction ptlz=>//=. Qed.
+
+Lemma ptlz_future_first {symbs word} (ptlz : ptl_zipper symbs word) :
+ TerminalSet.In (token_term (buf_head (ptlz_buffer ptlz)))
+ (first_word_set (ptlz_future ptlz)) \/
+ token_term (buf_head (ptlz_buffer ptlz)) = ptlz_lookahead ptlz /\
+ nullable_word (ptlz_future ptlz) = true.
+Proof.
+ induction ptlz as [|??? [|tok] pt ptlz IH]; [by auto| |]=>/=.
+ - rewrite (nullable_correct _ _ eq_refl pt).
+ destruct IH as [|[??]]; [left|right]=>/=; auto using TerminalSet.union_3.
+ - left. destruct nullable_symb; eauto using TerminalSet.union_2, first_correct.
+Qed.
+
+(** We now want to define what is the next dotted parse tree which is
+ to be handled after one action. Such dotted parse is built in two
+ steps: Not only we have to perform the action by completing the
+ parse tree, but we also have to prepare for the following step by
+ moving the dot down to place it in front of the next action to be
+ performed.
+*)
+Fixpoint build_pt_dot_from_pt {symb word}
+ (pt : parse_tree symb word) (ptz : pt_zipper symb word)
+ : pt_dot :=
+ match pt in parse_tree symb word
+ return pt_zipper symb word -> pt_dot
+ with
+ | Terminal_pt tok =>
+ fun ptz =>
+ let X :=
+ match ptz in pt_zipper symb word
+ return match symb with T term => True | NT _ => False end ->
+ { symbsq : list symbol &
+ { wordq : list token &
+ (parse_tree_list symbsq wordq *
+ ptl_zipper (symb :: symbsq) (wordq ++ word))%type } }
+ with
+ | Top_ptz => fun F => False_rect _ F
+ | Cons_ptl_ptz ptl ptlz => fun _ =>
+ existT _ _ (existT _ _ (ptl, ptlz))
+ end I
+ in
+ Shift_ptd tok (fst (projT2 (projT2 X))) (snd (projT2 (projT2 X)))
+ | Non_terminal_pt prod ptl => fun ptz =>
+ let is_notnil :=
+ match ptl in parse_tree_list w _
+ return option (match w return Prop with [] => False | _ => True end)
+ with
+ | Nil_ptl => None
+ | _ => Some I
+ end
+ in
+ match is_notnil with
+ | None => Reduce_ptd ptl ptz
+ | Some H => build_pt_dot_from_pt_rec ptl H (Non_terminal_pt_ptlz ptz)
+ end
+ end ptz
+with build_pt_dot_from_pt_rec {symbs word}
+ (ptl : parse_tree_list symbs word)
+ (Hsymbs : match symbs with [] => False | _ => True end)
+ (ptlz : ptl_zipper symbs word)
+ : pt_dot :=
+ match ptl in parse_tree_list symbs word
+ return match symbs with [] => False | _ => True end ->
+ ptl_zipper symbs word ->
+ pt_dot
+ with
+ | Nil_ptl => fun Hsymbs _ => False_rect _ Hsymbs
+ | Cons_ptl ptl' pt => fun _ =>
+ match ptl' in parse_tree_list symbsq wordq
+ return parse_tree_list symbsq wordq ->
+ ptl_zipper (_ :: symbsq) (wordq ++ _) ->
+ pt_dot
+ with
+ | Nil_ptl => fun _ ptlz =>
+ build_pt_dot_from_pt pt (Cons_ptl_ptz Nil_ptl ptlz)
+ | _ => fun ptl' ptlz =>
+ build_pt_dot_from_pt_rec ptl' I (Cons_ptl_ptlz pt ptlz)
+ end ptl'
+ end Hsymbs ptlz.
+
+Definition build_pt_dot_from_ptl {symbs word}
+ (ptl : parse_tree_list symbs word)
+ (ptlz : ptl_zipper symbs word)
+ : pt_dot :=
+ match ptlz in ptl_zipper symbs word
+ return parse_tree_list symbs word -> pt_dot
+ with
+ | Non_terminal_pt_ptlz ptz => fun ptl =>
+ Reduce_ptd ptl ptz
+ | Cons_ptl_ptlz pt ptlz => fun ptl =>
+ build_pt_dot_from_pt pt (Cons_ptl_ptz ptl ptlz)
+ end ptl.
+
+Definition next_ptd (ptd:pt_dot) : option pt_dot :=
+ match ptd with
+ | Shift_ptd tok ptl ptlz =>
+ Some (build_pt_dot_from_ptl (Cons_ptl ptl (Terminal_pt tok)) ptlz)
+ | Reduce_ptd ptl ptz =>
+ match ptz in pt_zipper symb word
+ return parse_tree symb word -> _
+ with
+ | Top_ptz => fun _ => None
+ | Cons_ptl_ptz ptl' ptlz => fun pt =>
+ Some (build_pt_dot_from_ptl (Cons_ptl ptl' pt) ptlz)
+ end (Non_terminal_pt _ ptl)
+ end.
+
+Fixpoint next_ptd_iter (ptd:pt_dot) (log_n_steps:nat) : option pt_dot :=
+ match log_n_steps with
+ | O => next_ptd ptd
+ | S log_n_steps =>
+ match next_ptd_iter ptd log_n_steps with
+ | None => None
+ | Some ptd => next_ptd_iter ptd log_n_steps
+ end
+ end.
+
+(** We prove that these functions behave well w.r.t. semantic values. *)
+Lemma sem_build_from_pt {symb word}
+ (pt : parse_tree symb word) (ptz : pt_zipper symb word) :
+ ptz_sem ptz (pt_sem pt)
+ = ptd_sem (build_pt_dot_from_pt pt ptz)
+with sem_build_from_pt_rec {symbs word}
+ (ptl : parse_tree_list symbs word) (ptlz : ptl_zipper symbs word)
+ Hsymbs :
+ ptlz_sem ptlz (fun _ f => ptl_sem ptl f)
+ = ptd_sem (build_pt_dot_from_pt_rec ptl Hsymbs ptlz).
+Proof.
+ - destruct pt as [tok|prod word ptl]=>/=.
+ + revert ptz. generalize [tok].
+ generalize (token_sem tok). generalize I.
+ change True with (match T (token_term tok) with T _ => True | NT _ => False end) at 1.
+ generalize (T (token_term tok)) => symb HT sem word ptz. by destruct ptz.
+ + match goal with
+ | |- context [match ?X with Some H => _ | None => _ end] => destruct X=>//
+ end.
+ by rewrite -sem_build_from_pt_rec.
+ - destruct ptl; [contradiction|].
+ specialize (sem_build_from_pt_rec _ _ ptl)=>/=. destruct ptl.
+ + by rewrite -sem_build_from_pt.
+ + by rewrite -sem_build_from_pt_rec.
+Qed.
+
+Lemma sem_build_from_ptl {symbs word}
+ (ptl : parse_tree_list symbs word) (ptlz : ptl_zipper symbs word) :
+ ptlz_sem ptlz (fun _ f => ptl_sem ptl f)
+ = ptd_sem (build_pt_dot_from_ptl ptl ptlz).
+Proof. destruct ptlz=>//=. by rewrite -sem_build_from_pt. Qed.
+
+Lemma sem_next_ptd (ptd : pt_dot) :
+ match next_ptd ptd with
+ | None => True
+ | Some ptd' => ptd_sem ptd = ptd_sem ptd'
+ end.
+Proof.
+ destruct ptd as [prod word ptl ptz|tok symbs word ptl ptlz] =>/=.
+ - change (ptl_sem ptl (prod_action prod))
+ with (pt_sem (Non_terminal_pt prod ptl)).
+ generalize (Non_terminal_pt prod ptl). clear ptl.
+ destruct ptz as [|?? ptl ?? ptlz]=>// pt. by rewrite -sem_build_from_ptl.
+ - by rewrite -sem_build_from_ptl.
+Qed.
+
+Lemma sem_next_ptd_iter (ptd : pt_dot) (log_n_steps : nat) :
+ match next_ptd_iter ptd log_n_steps with
+ | None => True
+ | Some ptd' => ptd_sem ptd = ptd_sem ptd'
+ end.
+Proof.
+ revert ptd.
+ induction log_n_steps as [|log_n_steps IH]; [by apply sem_next_ptd|]=>/= ptd.
+ assert (IH1 := IH ptd). destruct next_ptd_iter as [ptd'|]=>//.
+ specialize (IH ptd'). destruct next_ptd_iter=>//. congruence.
+Qed.
+
+(** We prove that these functions behave well w.r.t. xxx_buffer. *)
+Lemma ptd_buffer_build_from_pt {symb word}
+ (pt : parse_tree symb word) (ptz : pt_zipper symb word) :
+ (word ++ ptz_buffer ptz)%buf = ptd_buffer (build_pt_dot_from_pt pt ptz)
+with ptd_buffer_build_from_pt_rec {symbs word}
+ (ptl : parse_tree_list symbs word) (ptlz : ptl_zipper symbs word)
+ Hsymbs :
+ (word ++ ptlz_buffer ptlz)%buf = ptd_buffer (build_pt_dot_from_pt_rec ptl Hsymbs ptlz).
+Proof.
+ - destruct pt as [tok|prod word ptl]=>/=.
+ + f_equal. revert ptz. generalize [tok].
+ generalize (token_sem tok). generalize I.
+ change True with (match T (token_term tok) with T _ => True | NT _ => False end) at 1.
+ generalize (T (token_term tok)) => symb HT sem word ptz. by destruct ptz.
+ + match goal with
+ | |- context [match ?X with Some H => _ | None => _ end] => destruct X eqn:EQ
+ end.
+ * by rewrite -ptd_buffer_build_from_pt_rec.
+ * rewrite [X in (X ++ _)%buf](_ : word = []) //. clear -EQ. by destruct ptl.
+ - destruct ptl as [|?? ptl ?? pt]; [contradiction|].
+ specialize (ptd_buffer_build_from_pt_rec _ _ ptl).
+ destruct ptl.
+ + by rewrite /= -ptd_buffer_build_from_pt.
+ + by rewrite -ptd_buffer_build_from_pt_rec //= app_buf_assoc.
+Qed.
+
+Lemma ptd_buffer_build_from_ptl {symbs word}
+ (ptl : parse_tree_list symbs word) (ptlz : ptl_zipper symbs word) :
+ ptlz_buffer ptlz = ptd_buffer (build_pt_dot_from_ptl ptl ptlz).
+Proof.
+ destruct ptlz as [|???? pt]=>//=. by rewrite -ptd_buffer_build_from_pt.
+Qed.
+
+(** We prove that these functions behave well w.r.t. xxx_stack_compat. *)
+Lemma ptd_stack_compat_build_from_pt {symb word}
+ (pt : parse_tree symb word) (ptz : pt_zipper symb word)
+ (stk: stack) :
+ ptz_stack_compat stk ptz ->
+ ptd_stack_compat (build_pt_dot_from_pt pt ptz) stk
+with ptd_stack_compat_build_from_pt_rec {symbs word}
+ (ptl : parse_tree_list symbs word) (ptlz : ptl_zipper symbs word)
+ (stk : stack) Hsymbs :
+ ptlz_stack_compat stk ptlz ->
+ state_has_future (state_of_stack init stk) (ptlz_prod ptlz)
+ (rev' (prod_rhs_rev (ptlz_prod ptlz))) (ptlz_lookahead ptlz) ->
+ ptd_stack_compat (build_pt_dot_from_pt_rec ptl Hsymbs ptlz) stk.
+Proof.
+ - intros Hstk. destruct pt as [tok|prod word ptl]=>/=.
+ + revert ptz Hstk. generalize [tok]. generalize (token_sem tok). generalize I.
+ change True with (match T (token_term tok) with T _ => True | NT _ => False end) at 1.
+ generalize (T (token_term tok)) => symb HT sem word ptz. by destruct ptz.
+ + assert (state_has_future (state_of_stack init stk) prod
+ (rev' (prod_rhs_rev prod)) (token_term (buf_head (ptz_buffer ptz)))).
+ { revert ptz Hstk. remember (NT (prod_lhs prod)) eqn:EQ=>ptz.
+ destruct ptz as [|?? ptl0 ?? ptlz0].
+ - intros ->. apply start_future. congruence.
+ - subst. intros (stk0 & Hfut & _). apply non_terminal_closed in Hfut.
+ specialize (Hfut prod eq_refl).
+ destruct (ptlz_future_first ptlz0) as [Hfirst|[Hfirst Hnull]].
+ + destruct Hfut as [_ Hfut]. auto.
+ + destruct Hfut as [Hfut _]. by rewrite Hnull -Hfirst in Hfut. }
+ match goal with
+ | |- context [match ?X with Some H => _ | None => _ end] => destruct X eqn:EQ
+ end.
+ * by apply ptd_stack_compat_build_from_pt_rec.
+ * exists stk. destruct ptl=>//.
+ - intros Hstk Hfut. destruct ptl as [|?? ptl ?? pt]; [contradiction|].
+ specialize (ptd_stack_compat_build_from_pt_rec _ _ ptl). destruct ptl.
+ + eapply ptd_stack_compat_build_from_pt=>//. exists stk.
+ split; [|split]=>//; [].
+ by rewrite -ptlz_future_ptlz_prod rev_append_rev /rev' -rev_alt
+ rev_app_distr rev_involutive in Hfut.
+ + by apply ptd_stack_compat_build_from_pt_rec.
+Qed.
+
+Lemma ptd_stack_compat_build_from_ptl {symbs word}
+ (ptl : parse_tree_list symbs word) (ptlz : ptl_zipper symbs word)
+ (stk stk0: stack) :
+ ptlz_stack_compat stk0 ptlz ->
+ ptl_stack_compat stk0 ptl stk ->
+ state_has_future (state_of_stack init stk) (ptlz_prod ptlz)
+ (ptlz_future ptlz) (ptlz_lookahead ptlz) ->
+ ptd_stack_compat (build_pt_dot_from_ptl ptl ptlz) stk.
+Proof.
+ intros Hstk0 Hstk Hfut. destruct ptlz=>/=.
+ - eauto.
+ - apply ptd_stack_compat_build_from_pt=>/=. eauto.
+Qed.
+
+(** We can now proceed by proving that the invariant is preserved by
+ each step of parsing. We also prove that each step of parsing
+ follows next_ptd.
+
+ We start with reduce steps: *)
+Lemma reduce_step_next_ptd (prod : production) (word : list token)
+ (ptl : parse_tree_list (prod_rhs_rev prod) word)
+ (ptz : pt_zipper (NT (prod_lhs prod)) word)
+ (stk : stack)
+ Hval Hi :
+ ptd_stack_compat (Reduce_ptd ptl ptz) stk ->
+ match next_ptd (Reduce_ptd ptl ptz) with
+ | None =>
+ reduce_step init stk prod (ptz_buffer ptz) Hval Hi =
+ Accept_sr (ptd_sem (Reduce_ptd ptl ptz)) buffer_end
+ | Some ptd =>
+ exists stk',
+ reduce_step init stk prod (ptz_buffer ptz) Hval Hi =
+ Progress_sr stk' (ptd_buffer ptd) /\
+ ptd_stack_compat ptd stk'
+ end.
+Proof.
+ intros (stk0 & _ & Hstk & Hstk0).
+ apply pop_stack_compat_pop_spec with (action := prod_action prod) in Hstk.
+ rewrite <-pop_spec_ok with (Hp := reduce_step_subproof init stk prod Hval Hi) in Hstk.
+ unfold reduce_step.
+ match goal with
+ | |- context [pop_state_valid init ?A stk ?B ?C ?D ?E ?F] =>
+ generalize (pop_state_valid init A stk B C D E F)
+ end.
+ rewrite Hstk /=. intros Hv.
+ generalize (reduce_step_subproof1 init stk prod Hval stk0 (fun _ : True => Hv)).
+ clear Hval Hstk Hi Hv stk.
+ assert (Hgoto := fun fut prod' =>
+ non_terminal_goto (state_of_stack init stk0) prod' (NT (prod_lhs prod)::fut)).
+ simpl in Hgoto.
+ destruct goto_table as [[st Hst]|] eqn:Hgoto'.
+ - intros _.
+ assert (match ptz with Top_ptz => False | _ => True end).
+ { revert ptz Hst Hstk0 Hgoto'.
+ generalize (eq_refl (NT (prod_lhs prod))).
+ generalize (NT (prod_lhs prod)) at 1 3 5.
+ intros nt Hnt ptz. destruct ptz=>//. injection Hnt=> <- /= Hst -> /= Hg.
+ assert (Hsg := start_goto init). by rewrite Hg in Hsg. }
+ clear Hgoto'.
+
+ change (ptl_sem ptl (prod_action prod))
+ with (pt_sem (Non_terminal_pt prod ptl)).
+ generalize (Non_terminal_pt prod ptl). clear ptl.
+ destruct ptz as [|?? ptl ? ? ptlz]=>// pt.
+
+ subst=>/=. eexists _. split.
+ + f_equal. apply ptd_buffer_build_from_ptl.
+ + destruct Hstk0 as (stk0' & Hfut & Hstk0' & Hstk0).
+ apply (ptd_stack_compat_build_from_ptl _ _ _ stk0'); auto; [].
+ split=>//. by exists eq_refl.
+ - intros Hv. generalize (reduce_step_subproof0 _ prod _ (fun _ => Hv)).
+ intros EQnt. clear Hv Hgoto'.
+
+ change (ptl_sem ptl (prod_action prod))
+ with (pt_sem (Non_terminal_pt prod ptl)).
+ generalize (Non_terminal_pt prod ptl). clear ptl. destruct ptz.
+ + intros pt. f_equal. by rewrite cast_eq.
+ + edestruct Hgoto. eapply ptz_stack_compat_cons_state_has_future, Hstk0.
+Qed.
+
+Lemma step_next_ptd (ptd : pt_dot) (stk : stack) Hi :
+ ptd_stack_compat ptd stk ->
+ match next_ptd ptd with
+ | None =>
+ step safe init stk (ptd_buffer ptd) Hi =
+ Accept_sr (ptd_sem ptd) buffer_end
+ | Some ptd' =>
+ exists stk',
+ step safe init stk (ptd_buffer ptd) Hi =
+ Progress_sr stk' (ptd_buffer ptd') /\
+ ptd_stack_compat ptd' stk'
+ end.
+Proof.
+ intros Hstk. unfold step.
+ generalize (reduce_ok safe (state_of_stack init stk)).
+ destruct ptd as [prod word ptl ptz|tok symbs word ptl ptlz].
+ - assert (Hfut : state_has_future (state_of_stack init stk) prod []
+ (token_term (buf_head (ptz_buffer ptz)))).
+ { destruct Hstk as (? & ? & ?)=>//. }
+ assert (Hact := end_reduce _ _ _ _ Hfut).
+ destruct action_table as [?|awt]=>Hval /=.
+ + subst. by apply reduce_step_next_ptd.
+ + set (term := token_term (buf_head (ptz_buffer ptz))) in *.
+ generalize (Hval term). clear Hval. destruct (awt term)=>//. subst.
+ intros Hval. by apply reduce_step_next_ptd.
+ - destruct Hstk as (stk0 & Hfut & Hstk & Hstk0).
+ assert (Hact := terminal_shift _ _ _ _ Hfut). simpl in Hact. clear Hfut.
+ destruct action_table as [?|awt]=>//= /(_ (token_term tok)).
+ destruct awt as [st' EQ| |]=>// _. eexists. split.
+ + f_equal. rewrite -ptd_buffer_build_from_ptl //.
+ + apply (ptd_stack_compat_build_from_ptl _ _ _ stk0); simpl; eauto.
+Qed.
+
+(** We prove the completeness of the parser main loop. *)
+Lemma parse_fix_next_ptd_iter (ptd : pt_dot) (stk : stack) (log_n_steps : nat) Hi :
+ ptd_stack_compat ptd stk ->
+ match next_ptd_iter ptd log_n_steps with
+ | None =>
+ proj1_sig (parse_fix safe init stk (ptd_buffer ptd) log_n_steps Hi) =
+ Accept_sr (ptd_sem ptd) buffer_end
+ | Some ptd' =>
+ exists stk',
+ proj1_sig (parse_fix safe init stk (ptd_buffer ptd) log_n_steps Hi) =
+ Progress_sr stk' (ptd_buffer ptd') /\
+ ptd_stack_compat ptd' stk'
+ end.
+Proof.
+ revert ptd stk Hi.
+ induction log_n_steps as [|log_n_steps IH]; [by apply step_next_ptd|].
+ move => /= ptd stk Hi Hstk. assert (IH1 := IH ptd stk Hi Hstk).
+ assert (EQsem := sem_next_ptd_iter ptd log_n_steps).
+ destruct parse_fix as [sr Hi']. simpl in IH1.
+ destruct next_ptd_iter as [ptd'|].
+ - rewrite EQsem. destruct IH1 as (stk' & -> & Hstk'). by apply IH.
+ - by subst.
+Qed.
+
+(** The parser is defined by recursion over a fuel parameter. In the
+ completeness proof, we need to predict how much fuel is going to be
+ needed in order to prove that enough fuel gives rise to a successful
+ parsing.
+
+ To do so, of a dotted parse tree, which is the number of actions
+ left to be executed before complete parsing when the current state
+ is represented by the dotted parse tree. *)
+Fixpoint ptlz_cost {hole_symbs hole_word}
+ (ptlz:ptl_zipper hole_symbs hole_word) :=
+ match ptlz with
+ | Non_terminal_pt_ptlz ptz => ptz_cost ptz
+ | Cons_ptl_ptlz pt ptlz' => pt_size pt + ptlz_cost ptlz'
+ end
+with ptz_cost {hole_symb hole_word} (ptz:pt_zipper hole_symb hole_word) :=
+ match ptz with
+ | Top_ptz => 0
+ | Cons_ptl_ptz ptl ptlz' => 1 + ptlz_cost ptlz'
+ end.
+
+Definition ptd_cost (ptd:pt_dot) :=
+ match ptd with
+ | Reduce_ptd ptl ptz => ptz_cost ptz
+ | Shift_ptd _ ptl ptlz => 1 + ptlz_cost ptlz
+ end.
+
+Lemma ptd_cost_build_from_pt {symb word}
+ (pt : parse_tree symb word) (ptz : pt_zipper symb word) :
+ pt_size pt + ptz_cost ptz = S (ptd_cost (build_pt_dot_from_pt pt ptz))
+with ptd_cost_build_from_pt_rec {symbs word}
+ (ptl : parse_tree_list symbs word) (ptlz : ptl_zipper symbs word)
+ Hsymbs :
+ ptl_size ptl + ptlz_cost ptlz = ptd_cost (build_pt_dot_from_pt_rec ptl Hsymbs ptlz).
+Proof.
+ - destruct pt as [tok|prod word ptl']=>/=.
+ + revert ptz. generalize [tok]. generalize (token_sem tok). generalize I.
+ change True with (match T (token_term tok) with T _ => True | NT _ => False end) at 1.
+ generalize (T (token_term tok)) => symb HT sem word ptz. by destruct ptz.
+ + match goal with
+ | |- context [match ?X with Some H => _ | None => _ end] => destruct X eqn:EQ
+ end.
+ * rewrite -ptd_cost_build_from_pt_rec /= plus_n_Sm //.
+ * simpl. by destruct ptl'.
+ - destruct ptl as [|?? ptl ?? pt]; [contradiction|].
+ specialize (ptd_cost_build_from_pt_rec _ _ ptl). destruct ptl.
+ + apply eq_add_S. rewrite -ptd_cost_build_from_pt /=. ring.
+ + rewrite -ptd_cost_build_from_pt_rec //=. ring.
+Qed.
+
+Lemma ptd_cost_build_from_ptl {symbs word}
+ (ptl : parse_tree_list symbs word) (ptlz : ptl_zipper symbs word) :
+ ptlz_cost ptlz = ptd_cost (build_pt_dot_from_ptl ptl ptlz).
+Proof.
+ destruct ptlz=>//. apply eq_add_S. rewrite -ptd_cost_build_from_pt /=. ring.
+Qed.
+
+Lemma next_ptd_cost ptd:
+ match next_ptd ptd with
+ | None => ptd_cost ptd = 0
+ | Some ptd' => ptd_cost ptd = S (ptd_cost ptd')
+ end.
+Proof.
+ destruct ptd as [prod word ptl ptz|tok symbq wordq ptl ptlz] =>/=.
+ - generalize (Non_terminal_pt prod ptl). clear ptl.
+ destruct ptz as [|?? ptl ?? ptlz]=>// pt. by rewrite -ptd_cost_build_from_ptl.
+ - by rewrite -ptd_cost_build_from_ptl.
+Qed.
+
+Lemma next_ptd_iter_cost ptd log_n_steps :
+ match next_ptd_iter ptd log_n_steps with
+ | None => ptd_cost ptd < 2^log_n_steps
+ | Some ptd' => ptd_cost ptd = 2^log_n_steps + ptd_cost ptd'
+ end.
+Proof.
+ revert ptd. induction log_n_steps as [|log_n_steps IH]=>ptd /=.
+ - assert (Hptd := next_ptd_cost ptd). destruct next_ptd=>//. by rewrite Hptd.
+ - rewrite Nat.add_0_r. assert (IH1 := IH ptd). destruct next_ptd_iter as [ptd'|].
+ + specialize (IH ptd'). destruct next_ptd_iter as [ptd''|].
+ * by rewrite IH1 IH -!plus_assoc.
+ * rewrite IH1. by apply plus_lt_compat_l.
+ + by apply lt_plus_trans.
+Qed.
+
+(** We now prove the top-level parsing function. The only thing that
+ is left to be done is the initialization. To do so, we define the
+ initial dotted parse tree, depending on a full (top-level) parse tree. *)
+
+Variable full_pt : parse_tree (NT (start_nt init)) full_word.
+
+Theorem parse_complete log_n_steps:
+ match parse safe init (full_word ++ buffer_end) log_n_steps with
+ | Parsed_pr sem buff =>
+ sem = pt_sem full_pt /\ buff = buffer_end /\ pt_size full_pt <= 2^log_n_steps
+ | Timeout_pr => 2^log_n_steps < pt_size full_pt
+ | Fail_pr => False
+ end.
+Proof.
+ assert (Hstk : ptd_stack_compat (build_pt_dot_from_pt full_pt Top_ptz) []) by
+ by apply ptd_stack_compat_build_from_pt.
+ unfold parse.
+ assert (Hparse := parse_fix_next_ptd_iter _ _ log_n_steps (parse_subproof init) Hstk).
+ rewrite -ptd_buffer_build_from_pt -sem_build_from_pt /= in Hparse.
+ assert (Hcost := next_ptd_iter_cost (build_pt_dot_from_pt full_pt Top_ptz) log_n_steps).
+ destruct next_ptd_iter.
+ - destruct Hparse as (? & -> & ?). apply (f_equal S) in Hcost.
+ rewrite -ptd_cost_build_from_pt Nat.add_0_r in Hcost. rewrite Hcost.
+ apply le_lt_n_Sm, le_plus_l.
+ - rewrite Hparse. split; [|split]=>//. apply lt_le_S in Hcost.
+ by rewrite -ptd_cost_build_from_pt Nat.add_0_r in Hcost.
+Qed.
+
+End Completeness_Proof.
+
+End Make.
diff --git a/MenhirLib/Interpreter_correct.v b/MenhirLib/Interpreter_correct.v
new file mode 100644
index 00000000..1325f610
--- /dev/null
+++ b/MenhirLib/Interpreter_correct.v
@@ -0,0 +1,175 @@
+(****************************************************************************)
+(* *)
+(* Menhir *)
+(* *)
+(* Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud *)
+(* *)
+(* Copyright Inria. All rights reserved. This file is distributed under *)
+(* the terms of the GNU Lesser General Public License as published by the *)
+(* Free Software Foundation, either version 3 of the License, or (at your *)
+(* option) any later version, as described in the file LICENSE. *)
+(* *)
+(****************************************************************************)
+
+From Coq Require Import List Syntax.
+Require Import Alphabet.
+Require Grammar Automaton Interpreter.
+From Coq.ssr Require Import ssreflect.
+
+Module Make(Import A:Automaton.T) (Import Inter:Interpreter.T A).
+
+(** * Correctness of the interpreter **)
+
+(** We prove that, in any case, if the interpreter accepts returning a
+ semantic value, then this is a semantic value of the input **)
+
+Section Init.
+
+Variable init:initstate.
+
+(** [word_has_stack_semantics] relates a word with a stack, stating that the
+ word is a concatenation of words that have the semantic values stored in
+ the stack. **)
+Inductive word_has_stack_semantics:
+ forall (word:list token) (stack:stack), Prop :=
+ | Nil_stack_whss: word_has_stack_semantics [] []
+ | Cons_stack_whss:
+ forall (wordq:list token) (stackq:stack),
+ word_has_stack_semantics wordq stackq ->
+
+ forall (wordt:list token) (s:noninitstate)
+ (pt:parse_tree (last_symb_of_non_init_state s) wordt),
+
+ word_has_stack_semantics
+ (wordq++wordt) (existT noninitstate_type s (pt_sem pt)::stackq).
+
+(** [pop] preserves the invariant **)
+Lemma pop_spec_ptl A symbols_to_pop action word_stk stk (res : A) stk' :
+ pop_spec symbols_to_pop stk action stk' res ->
+ word_has_stack_semantics word_stk stk ->
+ exists word_stk' word_res (ptl:parse_tree_list symbols_to_pop word_res),
+ (word_stk' ++ word_res = word_stk)%list /\
+ word_has_stack_semantics word_stk' stk' /\
+ ptl_sem ptl action = res.
+Proof.
+ intros Hspec. revert word_stk.
+ induction Hspec as [stk sem|symbols_to_pop st stk action sem stk' res Hspec IH];
+ intros word_stk Hword_stk.
+ - exists word_stk, [], Nil_ptl. rewrite -app_nil_end. eauto.
+ - inversion Hword_stk. subst_existT.
+ edestruct IH as (word_stk' & word_res & ptl & ? & Hword_stk'' & ?); [eassumption|].
+ subst. eexists word_stk', (word_res ++ _)%list, (Cons_ptl ptl _).
+ split; [|split]=>//. rewrite app_assoc //.
+Qed.
+
+(** [reduce_step] preserves the invariant **)
+Lemma reduce_step_invariant (stk:stack) (prod:production) Hv Hi word buffer :
+ word_has_stack_semantics word stk ->
+ match reduce_step init stk prod buffer Hv Hi with
+ | Accept_sr sem buffer_new =>
+ exists pt : parse_tree (NT (start_nt init)) word,
+ buffer = buffer_new /\ pt_sem pt = sem
+ | Progress_sr stk' buffer_new =>
+ buffer = buffer_new /\ word_has_stack_semantics word stk'
+ | Fail_sr => True
+ end.
+Proof.
+ intros Hword_stk. unfold reduce_step.
+ match goal with
+ | |- context [pop_state_valid init ?stp stk ?x1 ?x2 ?x3 ?x4 ?x5] =>
+ generalize (pop_state_valid init stp stk x1 x2 x3 x4 x5)
+ end.
+ destruct pop as [stk' sem] eqn:Hpop=>/= Hv'.
+ apply pop_spec_ok in Hpop. apply pop_spec_ptl with (word_stk := word) in Hpop=>//.
+ destruct Hpop as (word1 & word2 & ptl & <- & Hword1 & <-).
+ generalize (reduce_step_subproof1 init stk prod Hv stk' (fun _ : True => Hv')).
+ destruct goto_table as [[st' EQ]|].
+ - intros _. split=>//.
+ change (ptl_sem ptl (prod_action prod)) with (pt_sem (Non_terminal_pt prod ptl)).
+ generalize (Non_terminal_pt prod ptl). rewrite ->EQ. intros pt. by constructor.
+ - intros Hstk'. destruct Hword1; [|by destruct Hstk'].
+ generalize (reduce_step_subproof0 init prod [] (fun _ : True => Hstk')).
+ simpl in Hstk'. rewrite -Hstk' // => EQ. rewrite cast_eq.
+ exists (Non_terminal_pt prod ptl). by split.
+Qed.
+
+(** [step] preserves the invariant **)
+Lemma step_invariant stk word buffer safe Hi :
+ word_has_stack_semantics word stk ->
+ match step safe init stk buffer Hi with
+ | Accept_sr sem buffer_new =>
+ exists word_new (pt:parse_tree (NT (start_nt init)) word_new),
+ (word ++ buffer = word_new ++ buffer_new)%buf /\
+ pt_sem pt = sem
+ | Progress_sr stk_new buffer_new =>
+ exists word_new,
+ (word ++ buffer = word_new ++ buffer_new)%buf /\
+ word_has_stack_semantics word_new stk_new
+ | Fail_sr => True
+ end.
+Proof.
+ intros Hword_stk. unfold step.
+ generalize (reduce_ok safe (state_of_stack init stk)).
+ destruct action_table as [prod|awt].
+ - intros Hv.
+ apply (reduce_step_invariant stk prod (fun _ => Hv) Hi word buffer) in Hword_stk.
+ destruct reduce_step=>//.
+ + destruct Hword_stk as (pt & <- & <-); eauto.
+ + destruct Hword_stk as [<- ?]; eauto.
+ - destruct buffer as [tok buffer]=>/=.
+ move=> /(_ (token_term tok)) Hv. destruct (awt (token_term tok)) as [st EQ|prod|]=>//.
+ + eexists _. split; [by apply app_buf_assoc with (l2 := [_])|].
+ change (token_sem tok) with (pt_sem (Terminal_pt tok)).
+ generalize (Terminal_pt tok). generalize [tok].
+ rewrite -> EQ=>word' pt /=. by constructor.
+ + apply (reduce_step_invariant stk prod (fun _ => Hv) Hi word (tok::buffer))
+ in Hword_stk.
+ destruct reduce_step=>//.
+ * destruct Hword_stk as (pt & <- & <-); eauto.
+ * destruct Hword_stk as [<- ?]; eauto.
+Qed.
+
+(** [step] preserves the invariant **)
+Lemma parse_fix_invariant stk word buffer safe log_n_steps Hi :
+ word_has_stack_semantics word stk ->
+ match proj1_sig (parse_fix safe init stk buffer log_n_steps Hi) with
+ | Accept_sr sem buffer_new =>
+ exists word_new (pt:parse_tree (NT (start_nt init)) word_new),
+ (word ++ buffer = word_new ++ buffer_new)%buf /\
+ pt_sem pt = sem
+ | Progress_sr stk_new buffer_new =>
+ exists word_new,
+ (word ++ buffer = word_new ++ buffer_new)%buf /\
+ word_has_stack_semantics word_new stk_new
+ | Fail_sr => True
+ end.
+Proof.
+ revert stk word buffer Hi.
+ induction log_n_steps as [|log_n_steps IH]=>/= stk word buffer Hi Hstk;
+ [by apply step_invariant|].
+ assert (IH1 := IH stk word buffer Hi Hstk).
+ destruct parse_fix as [[] Hi']=>/=; try by apply IH1.
+ destruct IH1 as (word' & -> & Hstk')=>//. by apply IH.
+Qed.
+
+(** The interpreter is correct : if it returns a semantic value, then the input
+ word has this semantic value.
+**)
+Theorem parse_correct safe buffer log_n_steps:
+ match parse safe init buffer log_n_steps with
+ | Parsed_pr sem buffer_new =>
+ exists word_new (pt:parse_tree (NT (start_nt init)) word_new),
+ buffer = (word_new ++ buffer_new)%buf /\
+ pt_sem pt = sem
+ | _ => True
+ end.
+Proof.
+ unfold parse.
+ assert (Hparse := parse_fix_invariant [] [] buffer safe log_n_steps
+ (parse_subproof init)).
+ destruct proj1_sig=>//. apply Hparse. constructor.
+Qed.
+
+End Init.
+
+End Make.
diff --git a/MenhirLib/Main.v b/MenhirLib/Main.v
new file mode 100644
index 00000000..f6158074
--- /dev/null
+++ b/MenhirLib/Main.v
@@ -0,0 +1,79 @@
+(****************************************************************************)
+(* *)
+(* Menhir *)
+(* *)
+(* Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud *)
+(* *)
+(* Copyright Inria. All rights reserved. This file is distributed under *)
+(* the terms of the GNU Lesser General Public License as published by the *)
+(* Free Software Foundation, either version 3 of the License, or (at your *)
+(* option) any later version, as described in the file LICENSE. *)
+(* *)
+(****************************************************************************)
+
+Require Grammar Automaton Interpreter_correct Interpreter_complete.
+From Coq Require Import Syntax Arith.
+
+Module Make(Export Aut:Automaton.T).
+Export Aut.Gram.
+Export Aut.GramDefs.
+
+Module Import Inter := Interpreter.Make Aut.
+Module Correct := Interpreter_correct.Make Aut Inter.
+Module Complete := Interpreter_complete.Make Aut Inter.
+
+Definition complete_validator:unit->bool := Complete.Valid.is_complete.
+Definition safe_validator:unit->bool := ValidSafe.is_safe.
+Definition parse (safe:safe_validator ()=true) init log_n_steps buffer :
+ parse_result (symbol_semantic_type (NT (start_nt init))):=
+ parse (ValidSafe.safe_is_validator safe) init buffer log_n_steps.
+
+(** Correction theorem. **)
+Theorem parse_correct
+ (safe:safe_validator ()= true) init log_n_steps buffer:
+ match parse safe init log_n_steps buffer with
+ | Parsed_pr sem buffer_new =>
+ exists word (pt : parse_tree (NT (start_nt init)) word),
+ buffer = (word ++ buffer_new)%buf /\
+ pt_sem pt = sem
+ | _ => True
+ end.
+Proof. apply Correct.parse_correct. Qed.
+
+(** Completeness theorem. **)
+Theorem parse_complete
+ (safe:safe_validator () = true) init log_n_steps word buffer_end:
+ complete_validator () = true ->
+ forall tree:parse_tree (NT (start_nt init)) word,
+ match parse safe init log_n_steps (word ++ buffer_end) with
+ | Fail_pr => False
+ | Parsed_pr sem_res buffer_end_res =>
+ sem_res = pt_sem tree /\ buffer_end_res = buffer_end /\
+ pt_size tree <= 2^log_n_steps
+ | Timeout_pr => 2^log_n_steps < pt_size tree
+ end.
+Proof.
+ intros. now apply Complete.parse_complete, Complete.Valid.complete_is_validator.
+Qed.
+
+(** Unambiguity theorem. **)
+Theorem unambiguity:
+ safe_validator () = true -> complete_validator () = true -> inhabited token ->
+ forall init word,
+ forall (tree1 tree2:parse_tree (NT (start_nt init)) word),
+ pt_sem tree1 = pt_sem tree2.
+Proof.
+ intros Hsafe Hcomp [tok] init word tree1 tree2.
+ pose (buf_end := cofix buf_end := (tok :: buf_end)%buf).
+ assert (Hcomp1 := parse_complete Hsafe init (pt_size tree1) word buf_end
+ Hcomp tree1).
+ assert (Hcomp2 := parse_complete Hsafe init (pt_size tree1) word buf_end
+ Hcomp tree2).
+ destruct parse.
+ - destruct Hcomp1.
+ - exfalso. eapply PeanoNat.Nat.lt_irrefl. etransitivity; [|apply Hcomp1].
+ eapply Nat.pow_gt_lin_r. constructor.
+ - destruct Hcomp1 as [-> _], Hcomp2 as [-> _]. reflexivity.
+Qed.
+
+End Make.
diff --git a/MenhirLib/Validator_classes.v b/MenhirLib/Validator_classes.v
new file mode 100644
index 00000000..c043cb73
--- /dev/null
+++ b/MenhirLib/Validator_classes.v
@@ -0,0 +1,74 @@
+(****************************************************************************)
+(* *)
+(* Menhir *)
+(* *)
+(* Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud *)
+(* *)
+(* Copyright Inria. All rights reserved. This file is distributed under *)
+(* the terms of the GNU Lesser General Public License as published by the *)
+(* Free Software Foundation, either version 3 of the License, or (at your *)
+(* option) any later version, as described in the file LICENSE. *)
+(* *)
+(****************************************************************************)
+
+From Coq Require Import List.
+From Coq.ssr Require Import ssreflect.
+Require Import Alphabet.
+
+Class IsValidator (P : Prop) (b : bool) :=
+ is_validator : b = true -> P.
+Hint Mode IsValidator + -.
+
+Instance is_validator_true : IsValidator True true.
+Proof. done. Qed.
+
+Instance is_validator_false : IsValidator False false.
+Proof. done. Qed.
+
+Instance is_validator_eq_true b :
+ IsValidator (b = true) b.
+Proof. done. Qed.
+
+Instance is_validator_and P1 b1 P2 b2 `{IsValidator P1 b1} `{IsValidator P2 b2}:
+ IsValidator (P1 /\ P2) (if b1 then b2 else false).
+Proof. split; destruct b1, b2; auto using is_validator. Qed.
+
+Instance is_validator_comparable_leibniz_eq A (C:Comparable A) (x y : A) :
+ ComparableLeibnizEq C ->
+ IsValidator (x = y) (compare_eqb x y).
+Proof. intros ??. by apply compare_eqb_iff. Qed.
+
+Instance is_validator_comparable_eq_impl A `(Comparable A) (x y : A) P b :
+ IsValidator P b ->
+ IsValidator (x = y -> P) (if compare_eqb x y then b else true).
+Proof.
+ intros Hval Val ->. rewrite /compare_eqb compare_refl in Val. auto.
+Qed.
+
+Lemma is_validator_forall_finite A P b `(Finite A) :
+ (forall (x : A), IsValidator (P x) (b x)) ->
+ IsValidator (forall (x : A), P x) (forallb b all_list).
+Proof.
+ move=> ? /forallb_forall.
+ auto using all_list_forall, is_validator, forallb_forall.
+Qed.
+(* We do not use an instance directly here, because we need somehow to
+ force Coq to instantiate b with a lambda. *)
+Hint Extern 2 (IsValidator (forall x : ?A, _) _) =>
+ eapply (is_validator_forall_finite _ _ (fun (x:A) => _))
+ : typeclass_instances.
+
+(* Hint for synthetizing pattern-matching. *)
+Hint Extern 2 (IsValidator (match ?u with _ => _ end) ?b0) =>
+ let b := fresh "b" in
+ unshelve notypeclasses refine (let b : bool := _ in _);
+ [destruct u; intros; shelve|]; (* Synthetize `match .. with` in the validator. *)
+ unify b b0;
+ unfold b; destruct u; clear b
+ : typeclass_instances.
+
+(* Hint for unfolding definitions. This is necessary because many
+ hints for IsValidator use [Hint Extern], which do not automatically
+ unfold identifiers. *)
+Hint Extern 100 (IsValidator ?X _) => unfold X
+ : typeclass_instances.
diff --git a/MenhirLib/Validator_complete.v b/MenhirLib/Validator_complete.v
new file mode 100644
index 00000000..ebb74500
--- /dev/null
+++ b/MenhirLib/Validator_complete.v
@@ -0,0 +1,394 @@
+(****************************************************************************)
+(* *)
+(* Menhir *)
+(* *)
+(* Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud *)
+(* *)
+(* Copyright Inria. All rights reserved. This file is distributed under *)
+(* the terms of the GNU Lesser General Public License as published by the *)
+(* Free Software Foundation, either version 3 of the License, or (at your *)
+(* option) any later version, as described in the file LICENSE. *)
+(* *)
+(****************************************************************************)
+
+From Coq Require Import List Syntax Derive.
+From Coq.ssr Require Import ssreflect.
+Require Automaton.
+Require Import Alphabet Validator_classes.
+
+Module Make(Import A:Automaton.T).
+
+(** We instantiate some sets/map. **)
+Module TerminalComparableM <: ComparableM.
+ Definition t := terminal.
+ Instance tComparable : Comparable t := _.
+End TerminalComparableM.
+Module TerminalOrderedType := OrderedType_from_ComparableM TerminalComparableM.
+Module StateProdPosComparableM <: ComparableM.
+ Definition t := (state*production*nat)%type.
+ Instance tComparable : Comparable t := _.
+End StateProdPosComparableM.
+Module StateProdPosOrderedType :=
+ OrderedType_from_ComparableM StateProdPosComparableM.
+
+Module TerminalSet := FSetAVL.Make TerminalOrderedType.
+Module StateProdPosMap := FMapAVL.Make StateProdPosOrderedType.
+
+(** Nullable predicate for symbols and list of symbols. **)
+Definition nullable_symb (symbol:symbol) :=
+ match symbol with
+ | NT nt => nullable_nterm nt
+ | _ => false
+ end.
+
+Definition nullable_word (word:list symbol) :=
+ forallb nullable_symb word.
+
+(** First predicate for non terminal, symbols and list of symbols, given as FSets. **)
+Definition first_nterm_set (nterm:nonterminal) :=
+ fold_left (fun acc t => TerminalSet.add t acc)
+ (first_nterm nterm) TerminalSet.empty.
+
+Definition first_symb_set (symbol:symbol) :=
+ match symbol with
+ | NT nt => first_nterm_set nt
+ | T t => TerminalSet.singleton t
+ end.
+
+Fixpoint first_word_set (word:list symbol) :=
+ match word with
+ | [] => TerminalSet.empty
+ | t::q =>
+ if nullable_symb t then
+ TerminalSet.union (first_symb_set t) (first_word_set q)
+ else
+ first_symb_set t
+ end.
+
+(** Small helper for finding the part of an item that is after the dot. **)
+Definition future_of_prod prod dot_pos : list symbol :=
+ (fix loop n lst :=
+ match n with
+ | O => lst
+ | S x => match loop x lst with [] => [] | _::q => q end
+ end)
+ dot_pos (rev' (prod_rhs_rev prod)).
+
+(** We build a fast map to store all the items of all the states. **)
+Definition items_map (_:unit): StateProdPosMap.t TerminalSet.t :=
+ fold_left (fun acc state =>
+ fold_left (fun acc item =>
+ let key := (state, prod_item item, dot_pos_item item) in
+ let data := fold_left (fun acc t => TerminalSet.add t acc)
+ (lookaheads_item item) TerminalSet.empty
+ in
+ let old :=
+ match StateProdPosMap.find key acc with
+ | Some x => x | None => TerminalSet.empty
+ end
+ in
+ StateProdPosMap.add key (TerminalSet.union data old) acc
+ ) (items_of_state state) acc
+ ) all_list (StateProdPosMap.empty TerminalSet.t).
+
+(** We need to avoid computing items_map each time we need it. To that
+ purpose, we declare a typeclass specifying that some map is equal to
+ items_map. *)
+Class IsItemsMap m := is_items_map : m = items_map ().
+
+(** Accessor. **)
+Definition find_items_map items_map state prod dot_pos : TerminalSet.t :=
+ match StateProdPosMap.find (state, prod, dot_pos) items_map with
+ | None => TerminalSet.empty
+ | Some x => x
+ end.
+
+Definition state_has_future state prod (fut:list symbol) (lookahead:terminal) :=
+ exists dot_pos:nat,
+ fut = future_of_prod prod dot_pos /\
+ TerminalSet.In lookahead (find_items_map (items_map ()) state prod dot_pos).
+
+(** Iterator over items. **)
+Definition forallb_items items_map (P:state -> production -> nat -> TerminalSet.t -> bool): bool:=
+ StateProdPosMap.fold (fun key set acc =>
+ match key with (st, p, pos) => (acc && P st p pos set)%bool end
+ ) items_map true.
+
+(** Typeclass instances for synthetizing the validator. *)
+
+Instance is_validator_subset S1 S2 :
+ IsValidator (TerminalSet.Subset S1 S2) (TerminalSet.subset S1 S2).
+Proof. intros ?. by apply TerminalSet.subset_2. Qed.
+
+(* While the specification of the validator always quantify over
+ possible lookahead tokens individually, the validator usually
+ handles lookahead sets directly instead, for better performances.
+
+ For instance, the validator for [state_has_future], which speaks
+ about one single lookahead token is a subset operation:
+*)
+Lemma is_validator_state_has_future_subset st prod pos lookahead lset im fut :
+ TerminalSet.In lookahead lset ->
+ fut = future_of_prod prod pos ->
+ IsItemsMap im ->
+ IsValidator (state_has_future st prod fut lookahead)
+ (TerminalSet.subset lset (find_items_map im st prod pos)).
+Proof.
+ intros ? -> -> HSS%TerminalSet.subset_2. exists pos. split=>//. by apply HSS.
+Qed.
+(* We do not declare this lemma as an instance, and use [Hint Extern]
+ instead, because the typeclass mechanism has trouble instantiating
+ some evars if we do not explicitely call [eassumption]. *)
+Hint Extern 2 (IsValidator (state_has_future _ _ _ _) _) =>
+ eapply is_validator_state_has_future_subset; [eassumption|eassumption || reflexivity|]
+: typeclass_instances.
+
+(* As said previously, we manipulate lookahead terminal sets instead of
+ lookahead individually. Hence, when we quantify over a lookahead set
+ in the specification, we do not do anything in the executable
+ validator.
+
+ This instance is used for [non_terminal_closed]. *)
+Instance is_validator_forall_lookahead_set lset P b:
+ (forall lookahead, TerminalSet.In lookahead lset -> IsValidator (P lookahead) b) ->
+ IsValidator (forall lookahead, TerminalSet.In lookahead lset -> P lookahead) b.
+Proof. unfold IsValidator. firstorder. Qed.
+
+
+(* Dually, we sometimes still need to explicitelly iterate over a
+ lookahead set. This is what this lemma allows.
+ Used only in [end_reduce]. *)
+Lemma is_validator_iterate_lset P b lookahead lset :
+ TerminalSet.In lookahead lset ->
+ IsValidator P (b lookahead) ->
+ IsValidator P (TerminalSet.fold (fun lookahead acc =>
+ if acc then b lookahead else false) lset true).
+Proof.
+ intros Hlset%TerminalSet.elements_1 Hval Val. apply Hval.
+ revert Val. rewrite TerminalSet.fold_1. generalize true at 1. clear -Hlset.
+ induction Hlset as [? l <-%compare_eq|? l ? IH]=> /= b' Val.
+ - destruct (b lookahead). by destruct b'. exfalso. by induction l; destruct b'.
+ - eauto.
+Qed.
+Hint Extern 100 (IsValidator _ _) =>
+ match goal with
+ | H : TerminalSet.In ?lookahead ?lset |- _ =>
+ eapply (is_validator_iterate_lset _ (fun lookahead => _) _ _ H); clear H
+ end
+: typeclass_instances.
+
+(* We often quantify over all the items of all the states of the
+ automaton. This lemma and the accompanying [Hint Resolve]
+ declaration allow generating the corresponding executable
+ validator.
+
+ Note that it turns out that, in all the uses of this pattern, the
+ first thing we do for each item is pattern-matching over the
+ future. This lemma also embbed this pattern-matching, which makes
+ it possible to get the hypothesis [fut' = future_of_prod prod (S pos)]
+ in the non-nil branch.
+
+ Moreover, note, again, that while the specification quantifies over
+ lookahead terminals individually, the code provides lookahead sets
+ instead. *)
+Lemma is_validator_forall_items P1 b1 P2 b2 im :
+ IsItemsMap im ->
+
+ (forall st prod lookahead lset pos,
+ TerminalSet.In lookahead lset ->
+ [] = future_of_prod prod pos ->
+ IsValidator (P1 st prod lookahead) (b1 st prod pos lset)) ->
+
+ (forall st prod pos lookahead lset s fut',
+ TerminalSet.In lookahead lset ->
+ fut' = future_of_prod prod (S pos) ->
+ IsValidator (P2 st prod lookahead s fut') (b2 st prod pos lset s fut')) ->
+
+ IsValidator (forall st prod fut lookahead,
+ state_has_future st prod fut lookahead ->
+ match fut with
+ | [] => P1 st prod lookahead
+ | s :: fut' => P2 st prod lookahead s fut'
+ end)
+ (forallb_items im (fun st prod pos lset =>
+ match future_of_prod prod pos with
+ | [] => b1 st prod pos lset
+ | s :: fut' => b2 st prod pos lset s fut'
+ end)).
+Proof.
+ intros -> Hval1 Hval2 Val st prod fut lookahead (pos & -> & Hlookahead).
+ rewrite /forallb_items StateProdPosMap.fold_1 in Val.
+ assert (match future_of_prod prod pos with
+ | [] => b1 st prod pos (find_items_map (items_map ()) st prod pos)
+ | s :: fut' => b2 st prod pos (find_items_map (items_map ()) st prod pos) s fut'
+ end = true).
+ - unfold find_items_map in *.
+ assert (Hfind := @StateProdPosMap.find_2 _ (items_map ()) (st, prod, pos)).
+ destruct StateProdPosMap.find as [lset|]; [|by edestruct (TerminalSet.empty_1); eauto].
+ specialize (Hfind _ eq_refl). apply StateProdPosMap.elements_1 in Hfind.
+ revert Val. generalize true at 1.
+ induction Hfind as [[? ?] l [?%compare_eq ?]|??? IH]=>?.
+ + simpl in *; subst.
+ match goal with |- _ -> ?X = true => destruct X end; [done|].
+ rewrite Bool.andb_false_r. clear. induction l as [|[[[??]?]?] l IH]=>//.
+ + apply IH.
+ - destruct future_of_prod eqn:EQ. by eapply Hval1; eauto.
+ eapply Hval2 with (pos := pos); eauto; [].
+ revert EQ. unfold future_of_prod=>-> //.
+Qed.
+(* We need a hint for expplicitely instantiating b1 and b2 with lambdas. *)
+Hint Extern 0 (IsValidator
+ (forall st prod fut lookahead,
+ state_has_future st prod fut lookahead -> _)
+ _) =>
+ eapply (is_validator_forall_items _ (fun st prod pos lset => _)
+ _ (fun st prod pos lset s fut' => _))
+ : typeclass_instances.
+
+(* Used in [start_future] only. *)
+Instance is_validator_forall_state_has_future im st prod :
+ IsItemsMap im ->
+ IsValidator
+ (forall look, state_has_future st prod (rev' (prod_rhs_rev prod)) look)
+ (let lookaheads := find_items_map im st prod 0 in
+ forallb (fun t => TerminalSet.mem t lookaheads) all_list).
+Proof.
+ move=> -> /forallb_forall Val look.
+ specialize (Val look (all_list_forall _)). exists 0. split=>//.
+ by apply TerminalSet.mem_2.
+Qed.
+
+(** * Validation for completeness **)
+
+(** The nullable predicate is a fixpoint : it is correct. **)
+Definition nullable_stable :=
+ forall p:production,
+ if nullable_word (prod_rhs_rev p) then
+ nullable_nterm (prod_lhs p) = true
+ else True.
+
+(** The first predicate is a fixpoint : it is correct. **)
+Definition first_stable:=
+ forall (p:production),
+ TerminalSet.Subset (first_word_set (rev' (prod_rhs_rev p)))
+ (first_nterm_set (prod_lhs p)).
+
+(** The initial state has all the S=>.u items, where S is the start non-terminal **)
+Definition start_future :=
+ forall (init:initstate) (p:production),
+ prod_lhs p = start_nt init ->
+ forall (t:terminal),
+ state_has_future init p (rev' (prod_rhs_rev p)) t.
+
+(** If a state contains an item of the form A->_.av[[b]], where a is a
+ terminal, then reading an a does a [Shift_act], to a state containing
+ an item of the form A->_.v[[b]]. **)
+Definition terminal_shift :=
+ forall (s1:state) prod fut lookahead,
+ state_has_future s1 prod fut lookahead ->
+ match fut with
+ | T t::q =>
+ match action_table s1 with
+ | Lookahead_act awp =>
+ match awp t with
+ | Shift_act s2 _ =>
+ state_has_future s2 prod q lookahead
+ | _ => False
+ end
+ | _ => False
+ end
+ | _ => True
+ end.
+
+(** If a state contains an item of the form A->_.[[a]], then either we do a
+ [Default_reduce_act] of the corresponding production, either a is a
+ terminal (ie. there is a lookahead terminal), and reading a does a
+ [Reduce_act] of the corresponding production. **)
+Definition end_reduce :=
+ forall (s:state) prod fut lookahead,
+ state_has_future s prod fut lookahead ->
+ match fut with
+ | [] =>
+ match action_table s with
+ | Default_reduce_act p => p = prod
+ | Lookahead_act awt =>
+ match awt lookahead with
+ | Reduce_act p => p = prod
+ | _ => False
+ end
+ end
+ | _ => True
+ end.
+
+Definition is_end_reduce items_map :=
+ forallb_items items_map (fun s prod pos lset =>
+ match future_of_prod prod pos with
+ | [] =>
+ match action_table s with
+ | Default_reduce_act p => compare_eqb p prod
+ | Lookahead_act awt =>
+ TerminalSet.fold (fun lookahead acc =>
+ match awt lookahead with
+ | Reduce_act p => (acc && compare_eqb p prod)%bool
+ | _ => false
+ end) lset true
+ end
+ | _ => true
+ end).
+
+(** If a state contains an item of the form A->_.Bv[[b]], where B is a
+ non terminal, then the goto table says we have to go to a state containing
+ an item of the form A->_.v[[b]]. **)
+Definition non_terminal_goto :=
+ forall (s1:state) prod fut lookahead,
+ state_has_future s1 prod fut lookahead ->
+ match fut with
+ | NT nt::q =>
+ match goto_table s1 nt with
+ | Some (exist _ s2 _) =>
+ state_has_future s2 prod q lookahead
+ | None => False
+ end
+ | _ => True
+ end.
+
+Definition start_goto :=
+ forall (init:initstate),
+ match goto_table init (start_nt init) with
+ | None => True
+ | Some _ => False
+ end.
+
+(** Closure property of item sets : if a state contains an item of the form
+ A->_.Bv[[b]], then for each production B->u and each terminal a of
+ first(vb), the state contains an item of the form B->_.u[[a]] **)
+Definition non_terminal_closed :=
+ forall s1 prod fut lookahead,
+ state_has_future s1 prod fut lookahead ->
+ match fut with
+ | NT nt::q =>
+ forall p, prod_lhs p = nt ->
+ (if nullable_word q then
+ state_has_future s1 p (future_of_prod p 0) lookahead
+ else True) /\
+ (forall lookahead2,
+ TerminalSet.In lookahead2 (first_word_set q) ->
+ state_has_future s1 p (future_of_prod p 0) lookahead2)
+ | _ => True
+ end.
+
+(** The automaton is complete **)
+Definition complete :=
+ nullable_stable /\ first_stable /\ start_future /\ terminal_shift
+ /\ end_reduce /\ non_terminal_goto /\ start_goto /\ non_terminal_closed.
+
+Derive is_complete_0
+SuchThat (forall im, IsItemsMap im -> IsValidator complete (is_complete_0 im))
+As complete_0_is_validator.
+Proof. intros im. subst is_complete_0. instantiate (1:=fun im => _). apply _. Qed.
+
+Definition is_complete (_:unit) := is_complete_0 (items_map ()).
+Lemma complete_is_validator : IsValidator complete (is_complete ()).
+Proof. by apply complete_0_is_validator. Qed.
+
+End Make.
diff --git a/MenhirLib/Validator_safe.v b/MenhirLib/Validator_safe.v
new file mode 100644
index 00000000..2d2ea4b3
--- /dev/null
+++ b/MenhirLib/Validator_safe.v
@@ -0,0 +1,234 @@
+(****************************************************************************)
+(* *)
+(* Menhir *)
+(* *)
+(* Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud *)
+(* *)
+(* Copyright Inria. All rights reserved. This file is distributed under *)
+(* the terms of the GNU Lesser General Public License as published by the *)
+(* Free Software Foundation, either version 3 of the License, or (at your *)
+(* option) any later version, as described in the file LICENSE. *)
+(* *)
+(****************************************************************************)
+
+From Coq Require Import List Syntax Derive.
+From Coq.ssr Require Import ssreflect.
+Require Automaton.
+Require Import Alphabet Validator_classes.
+
+Module Make(Import A:Automaton.T).
+
+(** The singleton predicate for states **)
+Definition singleton_state_pred (state:state) :=
+ (fun state' => match compare state state' with Eq => true |_ => false end).
+
+(** [past_state_of_non_init_state], extended for all states. **)
+Definition past_state_of_state (state:state) :=
+ match state with
+ | Init _ => []
+ | Ninit nis => past_state_of_non_init_state nis
+ end.
+
+(** Concatenations of last and past **)
+Definition head_symbs_of_state (state:state) :=
+ match state with
+ | Init _ => []
+ | Ninit s =>
+ last_symb_of_non_init_state s::past_symb_of_non_init_state s
+ end.
+Definition head_states_of_state (state:state) :=
+ singleton_state_pred state::past_state_of_state state.
+
+(** * Validation for correctness **)
+
+(** Prefix predicate between two lists of symbols. **)
+Inductive prefix: list symbol -> list symbol -> Prop :=
+| prefix_nil: forall l, prefix [] l
+| prefix_cons: forall l1 l2 x, prefix l1 l2 -> prefix (x::l1) (x::l2).
+
+(** [prefix] is transitive **)
+Lemma prefix_trans:
+ forall (l1 l2 l3:list symbol), prefix l1 l2 -> prefix l2 l3 -> prefix l1 l3.
+Proof.
+ intros l1 l2 l3 H1 H2. revert l3 H2.
+ induction H1; [now constructor|]. inversion 1. subst. constructor. eauto.
+Qed.
+
+Fixpoint is_prefix (l1 l2:list symbol) :=
+ match l1, l2 with
+ | [], _ => true
+ | t1::q1, t2::q2 => (compare_eqb t1 t2 && is_prefix q1 q2)%bool
+ | _::_, [] => false
+ end.
+
+Instance prefix_is_validator l1 l2 : IsValidator (prefix l1 l2) (is_prefix l1 l2).
+Proof.
+ revert l2. induction l1 as [|x1 l1 IH]=>l2 Hpref.
+ - constructor.
+ - destruct l2 as [|x2 l2]=>//.
+ move: Hpref=> /andb_prop [/compare_eqb_iff -> /IH ?]. by constructor.
+Qed.
+
+(** If we shift, then the known top symbols of the destination state is
+ a prefix of the known top symbols of the source state, with the new
+ symbol added. **)
+Definition shift_head_symbs :=
+ forall s,
+ match action_table s with
+ | Lookahead_act awp => forall t,
+ match awp t with
+ | Shift_act s2 _ =>
+ prefix (past_symb_of_non_init_state s2) (head_symbs_of_state s)
+ | _ => True
+ end
+ | _ => True
+ end.
+
+(** When a goto happens, then the known top symbols of the destination state
+ is a prefix of the known top symbols of the source state, with the new
+ symbol added. **)
+Definition goto_head_symbs :=
+ forall s nt,
+ match goto_table s nt with
+ | Some (exist _ s2 _) =>
+ prefix (past_symb_of_non_init_state s2) (head_symbs_of_state s)
+ | None => True
+ end.
+
+(** We have to say the same kind of checks for the assumptions about the
+ states stack. However, theses assumptions are predicates. So we define
+ a notion of "prefix" over predicates lists, that means, basically, that
+ an assumption entails another **)
+Inductive prefix_pred: list (state->bool) -> list (state->bool) -> Prop :=
+ | prefix_pred_nil: forall l, prefix_pred [] l
+ | prefix_pred_cons: forall l1 l2 f1 f2,
+ (forall x, implb (f2 x) (f1 x) = true) ->
+ prefix_pred l1 l2 -> prefix_pred (f1::l1) (f2::l2).
+
+(** [prefix_pred] is transitive **)
+Lemma prefix_pred_trans:
+ forall (l1 l2 l3:list (state->bool)),
+ prefix_pred l1 l2 -> prefix_pred l2 l3 -> prefix_pred l1 l3.
+Proof.
+ intros l1 l2 l3 H1 H2. revert l3 H2.
+ induction H1 as [|l1 l2 f1 f2 Hf2f1]; [now constructor|].
+ intros l3. inversion 1 as [|??? f3 Hf3f2]. subst. constructor; [|now eauto].
+ intros x. specialize (Hf3f2 x). specialize (Hf2f1 x).
+ repeat destruct (_ x); auto.
+Qed.
+
+Fixpoint is_prefix_pred (l1 l2:list (state->bool)) :=
+ match l1, l2 with
+ | [], _ => true
+ | f1::q1, f2::q2 =>
+ (forallb (fun x => implb (f2 x) (f1 x)) all_list
+ && is_prefix_pred q1 q2)%bool
+ | _::_, [] => false
+ end.
+
+Instance prefix_pred_is_validator l1 l2 :
+ IsValidator (prefix_pred l1 l2) (is_prefix_pred l1 l2).
+Proof.
+ revert l2. induction l1 as [|x1 l1 IH]=>l2 Hpref.
+ - constructor.
+ - destruct l2 as [|x2 l2]=>//.
+ move: Hpref=> /andb_prop [/forallb_forall ? /IH ?].
+ constructor; auto using all_list_forall.
+Qed.
+
+(** The assumptions about state stack is conserved when we shift **)
+Definition shift_past_state :=
+ forall s,
+ match action_table s with
+ | Lookahead_act awp => forall t,
+ match awp t with
+ | Shift_act s2 _ =>
+ prefix_pred (past_state_of_non_init_state s2)
+ (head_states_of_state s)
+ | _ => True
+ end
+ | _ => True
+ end.
+
+(** The assumptions about state stack is conserved when we do a goto **)
+Definition goto_past_state :=
+ forall s nt,
+ match goto_table s nt with
+ | Some (exist _ s2 _) =>
+ prefix_pred (past_state_of_non_init_state s2)
+ (head_states_of_state s)
+ | None => True
+ end.
+
+(** What states are possible after having popped these symbols from the
+ stack, given the annotation of the current state ? **)
+Inductive state_valid_after_pop (s:state):
+ list symbol -> list (state -> bool) -> Prop :=
+ | state_valid_after_pop_nil1:
+ forall p pl, p s = true -> state_valid_after_pop s [] (p::pl)
+ | state_valid_after_pop_nil2:
+ forall sl, state_valid_after_pop s sl []
+ | state_valid_after_pop_cons:
+ forall st sq p pl, state_valid_after_pop s sq pl ->
+ state_valid_after_pop s (st::sq) (p::pl).
+
+Fixpoint is_state_valid_after_pop (state:state) (to_pop:list symbol) annot :=
+ match annot, to_pop with
+ | [], _ => true
+ | p::_, [] => p state
+ | p::pl, s::sl => is_state_valid_after_pop state sl pl
+ end.
+
+Instance impl_is_state_valid_after_pop_is_validator state sl pl P b :
+ IsValidator P b ->
+ IsValidator (state_valid_after_pop state sl pl -> P)
+ (if is_state_valid_after_pop state sl pl then b else true).
+Proof.
+ destruct (is_state_valid_after_pop state0 sl pl) eqn:EQ.
+ - intros ??. auto using is_validator.
+ - intros _ _ Hsvap. exfalso. induction Hsvap=>//; [simpl in EQ; congruence|].
+ by destruct sl.
+Qed.
+
+(** A state is valid for reducing a production when :
+ - The assumptions on the state are such that we will find the right hand
+ side of the production on the stack.
+ - We will be able to do a goto after having popped the right hand side.
+**)
+Definition valid_for_reduce (state:state) prod :=
+ prefix (prod_rhs_rev prod) (head_symbs_of_state state) /\
+ forall state_new,
+ state_valid_after_pop state_new
+ (prod_rhs_rev prod) (head_states_of_state state) ->
+ match goto_table state_new (prod_lhs prod) with
+ | None =>
+ match state_new with
+ | Init i => prod_lhs prod = start_nt i
+ | Ninit _ => False
+ end
+ | _ => True
+ end.
+
+(** All the states that does a reduce are valid for reduction **)
+Definition reduce_ok :=
+ forall s,
+ match action_table s with
+ | Lookahead_act awp =>
+ forall t, match awp t with
+ | Reduce_act p => valid_for_reduce s p
+ | _ => True
+ end
+ | Default_reduce_act p => valid_for_reduce s p
+ end.
+
+(** The automaton is safe **)
+Definition safe :=
+ shift_head_symbs /\ goto_head_symbs /\ shift_past_state /\
+ goto_past_state /\ reduce_ok.
+
+Derive is_safe
+SuchThat (IsValidator safe (is_safe ()))
+As safe_is_validator.
+Proof. subst is_safe. instantiate (1:=fun _ => _). apply _. Qed.
+
+End Make.