aboutsummaryrefslogtreecommitdiffstats
path: root/MenhirLib/Validator_safe.v
diff options
context:
space:
mode:
Diffstat (limited to 'MenhirLib/Validator_safe.v')
-rw-r--r--MenhirLib/Validator_safe.v234
1 files changed, 234 insertions, 0 deletions
diff --git a/MenhirLib/Validator_safe.v b/MenhirLib/Validator_safe.v
new file mode 100644
index 00000000..2d2ea4b3
--- /dev/null
+++ b/MenhirLib/Validator_safe.v
@@ -0,0 +1,234 @@
+(****************************************************************************)
+(* *)
+(* Menhir *)
+(* *)
+(* Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud *)
+(* *)
+(* Copyright Inria. All rights reserved. This file is distributed under *)
+(* the terms of the GNU Lesser General Public License as published by the *)
+(* Free Software Foundation, either version 3 of the License, or (at your *)
+(* option) any later version, as described in the file LICENSE. *)
+(* *)
+(****************************************************************************)
+
+From Coq Require Import List Syntax Derive.
+From Coq.ssr Require Import ssreflect.
+Require Automaton.
+Require Import Alphabet Validator_classes.
+
+Module Make(Import A:Automaton.T).
+
+(** The singleton predicate for states **)
+Definition singleton_state_pred (state:state) :=
+ (fun state' => match compare state state' with Eq => true |_ => false end).
+
+(** [past_state_of_non_init_state], extended for all states. **)
+Definition past_state_of_state (state:state) :=
+ match state with
+ | Init _ => []
+ | Ninit nis => past_state_of_non_init_state nis
+ end.
+
+(** Concatenations of last and past **)
+Definition head_symbs_of_state (state:state) :=
+ match state with
+ | Init _ => []
+ | Ninit s =>
+ last_symb_of_non_init_state s::past_symb_of_non_init_state s
+ end.
+Definition head_states_of_state (state:state) :=
+ singleton_state_pred state::past_state_of_state state.
+
+(** * Validation for correctness **)
+
+(** Prefix predicate between two lists of symbols. **)
+Inductive prefix: list symbol -> list symbol -> Prop :=
+| prefix_nil: forall l, prefix [] l
+| prefix_cons: forall l1 l2 x, prefix l1 l2 -> prefix (x::l1) (x::l2).
+
+(** [prefix] is transitive **)
+Lemma prefix_trans:
+ forall (l1 l2 l3:list symbol), prefix l1 l2 -> prefix l2 l3 -> prefix l1 l3.
+Proof.
+ intros l1 l2 l3 H1 H2. revert l3 H2.
+ induction H1; [now constructor|]. inversion 1. subst. constructor. eauto.
+Qed.
+
+Fixpoint is_prefix (l1 l2:list symbol) :=
+ match l1, l2 with
+ | [], _ => true
+ | t1::q1, t2::q2 => (compare_eqb t1 t2 && is_prefix q1 q2)%bool
+ | _::_, [] => false
+ end.
+
+Instance prefix_is_validator l1 l2 : IsValidator (prefix l1 l2) (is_prefix l1 l2).
+Proof.
+ revert l2. induction l1 as [|x1 l1 IH]=>l2 Hpref.
+ - constructor.
+ - destruct l2 as [|x2 l2]=>//.
+ move: Hpref=> /andb_prop [/compare_eqb_iff -> /IH ?]. by constructor.
+Qed.
+
+(** If we shift, then the known top symbols of the destination state is
+ a prefix of the known top symbols of the source state, with the new
+ symbol added. **)
+Definition shift_head_symbs :=
+ forall s,
+ match action_table s with
+ | Lookahead_act awp => forall t,
+ match awp t with
+ | Shift_act s2 _ =>
+ prefix (past_symb_of_non_init_state s2) (head_symbs_of_state s)
+ | _ => True
+ end
+ | _ => True
+ end.
+
+(** When a goto happens, then the known top symbols of the destination state
+ is a prefix of the known top symbols of the source state, with the new
+ symbol added. **)
+Definition goto_head_symbs :=
+ forall s nt,
+ match goto_table s nt with
+ | Some (exist _ s2 _) =>
+ prefix (past_symb_of_non_init_state s2) (head_symbs_of_state s)
+ | None => True
+ end.
+
+(** We have to say the same kind of checks for the assumptions about the
+ states stack. However, theses assumptions are predicates. So we define
+ a notion of "prefix" over predicates lists, that means, basically, that
+ an assumption entails another **)
+Inductive prefix_pred: list (state->bool) -> list (state->bool) -> Prop :=
+ | prefix_pred_nil: forall l, prefix_pred [] l
+ | prefix_pred_cons: forall l1 l2 f1 f2,
+ (forall x, implb (f2 x) (f1 x) = true) ->
+ prefix_pred l1 l2 -> prefix_pred (f1::l1) (f2::l2).
+
+(** [prefix_pred] is transitive **)
+Lemma prefix_pred_trans:
+ forall (l1 l2 l3:list (state->bool)),
+ prefix_pred l1 l2 -> prefix_pred l2 l3 -> prefix_pred l1 l3.
+Proof.
+ intros l1 l2 l3 H1 H2. revert l3 H2.
+ induction H1 as [|l1 l2 f1 f2 Hf2f1]; [now constructor|].
+ intros l3. inversion 1 as [|??? f3 Hf3f2]. subst. constructor; [|now eauto].
+ intros x. specialize (Hf3f2 x). specialize (Hf2f1 x).
+ repeat destruct (_ x); auto.
+Qed.
+
+Fixpoint is_prefix_pred (l1 l2:list (state->bool)) :=
+ match l1, l2 with
+ | [], _ => true
+ | f1::q1, f2::q2 =>
+ (forallb (fun x => implb (f2 x) (f1 x)) all_list
+ && is_prefix_pred q1 q2)%bool
+ | _::_, [] => false
+ end.
+
+Instance prefix_pred_is_validator l1 l2 :
+ IsValidator (prefix_pred l1 l2) (is_prefix_pred l1 l2).
+Proof.
+ revert l2. induction l1 as [|x1 l1 IH]=>l2 Hpref.
+ - constructor.
+ - destruct l2 as [|x2 l2]=>//.
+ move: Hpref=> /andb_prop [/forallb_forall ? /IH ?].
+ constructor; auto using all_list_forall.
+Qed.
+
+(** The assumptions about state stack is conserved when we shift **)
+Definition shift_past_state :=
+ forall s,
+ match action_table s with
+ | Lookahead_act awp => forall t,
+ match awp t with
+ | Shift_act s2 _ =>
+ prefix_pred (past_state_of_non_init_state s2)
+ (head_states_of_state s)
+ | _ => True
+ end
+ | _ => True
+ end.
+
+(** The assumptions about state stack is conserved when we do a goto **)
+Definition goto_past_state :=
+ forall s nt,
+ match goto_table s nt with
+ | Some (exist _ s2 _) =>
+ prefix_pred (past_state_of_non_init_state s2)
+ (head_states_of_state s)
+ | None => True
+ end.
+
+(** What states are possible after having popped these symbols from the
+ stack, given the annotation of the current state ? **)
+Inductive state_valid_after_pop (s:state):
+ list symbol -> list (state -> bool) -> Prop :=
+ | state_valid_after_pop_nil1:
+ forall p pl, p s = true -> state_valid_after_pop s [] (p::pl)
+ | state_valid_after_pop_nil2:
+ forall sl, state_valid_after_pop s sl []
+ | state_valid_after_pop_cons:
+ forall st sq p pl, state_valid_after_pop s sq pl ->
+ state_valid_after_pop s (st::sq) (p::pl).
+
+Fixpoint is_state_valid_after_pop (state:state) (to_pop:list symbol) annot :=
+ match annot, to_pop with
+ | [], _ => true
+ | p::_, [] => p state
+ | p::pl, s::sl => is_state_valid_after_pop state sl pl
+ end.
+
+Instance impl_is_state_valid_after_pop_is_validator state sl pl P b :
+ IsValidator P b ->
+ IsValidator (state_valid_after_pop state sl pl -> P)
+ (if is_state_valid_after_pop state sl pl then b else true).
+Proof.
+ destruct (is_state_valid_after_pop state0 sl pl) eqn:EQ.
+ - intros ??. auto using is_validator.
+ - intros _ _ Hsvap. exfalso. induction Hsvap=>//; [simpl in EQ; congruence|].
+ by destruct sl.
+Qed.
+
+(** A state is valid for reducing a production when :
+ - The assumptions on the state are such that we will find the right hand
+ side of the production on the stack.
+ - We will be able to do a goto after having popped the right hand side.
+**)
+Definition valid_for_reduce (state:state) prod :=
+ prefix (prod_rhs_rev prod) (head_symbs_of_state state) /\
+ forall state_new,
+ state_valid_after_pop state_new
+ (prod_rhs_rev prod) (head_states_of_state state) ->
+ match goto_table state_new (prod_lhs prod) with
+ | None =>
+ match state_new with
+ | Init i => prod_lhs prod = start_nt i
+ | Ninit _ => False
+ end
+ | _ => True
+ end.
+
+(** All the states that does a reduce are valid for reduction **)
+Definition reduce_ok :=
+ forall s,
+ match action_table s with
+ | Lookahead_act awp =>
+ forall t, match awp t with
+ | Reduce_act p => valid_for_reduce s p
+ | _ => True
+ end
+ | Default_reduce_act p => valid_for_reduce s p
+ end.
+
+(** The automaton is safe **)
+Definition safe :=
+ shift_head_symbs /\ goto_head_symbs /\ shift_past_state /\
+ goto_past_state /\ reduce_ok.
+
+Derive is_safe
+SuchThat (IsValidator safe (is_safe ()))
+As safe_is_validator.
+Proof. subst is_safe. instantiate (1:=fun _ => _). apply _. Qed.
+
+End Make.