aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/BearSSL/src/symcipher/des_ct.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/BearSSL/src/symcipher/des_ct.c')
-rw-r--r--test/monniaux/BearSSL/src/symcipher/des_ct.c411
1 files changed, 411 insertions, 0 deletions
diff --git a/test/monniaux/BearSSL/src/symcipher/des_ct.c b/test/monniaux/BearSSL/src/symcipher/des_ct.c
new file mode 100644
index 00000000..581c0ab2
--- /dev/null
+++ b/test/monniaux/BearSSL/src/symcipher/des_ct.c
@@ -0,0 +1,411 @@
+/*
+ * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+/*
+ * During key schedule, we need to apply bit extraction PC-2 then permute
+ * things into our bitslice representation. PC-2 extracts 48 bits out
+ * of two 28-bit words (kl and kr), and we store these bits into two
+ * 32-bit words sk0 and sk1.
+ *
+ * -- bit 16+x of sk0 comes from bit QL0[x] of kl
+ * -- bit x of sk0 comes from bit QR0[x] of kr
+ * -- bit 16+x of sk1 comes from bit QL1[x] of kl
+ * -- bit x of sk1 comes from bit QR1[x] of kr
+ */
+
+static const unsigned char QL0[] = {
+ 17, 4, 27, 23, 13, 22, 7, 18,
+ 16, 24, 2, 20, 1, 8, 15, 26
+};
+
+static const unsigned char QR0[] = {
+ 25, 19, 9, 1, 5, 11, 23, 8,
+ 17, 0, 22, 3, 6, 20, 27, 24
+};
+
+static const unsigned char QL1[] = {
+ 28, 28, 14, 11, 28, 28, 25, 0,
+ 28, 28, 5, 9, 28, 28, 12, 21
+};
+
+static const unsigned char QR1[] = {
+ 28, 28, 15, 4, 28, 28, 26, 16,
+ 28, 28, 12, 7, 28, 28, 10, 14
+};
+
+/*
+ * 32-bit rotation. The C compiler is supposed to recognize it as a
+ * rotation and use the local architecture rotation opcode (if available).
+ */
+static inline uint32_t
+rotl(uint32_t x, int n)
+{
+ return (x << n) | (x >> (32 - n));
+}
+
+/*
+ * Compute key schedule for 8 key bytes (produces 32 subkey words).
+ */
+static void
+keysched_unit(uint32_t *skey, const void *key)
+{
+ int i;
+
+ br_des_keysched_unit(skey, key);
+
+ /*
+ * Apply PC-2 + bitslicing.
+ */
+ for (i = 0; i < 16; i ++) {
+ uint32_t kl, kr, sk0, sk1;
+ int j;
+
+ kl = skey[(i << 1) + 0];
+ kr = skey[(i << 1) + 1];
+ sk0 = 0;
+ sk1 = 0;
+ for (j = 0; j < 16; j ++) {
+ sk0 <<= 1;
+ sk1 <<= 1;
+ sk0 |= ((kl >> QL0[j]) & (uint32_t)1) << 16;
+ sk0 |= (kr >> QR0[j]) & (uint32_t)1;
+ sk1 |= ((kl >> QL1[j]) & (uint32_t)1) << 16;
+ sk1 |= (kr >> QR1[j]) & (uint32_t)1;
+ }
+
+ skey[(i << 1) + 0] = sk0;
+ skey[(i << 1) + 1] = sk1;
+ }
+
+#if 0
+ /*
+ * Speed-optimized version for PC-2 + bitslicing.
+ * (Unused. Kept for reference only.)
+ */
+ sk0 = kl & (uint32_t)0x00100000;
+ sk0 |= (kl & (uint32_t)0x08008000) << 2;
+ sk0 |= (kl & (uint32_t)0x00400000) << 4;
+ sk0 |= (kl & (uint32_t)0x00800000) << 5;
+ sk0 |= (kl & (uint32_t)0x00040000) << 6;
+ sk0 |= (kl & (uint32_t)0x00010000) << 7;
+ sk0 |= (kl & (uint32_t)0x00000100) << 10;
+ sk0 |= (kl & (uint32_t)0x00022000) << 14;
+ sk0 |= (kl & (uint32_t)0x00000082) << 18;
+ sk0 |= (kl & (uint32_t)0x00000004) << 19;
+ sk0 |= (kl & (uint32_t)0x04000000) >> 10;
+ sk0 |= (kl & (uint32_t)0x00000010) << 26;
+ sk0 |= (kl & (uint32_t)0x01000000) >> 2;
+
+ sk0 |= kr & (uint32_t)0x00000100;
+ sk0 |= (kr & (uint32_t)0x00000008) << 1;
+ sk0 |= (kr & (uint32_t)0x00000200) << 4;
+ sk0 |= rotl(kr & (uint32_t)0x08000021, 6);
+ sk0 |= (kr & (uint32_t)0x01000000) >> 24;
+ sk0 |= (kr & (uint32_t)0x00000002) << 11;
+ sk0 |= (kr & (uint32_t)0x00100000) >> 18;
+ sk0 |= (kr & (uint32_t)0x00400000) >> 17;
+ sk0 |= (kr & (uint32_t)0x00800000) >> 14;
+ sk0 |= (kr & (uint32_t)0x02020000) >> 10;
+ sk0 |= (kr & (uint32_t)0x00080000) >> 5;
+ sk0 |= (kr & (uint32_t)0x00000040) >> 3;
+ sk0 |= (kr & (uint32_t)0x00000800) >> 1;
+
+ sk1 = kl & (uint32_t)0x02000000;
+ sk1 |= (kl & (uint32_t)0x00001000) << 5;
+ sk1 |= (kl & (uint32_t)0x00000200) << 11;
+ sk1 |= (kl & (uint32_t)0x00004000) << 15;
+ sk1 |= (kl & (uint32_t)0x00000020) << 16;
+ sk1 |= (kl & (uint32_t)0x00000800) << 17;
+ sk1 |= (kl & (uint32_t)0x00000001) << 24;
+ sk1 |= (kl & (uint32_t)0x00200000) >> 5;
+
+ sk1 |= (kr & (uint32_t)0x00000010) << 8;
+ sk1 |= (kr & (uint32_t)0x04000000) >> 17;
+ sk1 |= (kr & (uint32_t)0x00004000) >> 14;
+ sk1 |= (kr & (uint32_t)0x00000400) >> 9;
+ sk1 |= (kr & (uint32_t)0x00010000) >> 8;
+ sk1 |= (kr & (uint32_t)0x00001000) >> 7;
+ sk1 |= (kr & (uint32_t)0x00000080) >> 3;
+ sk1 |= (kr & (uint32_t)0x00008000) >> 2;
+#endif
+}
+
+/* see inner.h */
+unsigned
+br_des_ct_keysched(uint32_t *skey, const void *key, size_t key_len)
+{
+ switch (key_len) {
+ case 8:
+ keysched_unit(skey, key);
+ return 1;
+ case 16:
+ keysched_unit(skey, key);
+ keysched_unit(skey + 32, (const unsigned char *)key + 8);
+ br_des_rev_skey(skey + 32);
+ memcpy(skey + 64, skey, 32 * sizeof *skey);
+ return 3;
+ default:
+ keysched_unit(skey, key);
+ keysched_unit(skey + 32, (const unsigned char *)key + 8);
+ br_des_rev_skey(skey + 32);
+ keysched_unit(skey + 64, (const unsigned char *)key + 16);
+ return 3;
+ }
+}
+
+/*
+ * DES confusion function. This function performs expansion E (32 to
+ * 48 bits), XOR with subkey, S-boxes, and permutation P.
+ */
+static inline uint32_t
+Fconf(uint32_t r0, const uint32_t *sk)
+{
+ /*
+ * Each 6->4 S-box is virtually turned into four 6->1 boxes; we
+ * thus end up with 32 boxes that we call "T-boxes" here. We will
+ * evaluate them with bitslice code.
+ *
+ * Each T-box is a circuit of multiplexers (sort of) and thus
+ * takes 70 inputs: the 6 actual T-box inputs, and 64 constants
+ * that describe the T-box output for all combinations of the
+ * 6 inputs. With this model, all T-boxes are identical (with
+ * distinct inputs) and thus can be executed in parallel with
+ * bitslice code.
+ *
+ * T-boxes are numbered from 0 to 31, in least-to-most
+ * significant order. Thus, S-box S1 corresponds to T-boxes 31,
+ * 30, 29 and 28, in that order. T-box 'n' is computed with the
+ * bits at rank 'n' in the 32-bit words.
+ *
+ * Words x0 to x5 contain the T-box inputs 0 to 5.
+ */
+ uint32_t x0, x1, x2, x3, x4, x5, z0;
+ uint32_t y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
+ uint32_t y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
+ uint32_t y20, y21, y22, y23, y24, y25, y26, y27, y28, y29;
+ uint32_t y30;
+
+ /*
+ * Spread input bits over the 6 input words x*.
+ */
+ x1 = r0 & (uint32_t)0x11111111;
+ x2 = (r0 >> 1) & (uint32_t)0x11111111;
+ x3 = (r0 >> 2) & (uint32_t)0x11111111;
+ x4 = (r0 >> 3) & (uint32_t)0x11111111;
+ x1 = (x1 << 4) - x1;
+ x2 = (x2 << 4) - x2;
+ x3 = (x3 << 4) - x3;
+ x4 = (x4 << 4) - x4;
+ x0 = (x4 << 4) | (x4 >> 28);
+ x5 = (x1 >> 4) | (x1 << 28);
+
+ /*
+ * XOR with the subkey for this round.
+ */
+ x0 ^= sk[0];
+ x1 ^= sk[1];
+ x2 ^= sk[2];
+ x3 ^= sk[3];
+ x4 ^= sk[4];
+ x5 ^= sk[5];
+
+ /*
+ * The T-boxes are done in parallel, since they all use a
+ * "tree of multiplexer". We use "fake multiplexers":
+ *
+ * y = a ^ (x & b)
+ *
+ * computes y as either 'a' (if x == 0) or 'a ^ b' (if x == 1).
+ */
+ y0 = (uint32_t)0xEFA72C4D ^ (x0 & (uint32_t)0xEC7AC69C);
+ y1 = (uint32_t)0xAEAAEDFF ^ (x0 & (uint32_t)0x500FB821);
+ y2 = (uint32_t)0x37396665 ^ (x0 & (uint32_t)0x40EFA809);
+ y3 = (uint32_t)0x68D7B833 ^ (x0 & (uint32_t)0xA5EC0B28);
+ y4 = (uint32_t)0xC9C755BB ^ (x0 & (uint32_t)0x252CF820);
+ y5 = (uint32_t)0x73FC3606 ^ (x0 & (uint32_t)0x40205801);
+ y6 = (uint32_t)0xA2A0A918 ^ (x0 & (uint32_t)0xE220F929);
+ y7 = (uint32_t)0x8222BD90 ^ (x0 & (uint32_t)0x44A3F9E1);
+ y8 = (uint32_t)0xD6B6AC77 ^ (x0 & (uint32_t)0x794F104A);
+ y9 = (uint32_t)0x3069300C ^ (x0 & (uint32_t)0x026F320B);
+ y10 = (uint32_t)0x6CE0D5CC ^ (x0 & (uint32_t)0x7640B01A);
+ y11 = (uint32_t)0x59A9A22D ^ (x0 & (uint32_t)0x238F1572);
+ y12 = (uint32_t)0xAC6D0BD4 ^ (x0 & (uint32_t)0x7A63C083);
+ y13 = (uint32_t)0x21C83200 ^ (x0 & (uint32_t)0x11CCA000);
+ y14 = (uint32_t)0xA0E62188 ^ (x0 & (uint32_t)0x202F69AA);
+ /* y15 = (uint32_t)0x00000000 ^ (x0 & (uint32_t)0x00000000); */
+ y16 = (uint32_t)0xAF7D655A ^ (x0 & (uint32_t)0x51B33BE9);
+ y17 = (uint32_t)0xF0168AA3 ^ (x0 & (uint32_t)0x3B0FE8AE);
+ y18 = (uint32_t)0x90AA30C6 ^ (x0 & (uint32_t)0x90BF8816);
+ y19 = (uint32_t)0x5AB2750A ^ (x0 & (uint32_t)0x09E34F9B);
+ y20 = (uint32_t)0x5391BE65 ^ (x0 & (uint32_t)0x0103BE88);
+ y21 = (uint32_t)0x93372BAF ^ (x0 & (uint32_t)0x49AC8E25);
+ y22 = (uint32_t)0xF288210C ^ (x0 & (uint32_t)0x922C313D);
+ y23 = (uint32_t)0x920AF5C0 ^ (x0 & (uint32_t)0x70EF31B0);
+ y24 = (uint32_t)0x63D312C0 ^ (x0 & (uint32_t)0x6A707100);
+ y25 = (uint32_t)0x537B3006 ^ (x0 & (uint32_t)0xB97C9011);
+ y26 = (uint32_t)0xA2EFB0A5 ^ (x0 & (uint32_t)0xA320C959);
+ y27 = (uint32_t)0xBC8F96A5 ^ (x0 & (uint32_t)0x6EA0AB4A);
+ y28 = (uint32_t)0xFAD176A5 ^ (x0 & (uint32_t)0x6953DDF8);
+ y29 = (uint32_t)0x665A14A3 ^ (x0 & (uint32_t)0xF74F3E2B);
+ y30 = (uint32_t)0xF2EFF0CC ^ (x0 & (uint32_t)0xF0306CAD);
+ /* y31 = (uint32_t)0x00000000 ^ (x0 & (uint32_t)0x00000000); */
+
+ y0 = y0 ^ (x1 & y1);
+ y1 = y2 ^ (x1 & y3);
+ y2 = y4 ^ (x1 & y5);
+ y3 = y6 ^ (x1 & y7);
+ y4 = y8 ^ (x1 & y9);
+ y5 = y10 ^ (x1 & y11);
+ y6 = y12 ^ (x1 & y13);
+ y7 = y14; /* was: y14 ^ (x1 & y15) */
+ y8 = y16 ^ (x1 & y17);
+ y9 = y18 ^ (x1 & y19);
+ y10 = y20 ^ (x1 & y21);
+ y11 = y22 ^ (x1 & y23);
+ y12 = y24 ^ (x1 & y25);
+ y13 = y26 ^ (x1 & y27);
+ y14 = y28 ^ (x1 & y29);
+ y15 = y30; /* was: y30 ^ (x1 & y31) */
+
+ y0 = y0 ^ (x2 & y1);
+ y1 = y2 ^ (x2 & y3);
+ y2 = y4 ^ (x2 & y5);
+ y3 = y6 ^ (x2 & y7);
+ y4 = y8 ^ (x2 & y9);
+ y5 = y10 ^ (x2 & y11);
+ y6 = y12 ^ (x2 & y13);
+ y7 = y14 ^ (x2 & y15);
+
+ y0 = y0 ^ (x3 & y1);
+ y1 = y2 ^ (x3 & y3);
+ y2 = y4 ^ (x3 & y5);
+ y3 = y6 ^ (x3 & y7);
+
+ y0 = y0 ^ (x4 & y1);
+ y1 = y2 ^ (x4 & y3);
+
+ y0 = y0 ^ (x5 & y1);
+
+ /*
+ * The P permutation:
+ * -- Each bit move is converted into a mask + left rotation.
+ * -- Rotations that use the same movement are coalesced together.
+ * -- Left and right shifts are used as alternatives to a rotation
+ * where appropriate (this will help architectures that do not have
+ * a rotation opcode).
+ */
+ z0 = (y0 & (uint32_t)0x00000004) << 3;
+ z0 |= (y0 & (uint32_t)0x00004000) << 4;
+ z0 |= rotl(y0 & 0x12020120, 5);
+ z0 |= (y0 & (uint32_t)0x00100000) << 6;
+ z0 |= (y0 & (uint32_t)0x00008000) << 9;
+ z0 |= (y0 & (uint32_t)0x04000000) >> 22;
+ z0 |= (y0 & (uint32_t)0x00000001) << 11;
+ z0 |= rotl(y0 & 0x20000200, 12);
+ z0 |= (y0 & (uint32_t)0x00200000) >> 19;
+ z0 |= (y0 & (uint32_t)0x00000040) << 14;
+ z0 |= (y0 & (uint32_t)0x00010000) << 15;
+ z0 |= (y0 & (uint32_t)0x00000002) << 16;
+ z0 |= rotl(y0 & 0x40801800, 17);
+ z0 |= (y0 & (uint32_t)0x00080000) >> 13;
+ z0 |= (y0 & (uint32_t)0x00000010) << 21;
+ z0 |= (y0 & (uint32_t)0x01000000) >> 10;
+ z0 |= rotl(y0 & 0x88000008, 24);
+ z0 |= (y0 & (uint32_t)0x00000480) >> 7;
+ z0 |= (y0 & (uint32_t)0x00442000) >> 6;
+ return z0;
+}
+
+/*
+ * Process one block through 16 successive rounds, omitting the swap
+ * in the final round.
+ */
+static void
+process_block_unit(uint32_t *pl, uint32_t *pr, const uint32_t *sk_exp)
+{
+ int i;
+ uint32_t l, r;
+
+ l = *pl;
+ r = *pr;
+ for (i = 0; i < 16; i ++) {
+ uint32_t t;
+
+ t = l ^ Fconf(r, sk_exp);
+ l = r;
+ r = t;
+ sk_exp += 6;
+ }
+ *pl = r;
+ *pr = l;
+}
+
+/* see inner.h */
+void
+br_des_ct_process_block(unsigned num_rounds,
+ const uint32_t *sk_exp, void *block)
+{
+ unsigned char *buf;
+ uint32_t l, r;
+
+ buf = block;
+ l = br_dec32be(buf);
+ r = br_dec32be(buf + 4);
+ br_des_do_IP(&l, &r);
+ while (num_rounds -- > 0) {
+ process_block_unit(&l, &r, sk_exp);
+ sk_exp += 96;
+ }
+ br_des_do_invIP(&l, &r);
+ br_enc32be(buf, l);
+ br_enc32be(buf + 4, r);
+}
+
+/* see inner.h */
+void
+br_des_ct_skey_expand(uint32_t *sk_exp,
+ unsigned num_rounds, const uint32_t *skey)
+{
+ num_rounds <<= 4;
+ while (num_rounds -- > 0) {
+ uint32_t v, w0, w1, w2, w3;
+
+ v = *skey ++;
+ w0 = v & 0x11111111;
+ w1 = (v >> 1) & 0x11111111;
+ w2 = (v >> 2) & 0x11111111;
+ w3 = (v >> 3) & 0x11111111;
+ *sk_exp ++ = (w0 << 4) - w0;
+ *sk_exp ++ = (w1 << 4) - w1;
+ *sk_exp ++ = (w2 << 4) - w2;
+ *sk_exp ++ = (w3 << 4) - w3;
+ v = *skey ++;
+ w0 = v & 0x11111111;
+ w1 = (v >> 1) & 0x11111111;
+ *sk_exp ++ = (w0 << 4) - w0;
+ *sk_exp ++ = (w1 << 4) - w1;
+ }
+}