aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/BearSSL/src/symcipher/des_ct.c
blob: 581c0ab294557614efeac6004a216aa082b23010 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*
 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining 
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "inner.h"

/*
 * During key schedule, we need to apply bit extraction PC-2 then permute
 * things into our bitslice representation. PC-2 extracts 48 bits out
 * of two 28-bit words (kl and kr), and we store these bits into two
 * 32-bit words sk0 and sk1.
 *
 *  -- bit 16+x of sk0 comes from bit QL0[x] of kl
 *  -- bit x of sk0 comes from bit QR0[x] of kr
 *  -- bit 16+x of sk1 comes from bit QL1[x] of kl
 *  -- bit x of sk1 comes from bit QR1[x] of kr
 */

static const unsigned char QL0[] = {
	17,  4, 27, 23, 13, 22,  7, 18,
	16, 24,  2, 20,  1,  8, 15, 26
};

static const unsigned char QR0[] = {
	25, 19,  9,  1,  5, 11, 23,  8,
	17,  0, 22,  3,  6, 20, 27, 24
};

static const unsigned char QL1[] = {
	28, 28, 14, 11, 28, 28, 25,  0,
	28, 28,  5,  9, 28, 28, 12, 21
};

static const unsigned char QR1[] = {
	28, 28, 15,  4, 28, 28, 26, 16,
	28, 28, 12,  7, 28, 28, 10, 14
};

/*
 * 32-bit rotation. The C compiler is supposed to recognize it as a
 * rotation and use the local architecture rotation opcode (if available).
 */
static inline uint32_t
rotl(uint32_t x, int n)
{
	return (x << n) | (x >> (32 - n));
}

/*
 * Compute key schedule for 8 key bytes (produces 32 subkey words).
 */
static void
keysched_unit(uint32_t *skey, const void *key)
{
	int i;

	br_des_keysched_unit(skey, key);

	/*
	 * Apply PC-2 + bitslicing.
	 */
	for (i = 0; i < 16; i ++) {
		uint32_t kl, kr, sk0, sk1;
		int j;

		kl = skey[(i << 1) + 0];
		kr = skey[(i << 1) + 1];
		sk0 = 0;
		sk1 = 0;
		for (j = 0; j < 16; j ++) {
			sk0 <<= 1;
			sk1 <<= 1;
			sk0 |= ((kl >> QL0[j]) & (uint32_t)1) << 16;
			sk0 |= (kr >> QR0[j]) & (uint32_t)1;
			sk1 |= ((kl >> QL1[j]) & (uint32_t)1) << 16;
			sk1 |= (kr >> QR1[j]) & (uint32_t)1;
		}

		skey[(i << 1) + 0] = sk0;
		skey[(i << 1) + 1] = sk1;
	}

#if 0
		/*
		 * Speed-optimized version for PC-2 + bitslicing.
		 * (Unused. Kept for reference only.)
		 */
		sk0 = kl & (uint32_t)0x00100000;
		sk0 |= (kl & (uint32_t)0x08008000) << 2;
		sk0 |= (kl & (uint32_t)0x00400000) << 4;
		sk0 |= (kl & (uint32_t)0x00800000) << 5;
		sk0 |= (kl & (uint32_t)0x00040000) << 6;
		sk0 |= (kl & (uint32_t)0x00010000) << 7;
		sk0 |= (kl & (uint32_t)0x00000100) << 10;
		sk0 |= (kl & (uint32_t)0x00022000) << 14;
		sk0 |= (kl & (uint32_t)0x00000082) << 18;
		sk0 |= (kl & (uint32_t)0x00000004) << 19;
		sk0 |= (kl & (uint32_t)0x04000000) >> 10;
		sk0 |= (kl & (uint32_t)0x00000010) << 26;
		sk0 |= (kl & (uint32_t)0x01000000) >> 2;

		sk0 |= kr & (uint32_t)0x00000100;
		sk0 |= (kr & (uint32_t)0x00000008) << 1;
		sk0 |= (kr & (uint32_t)0x00000200) << 4;
		sk0 |= rotl(kr & (uint32_t)0x08000021, 6);
		sk0 |= (kr & (uint32_t)0x01000000) >> 24;
		sk0 |= (kr & (uint32_t)0x00000002) << 11;
		sk0 |= (kr & (uint32_t)0x00100000) >> 18;
		sk0 |= (kr & (uint32_t)0x00400000) >> 17;
		sk0 |= (kr & (uint32_t)0x00800000) >> 14;
		sk0 |= (kr & (uint32_t)0x02020000) >> 10;
		sk0 |= (kr & (uint32_t)0x00080000) >> 5;
		sk0 |= (kr & (uint32_t)0x00000040) >> 3;
		sk0 |= (kr & (uint32_t)0x00000800) >> 1;

		sk1 = kl & (uint32_t)0x02000000;
		sk1 |= (kl & (uint32_t)0x00001000) << 5;
		sk1 |= (kl & (uint32_t)0x00000200) << 11;
		sk1 |= (kl & (uint32_t)0x00004000) << 15;
		sk1 |= (kl & (uint32_t)0x00000020) << 16;
		sk1 |= (kl & (uint32_t)0x00000800) << 17;
		sk1 |= (kl & (uint32_t)0x00000001) << 24;
		sk1 |= (kl & (uint32_t)0x00200000) >> 5;

		sk1 |= (kr & (uint32_t)0x00000010) << 8;
		sk1 |= (kr & (uint32_t)0x04000000) >> 17;
		sk1 |= (kr & (uint32_t)0x00004000) >> 14;
		sk1 |= (kr & (uint32_t)0x00000400) >> 9;
		sk1 |= (kr & (uint32_t)0x00010000) >> 8;
		sk1 |= (kr & (uint32_t)0x00001000) >> 7;
		sk1 |= (kr & (uint32_t)0x00000080) >> 3;
		sk1 |= (kr & (uint32_t)0x00008000) >> 2;
#endif
}

/* see inner.h */
unsigned
br_des_ct_keysched(uint32_t *skey, const void *key, size_t key_len)
{
	switch (key_len) {
	case 8:
		keysched_unit(skey, key);
		return 1;
	case 16:
		keysched_unit(skey, key);
		keysched_unit(skey + 32, (const unsigned char *)key + 8);
		br_des_rev_skey(skey + 32);
		memcpy(skey + 64, skey, 32 * sizeof *skey);
		return 3;
	default:
		keysched_unit(skey, key);
		keysched_unit(skey + 32, (const unsigned char *)key + 8);
		br_des_rev_skey(skey + 32);
		keysched_unit(skey + 64, (const unsigned char *)key + 16);
		return 3;
	}
}

/*
 * DES confusion function. This function performs expansion E (32 to
 * 48 bits), XOR with subkey, S-boxes, and permutation P.
 */
static inline uint32_t
Fconf(uint32_t r0, const uint32_t *sk)
{
	/*
	 * Each 6->4 S-box is virtually turned into four 6->1 boxes; we
	 * thus end up with 32 boxes that we call "T-boxes" here. We will
	 * evaluate them with bitslice code.
	 *
	 * Each T-box is a circuit of multiplexers (sort of) and thus
	 * takes 70 inputs: the 6 actual T-box inputs, and 64 constants
	 * that describe the T-box output for all combinations of the
	 * 6 inputs. With this model, all T-boxes are identical (with
	 * distinct inputs) and thus can be executed in parallel with
	 * bitslice code.
	 *
	 * T-boxes are numbered from 0 to 31, in least-to-most
	 * significant order. Thus, S-box S1 corresponds to T-boxes 31,
	 * 30, 29 and 28, in that order. T-box 'n' is computed with the
	 * bits at rank 'n' in the 32-bit words.
	 *
	 * Words x0 to x5 contain the T-box inputs 0 to 5.
	 */
	uint32_t x0, x1, x2, x3, x4, x5, z0;
	uint32_t y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
	uint32_t y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
	uint32_t y20, y21, y22, y23, y24, y25, y26, y27, y28, y29;
	uint32_t y30;

	/*
	 * Spread input bits over the 6 input words x*.
	 */
	x1 = r0 & (uint32_t)0x11111111;
	x2 = (r0 >> 1) & (uint32_t)0x11111111;
	x3 = (r0 >> 2) & (uint32_t)0x11111111;
	x4 = (r0 >> 3) & (uint32_t)0x11111111;
	x1 = (x1 << 4) - x1;
	x2 = (x2 << 4) - x2;
	x3 = (x3 << 4) - x3;
	x4 = (x4 << 4) - x4;
	x0 = (x4 << 4) | (x4 >> 28);
	x5 = (x1 >> 4) | (x1 << 28);

	/*
	 * XOR with the subkey for this round.
	 */
	x0 ^= sk[0];
	x1 ^= sk[1];
	x2 ^= sk[2];
	x3 ^= sk[3];
	x4 ^= sk[4];
	x5 ^= sk[5];

	/*
	 * The T-boxes are done in parallel, since they all use a
	 * "tree of multiplexer". We use "fake multiplexers":
	 *
	 *   y = a ^ (x & b)
	 *
	 * computes y as either 'a' (if x == 0) or 'a ^ b' (if x == 1).
	 */
	y0 = (uint32_t)0xEFA72C4D ^ (x0 & (uint32_t)0xEC7AC69C);
	y1 = (uint32_t)0xAEAAEDFF ^ (x0 & (uint32_t)0x500FB821);
	y2 = (uint32_t)0x37396665 ^ (x0 & (uint32_t)0x40EFA809);
	y3 = (uint32_t)0x68D7B833 ^ (x0 & (uint32_t)0xA5EC0B28);
	y4 = (uint32_t)0xC9C755BB ^ (x0 & (uint32_t)0x252CF820);
	y5 = (uint32_t)0x73FC3606 ^ (x0 & (uint32_t)0x40205801);
	y6 = (uint32_t)0xA2A0A918 ^ (x0 & (uint32_t)0xE220F929);
	y7 = (uint32_t)0x8222BD90 ^ (x0 & (uint32_t)0x44A3F9E1);
	y8 = (uint32_t)0xD6B6AC77 ^ (x0 & (uint32_t)0x794F104A);
	y9 = (uint32_t)0x3069300C ^ (x0 & (uint32_t)0x026F320B);
	y10 = (uint32_t)0x6CE0D5CC ^ (x0 & (uint32_t)0x7640B01A);
	y11 = (uint32_t)0x59A9A22D ^ (x0 & (uint32_t)0x238F1572);
	y12 = (uint32_t)0xAC6D0BD4 ^ (x0 & (uint32_t)0x7A63C083);
	y13 = (uint32_t)0x21C83200 ^ (x0 & (uint32_t)0x11CCA000);
	y14 = (uint32_t)0xA0E62188 ^ (x0 & (uint32_t)0x202F69AA);
	/* y15 = (uint32_t)0x00000000 ^ (x0 & (uint32_t)0x00000000); */
	y16 = (uint32_t)0xAF7D655A ^ (x0 & (uint32_t)0x51B33BE9);
	y17 = (uint32_t)0xF0168AA3 ^ (x0 & (uint32_t)0x3B0FE8AE);
	y18 = (uint32_t)0x90AA30C6 ^ (x0 & (uint32_t)0x90BF8816);
	y19 = (uint32_t)0x5AB2750A ^ (x0 & (uint32_t)0x09E34F9B);
	y20 = (uint32_t)0x5391BE65 ^ (x0 & (uint32_t)0x0103BE88);
	y21 = (uint32_t)0x93372BAF ^ (x0 & (uint32_t)0x49AC8E25);
	y22 = (uint32_t)0xF288210C ^ (x0 & (uint32_t)0x922C313D);
	y23 = (uint32_t)0x920AF5C0 ^ (x0 & (uint32_t)0x70EF31B0);
	y24 = (uint32_t)0x63D312C0 ^ (x0 & (uint32_t)0x6A707100);
	y25 = (uint32_t)0x537B3006 ^ (x0 & (uint32_t)0xB97C9011);
	y26 = (uint32_t)0xA2EFB0A5 ^ (x0 & (uint32_t)0xA320C959);
	y27 = (uint32_t)0xBC8F96A5 ^ (x0 & (uint32_t)0x6EA0AB4A);
	y28 = (uint32_t)0xFAD176A5 ^ (x0 & (uint32_t)0x6953DDF8);
	y29 = (uint32_t)0x665A14A3 ^ (x0 & (uint32_t)0xF74F3E2B);
	y30 = (uint32_t)0xF2EFF0CC ^ (x0 & (uint32_t)0xF0306CAD);
	/* y31 = (uint32_t)0x00000000 ^ (x0 & (uint32_t)0x00000000); */

	y0 = y0 ^ (x1 & y1);
	y1 = y2 ^ (x1 & y3);
	y2 = y4 ^ (x1 & y5);
	y3 = y6 ^ (x1 & y7);
	y4 = y8 ^ (x1 & y9);
	y5 = y10 ^ (x1 & y11);
	y6 = y12 ^ (x1 & y13);
	y7 = y14; /* was: y14 ^ (x1 & y15) */
	y8 = y16 ^ (x1 & y17);
	y9 = y18 ^ (x1 & y19);
	y10 = y20 ^ (x1 & y21);
	y11 = y22 ^ (x1 & y23);
	y12 = y24 ^ (x1 & y25);
	y13 = y26 ^ (x1 & y27);
	y14 = y28 ^ (x1 & y29);
	y15 = y30; /* was: y30 ^ (x1 & y31) */

	y0 = y0 ^ (x2 & y1);
	y1 = y2 ^ (x2 & y3);
	y2 = y4 ^ (x2 & y5);
	y3 = y6 ^ (x2 & y7);
	y4 = y8 ^ (x2 & y9);
	y5 = y10 ^ (x2 & y11);
	y6 = y12 ^ (x2 & y13);
	y7 = y14 ^ (x2 & y15);

	y0 = y0 ^ (x3 & y1);
	y1 = y2 ^ (x3 & y3);
	y2 = y4 ^ (x3 & y5);
	y3 = y6 ^ (x3 & y7);

	y0 = y0 ^ (x4 & y1);
	y1 = y2 ^ (x4 & y3);

	y0 = y0 ^ (x5 & y1);

	/*
	 * The P permutation:
	 * -- Each bit move is converted into a mask + left rotation.
	 * -- Rotations that use the same movement are coalesced together.
	 * -- Left and right shifts are used as alternatives to a rotation
	 * where appropriate (this will help architectures that do not have
	 * a rotation opcode).
	 */
	z0 = (y0 & (uint32_t)0x00000004) << 3;
	z0 |= (y0 & (uint32_t)0x00004000) << 4;
	z0 |= rotl(y0 & 0x12020120, 5);
	z0 |= (y0 & (uint32_t)0x00100000) << 6;
	z0 |= (y0 & (uint32_t)0x00008000) << 9;
	z0 |= (y0 & (uint32_t)0x04000000) >> 22;
	z0 |= (y0 & (uint32_t)0x00000001) << 11;
	z0 |= rotl(y0 & 0x20000200, 12);
	z0 |= (y0 & (uint32_t)0x00200000) >> 19;
	z0 |= (y0 & (uint32_t)0x00000040) << 14;
	z0 |= (y0 & (uint32_t)0x00010000) << 15;
	z0 |= (y0 & (uint32_t)0x00000002) << 16;
	z0 |= rotl(y0 & 0x40801800, 17);
	z0 |= (y0 & (uint32_t)0x00080000) >> 13;
	z0 |= (y0 & (uint32_t)0x00000010) << 21;
	z0 |= (y0 & (uint32_t)0x01000000) >> 10;
	z0 |= rotl(y0 & 0x88000008, 24);
	z0 |= (y0 & (uint32_t)0x00000480) >> 7;
	z0 |= (y0 & (uint32_t)0x00442000) >> 6;
	return z0;
}

/*
 * Process one block through 16 successive rounds, omitting the swap
 * in the final round.
 */
static void
process_block_unit(uint32_t *pl, uint32_t *pr, const uint32_t *sk_exp)
{
	int i;
	uint32_t l, r;

	l = *pl;
	r = *pr;
	for (i = 0; i < 16; i ++) {
		uint32_t t;

		t = l ^ Fconf(r, sk_exp);
		l = r;
		r = t;
		sk_exp += 6;
	}
	*pl = r;
	*pr = l;
}

/* see inner.h */
void
br_des_ct_process_block(unsigned num_rounds,
	const uint32_t *sk_exp, void *block)
{
	unsigned char *buf;
	uint32_t l, r;

	buf = block;
	l = br_dec32be(buf);
	r = br_dec32be(buf + 4);
	br_des_do_IP(&l, &r);
	while (num_rounds -- > 0) {
		process_block_unit(&l, &r, sk_exp);
		sk_exp += 96;
	}
	br_des_do_invIP(&l, &r);
	br_enc32be(buf, l);
	br_enc32be(buf + 4, r);
}

/* see inner.h */
void
br_des_ct_skey_expand(uint32_t *sk_exp,
	unsigned num_rounds, const uint32_t *skey)
{
	num_rounds <<= 4;
	while (num_rounds -- > 0) {
		uint32_t v, w0, w1, w2, w3;

		v = *skey ++;
		w0 = v & 0x11111111;
		w1 = (v >> 1) & 0x11111111;
		w2 = (v >> 2) & 0x11111111;
		w3 = (v >> 3) & 0x11111111;
		*sk_exp ++ = (w0 << 4) - w0;
		*sk_exp ++ = (w1 << 4) - w1;
		*sk_exp ++ = (w2 << 4) - w2;
		*sk_exp ++ = (w3 << 4) - w3;
		v = *skey ++;
		w0 = v & 0x11111111;
		w1 = (v >> 1) & 0x11111111;
		*sk_exp ++ = (w0 << 4) - w0;
		*sk_exp ++ = (w1 << 4) - w1;
	}
}