aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/intopt/cfg1.c
blob: 80a2e8346492697183fc3577df2fb5ae7572ff53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
/* cfg1.c (conflict graph) */

/***********************************************************************
*  This code is part of GLPK (GNU Linear Programming Kit).
*
*  Copyright (C) 2012-2018 Andrew Makhorin, Department for Applied
*  Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
*  reserved. E-mail: <mao@gnu.org>.
*
*  GLPK is free software: you can redistribute it and/or modify it
*  under the terms of the GNU General Public License as published by
*  the Free Software Foundation, either version 3 of the License, or
*  (at your option) any later version.
*
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
*  License for more details.
*
*  You should have received a copy of the GNU General Public License
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/

#include "cfg.h"
#include "env.h"
#include "prob.h"
#include "wclique.h"
#include "wclique1.h"

/***********************************************************************
*  cfg_build_graph - build conflict graph
*
*  This routine builds the conflict graph. It analyzes the specified
*  problem object to discover original and implied packing inequalities
*  and adds corresponding cliques to the conflict graph.
*
*  Packing inequality has the form:
*
*      sum z[j] <= 1,                                                (1)
*     j in J
*
*  where z[j] = x[j] or z[j] = 1 - x[j], x[j] is an original binary
*  variable. Every packing inequality (1) is equivalent to a set of
*  edge inequalities:
*
*     z[i] + z[j] <= 1   for all i, j in J, i != j,                  (2)
*
*  and since every edge inequality (2) defines an edge in the conflict
*  graph, corresponding packing inequality (1) defines a clique.
*
*  To discover packing inequalities the routine analyzes constraints
*  of the specified MIP. To simplify the analysis each constraint is
*  analyzed separately. The analysis is performed as follows.
*
*  Let some original constraint be the following:
*
*     L <= sum a[j] x[j] <= U.                                       (3)
*
*  To analyze it the routine analyzes two constraints of "not greater
*  than" type:
*
*     sum (-a[j]) x[j] <= -L,                                        (4)
*
*     sum (+a[j]) x[j] <= +U,                                        (5)
*
*  which are relaxations of the original constraint (3). (If, however,
*  L = -oo, or U = +oo, corresponding constraint being redundant is not
*  analyzed.)
*
*  Let a constraint of "not greater than" type be the following:
*
*      sum  a[j] x[j] + sum  a[j] x[j] <= b,                         (6)
*     j in J           j in J'
*
*  where J is a subset of binary variables, J' is a subset of other
*  (continues and non-binary integer) variables. The constraint (6) is
*  is relaxed as follows, to eliminate non-binary variables:
*
*      sum  a[j] x[j] <= b -  sum  a[j] x[j] <= b',                  (7)
*     j in J                 j in J'
*
*     b' = sup(b -  sum  a[j] x[j]) =
*                  j in J'
*
*        = b - inf(sum a[j] x[j]) =
*
*        = b - sum inf(a[j] x[j]) =                                  (8)
*
*        = b -  sum  a[j] inf(x[j]) -  sum  a[j] sup(x[j]) =
*              a[j]>0                 a[j]<0
*
*        = b -  sum  a[j] l[j] -  sum  a[j] u[j],
*              a[j]>0            a[j]<0
*
*  where l[j] and u[j] are, resp., lower and upper bounds of x[j].
*
*  Then the routine transforms the relaxed constraint containing only
*  binary variables:
*
*     sum a[j] x[j] <= b                                             (9)
*
*  to an equivalent 0-1 knapsack constraint as follows:
*
*     sum  a[j] x[j] + sum  a[j] x[j] <= b   ==>
*    a[j]>0           a[j]<0
*
*     sum  a[j] x[j] + sum  a[j] (1 - x[j]) <= b   ==>
*    a[j]>0           a[j]<0                                        (10)
*
*     sum  (+a[j]) x[j] + sum  (-a[j]) x[j] <= b + sum  (-a[j])   ==>
*    a[j]>0              a[j]<0                   a[j]<0
*
*     sum a'[j] z[j] <= b',
*
*  where a'[j] = |a[j]| > 0, and
*
*            ( x[j]      if a[j] > 0
*     z[j] = <
*            ( 1 - x[j]  if a[j] < 0
*
*  is a binary variable, which is either original binary variable x[j]
*  or its complement.
*
*  Finally, the routine analyzes the resultant 0-1 knapsack inequality:
*
*       sum a[j] z[j] <= b,                                         (11)
*     j in J
*
*  where all a[j] are positive, to discover clique inequalities (1),
*  which are valid for (11) and therefore valid for (3). (It is assumed
*  that the original MIP has been preprocessed, so it is not checked,
*  for example, that b > 0 or that a[j] <= b.)
*
*  In principle, to discover any edge inequalities valid for (11) it
*  is sufficient to check whether a[i] + a[j] > b for all i, j in J,
*  i < j. However, this way requires O(|J|^2) checks, so the routine
*  analyses (11) in the following way, which is much more efficient in
*  many practical cases.
*
*  1. Let a[p] and a[q] be two minimal coefficients:
*
*     a[p] = min a[j],                                              (12)
*
*     a[q] = min a[j], j != p,                                      (13)
*
*  such that
*
*     a[p] + a[q] > b.                                              (14)
*
*  This means that a[i] + a[j] > b for any i, j in J, i != j, so
*
*     z[i] + z[j] <= 1                                              (15)
*
*  are valid for (11) for any i, j in J, i != j. This case means that
*  J define a clique in the conflict graph.
*
*  2. Otherwise, let a[p] and [q] be two maximal coefficients:
*
*     a[p] = max a[j],                                              (16)
*
*     a[q] = max a[j], j != p,                                      (17)
*
*  such that
*
*     a[p] + a[q] <= b.                                             (18)
*
*  This means that a[i] + a[j] <= b for any i, j in J, i != j, so in
*  this case no valid edge inequalities for (11) exist.
*
*  3. Otherwise, let all a[j] be ordered by descending their values:
*
*     a[1] >= a[2] >= ... >= a[p-1] >= a[p] >= a[p+1] >= ...        (19)
*
*  where p is such that
*
*     a[p-1] + a[p] >  b,                                           (20)
*
*     a[p] + a[p+1] <= b.                                           (21)
*
*  (May note that due to the former two cases in this case we always
*  have 2 <= p <= |J|-1.)
*
*  Since a[p] and a[p-1] are two minimal coefficients in the set
*  J' = {1, ..., p}, J' define a clique in the conflict graph for the
*  same reason as in the first case. Similarly, since a[p] and a[p+1]
*  are two maximal coefficients in the set J" = {p, ..., |J|}, no edge
*  inequalities exist for all i, j in J" for the same reason as in the
*  second case. Thus, to discover other edge inequalities (15) valid
*  for (11), the routine checks if a[i] + a[j] > b for all i in J',
*  j in J", i != j. */

#define is_binary(j) \
      (P->col[j]->kind == GLP_IV && P->col[j]->type == GLP_DB && \
      P->col[j]->lb == 0.0 && P->col[j]->ub == 1.0)
/* check if x[j] is binary variable */

struct term { int ind; double val; };
/* term a[j] * z[j] used to sort a[j]'s */

static int CDECL fcmp(const void *e1, const void *e2)
{     /* auxiliary routine called from qsort */
      const struct term *t1 = e1, *t2 = e2;
      if (t1->val > t2->val)
         return -1;
      else if (t1->val < t2->val)
         return +1;
      else
         return 0;
}

static void analyze_ineq(glp_prob *P, CFG *G, int len, int ind[],
      double val[], double rhs, struct term t[])
{     /* analyze inequality constraint (6) */
      /* P is the original MIP
       * G is the conflict graph to be built
       * len is the number of terms in the constraint
       * ind[1], ..., ind[len] are indices of variables x[j]
       * val[1], ..., val[len] are constraint coefficients a[j]
       * rhs is the right-hand side b
       * t[1+len] is a working array */
      int j, k, kk, p, q, type, new_len;
      /* eliminate non-binary variables; see (7) and (8) */
      new_len = 0;
      for (k = 1; k <= len; k++)
      {  /* get index of variable x[j] */
         j = ind[k];
         if (is_binary(j))
         {  /* x[j] remains in relaxed constraint */
            new_len++;
            ind[new_len] = j;
            val[new_len] = val[k];
         }
         else if (val[k] > 0.0)
         {  /* eliminate non-binary x[j] in case a[j] > 0 */
            /* b := b - a[j] * l[j]; see (8) */
            type = P->col[j]->type;
            if (type == GLP_FR || type == GLP_UP)
            {  /* x[j] has no lower bound */
               goto done;
            }
            rhs -= val[k] * P->col[j]->lb;
         }
         else /* val[j] < 0.0 */
         {  /* eliminate non-binary x[j] in case a[j] < 0 */
            /* b := b - a[j] * u[j]; see (8) */
            type = P->col[j]->type;
            if (type == GLP_FR || type == GLP_LO)
            {  /* x[j] has no upper bound */
               goto done;
            }
            rhs -= val[k] * P->col[j]->ub;
         }
      }
      len = new_len;
      /* now we have the constraint (9) */
      if (len <= 1)
      {  /* at least two terms are needed */
         goto done;
      }
      /* make all constraint coefficients positive; see (10) */
      for (k = 1; k <= len; k++)
      {  if (val[k] < 0.0)
         {  /* a[j] < 0; substitute x[j] = 1 - x'[j], where x'[j] is
             * a complement binary variable */
            ind[k] = -ind[k];
            val[k] = -val[k];
            rhs += val[k];
         }
      }
      /* now we have 0-1 knapsack inequality (11) */
      /* increase the right-hand side a bit to avoid false checks due
       * to rounding errors */
      rhs += 0.001 * (1.0 + fabs(rhs));
      /*** first case ***/
      /* find two minimal coefficients a[p] and a[q] */
      p = 0;
      for (k = 1; k <= len; k++)
      {  if (p == 0 || val[p] > val[k])
            p = k;
      }
      q = 0;
      for (k = 1; k <= len; k++)
      {  if (k != p && (q == 0 || val[q] > val[k]))
            q = k;
      }
      xassert(p != 0 && q != 0 && p != q);
      /* check condition (14) */
      if (val[p] + val[q] > rhs)
      {  /* all z[j] define a clique in the conflict graph */
         cfg_add_clique(G, len, ind);
         goto done;
      }
      /*** second case ***/
      /* find two maximal coefficients a[p] and a[q] */
      p = 0;
      for (k = 1; k <= len; k++)
      {  if (p == 0 || val[p] < val[k])
            p = k;
      }
      q = 0;
      for (k = 1; k <= len; k++)
      {  if (k != p && (q == 0 || val[q] < val[k]))
            q = k;
      }
      xassert(p != 0 && q != 0 && p != q);
      /* check condition (18) */
      if (val[p] + val[q] <= rhs)
      {  /* no valid edge inequalities exist */
         goto done;
      }
      /*** third case ***/
      xassert(len >= 3);
      /* sort terms in descending order of coefficient values */
      for (k = 1; k <= len; k++)
      {  t[k].ind = ind[k];
         t[k].val = val[k];
      }
      qsort(&t[1], len, sizeof(struct term), fcmp);
      for (k = 1; k <= len; k++)
      {  ind[k] = t[k].ind;
         val[k] = t[k].val;
      }
      /* now a[1] >= a[2] >= ... >= a[len-1] >= a[len] */
      /* note that a[1] + a[2] > b and a[len-1] + a[len] <= b due two
       * the former two cases */
      xassert(val[1] + val[2] > rhs);
      xassert(val[len-1] + val[len] <= rhs);
      /* find p according to conditions (20) and (21) */
      for (p = 2; p < len; p++)
      {  if (val[p] + val[p+1] <= rhs)
            break;
      }
      xassert(p < len);
      /* z[1], ..., z[p] define a clique in the conflict graph */
      cfg_add_clique(G, p, ind);
      /* discover other edge inequalities */
      for (k = 1; k <= p; k++)
      {  for (kk = p; kk <= len; kk++)
         {  if (k != kk && val[k] + val[kk] > rhs)
            {  int iii[1+2];
               iii[1] = ind[k];
               iii[2] = ind[kk];
               cfg_add_clique(G, 2, iii);
            }
         }
      }
done: return;
}

CFG *cfg_build_graph(void *P_)
{     glp_prob *P = P_;
      int m = P->m;
      int n = P->n;
      CFG *G;
      int i, k, type, len, *ind;
      double *val;
      struct term *t;
      /* create the conflict graph (number of its vertices cannot be
       * greater than double number of binary variables) */
      G = cfg_create_graph(n, 2 * glp_get_num_bin(P));
      /* allocate working arrays */
      ind = talloc(1+n, int);
      val = talloc(1+n, double);
      t = talloc(1+n, struct term);
      /* analyze constraints to discover edge inequalities */
      for (i = 1; i <= m; i++)
      {  type = P->row[i]->type;
         if (type == GLP_LO || type == GLP_DB || type == GLP_FX)
         {  /* i-th row has lower bound */
            /* analyze inequality sum (-a[j]) * x[j] <= -lb */
            len = glp_get_mat_row(P, i, ind, val);
            for (k = 1; k <= len; k++)
               val[k] = -val[k];
            analyze_ineq(P, G, len, ind, val, -P->row[i]->lb, t);
         }
         if (type == GLP_UP || type == GLP_DB || type == GLP_FX)
         {  /* i-th row has upper bound */
            /* analyze inequality sum (+a[j]) * x[j] <= +ub */
            len = glp_get_mat_row(P, i, ind, val);
            analyze_ineq(P, G, len, ind, val, +P->row[i]->ub, t);
         }
      }
      /* free working arrays */
      tfree(ind);
      tfree(val);
      tfree(t);
      return G;
}

/***********************************************************************
*  cfg_find_clique - find maximum weight clique in conflict graph
*
*  This routine finds a maximum weight clique in the conflict graph
*  G = (V, E), where the weight of vertex v in V is the value of
*  corresponding binary variable z (which is either an original binary
*  variable or its complement) in the optimal solution to LP relaxation
*  provided in the problem object. The goal is to find a clique in G,
*  whose weight is greater than 1, in which case corresponding packing
*  inequality is violated at the optimal point.
*
*  On exit the routine stores vertex indices of the conflict graph
*  included in the clique found to locations ind[1], ..., ind[len], and
*  returns len, which is the clique size. The clique weight is stored
*  in location pointed to by the parameter sum. If no clique has been
*  found, the routine returns 0.
*
*  Since the conflict graph may have a big number of vertices and be
*  quite dense, the routine uses an induced subgraph G' = (V', E'),
*  which is constructed as follows:
*
*  1. If the weight of some vertex v in V is zero (close to zero), it
*     is not included in V'. Obviously, including in a clique
*     zero-weight vertices does not change its weight, so if in G there
*     exist a clique of a non-zero weight, in G' exists a clique of the
*     same weight. This point is extremely important, because dropping
*     out zero-weight vertices can be done without retrieving lists of
*     adjacent vertices whose size may be very large.
*
*  2. Cumulative weight of vertex v in V is the sum of the weight of v
*     and weights of all vertices in V adjacent to v. Obviously, if
*     a clique includes a vertex v, the clique weight cannot be greater
*     than the cumulative weight of v. Since we are interested only in
*     cliques whose weight is greater than 1, vertices of V, whose
*     cumulative weight is not greater than 1, are not included in V'.
*
*  May note that in many practical cases the size of the induced
*  subgraph G' is much less than the size of the original conflict
*  graph G due to many binary variables, whose optimal values are zero
*  or close to zero. For example, it may happen that |V| = 100,000 and
*  |E| = 1e9 while |V'| = 50 and |E'| = 1000. */

struct csa
{     /* common storage area */
      glp_prob *P;
      /* original MIP */
      CFG *G;
      /* original conflict graph G = (V, E), |V| = nv */
      int *ind; /* int ind[1+nv]; */
      /* working array */
      /*--------------------------------------------------------------*/
      /* induced subgraph G' = (V', E') of original conflict graph */
      int nn;
      /* number of vertices in V' */
      int *vtoi; /* int vtoi[1+nv]; */
      /* vtoi[v] = i, 1 <= v <= nv, means that vertex v in V is vertex
       * i in V'; vtoi[v] = 0 means that vertex v is not included in
       * the subgraph */
      int *itov; /* int itov[1+nv]; */
      /* itov[i] = v, 1 <= i <= nn, means that vertex i in V' is vertex
       * v in V */
      double *wgt; /* double wgt[1+nv]; */
      /* wgt[i], 1 <= i <= nn, is a weight of vertex i in V', which is
       * the value of corresponding binary variable in optimal solution
       * to LP relaxation */
};

static void build_subgraph(struct csa *csa)
{     /* build induced subgraph */
      glp_prob *P = csa->P;
      int n = P->n;
      CFG *G = csa->G;
      int *ind = csa->ind;
      int *pos = G->pos;
      int *neg = G->neg;
      int nv = G->nv;
      int *ref = G->ref;
      int *vtoi = csa->vtoi;
      int *itov = csa->itov;
      double *wgt = csa->wgt;
      int j, k, v, w, nn, len;
      double z, sum;
      /* initially induced subgraph is empty */
      nn = 0;
      /* walk thru vertices of original conflict graph */
      for (v = 1; v <= nv; v++)
      {  /* determine value of binary variable z[j] that corresponds to
          * vertex v */
         j = ref[v];
         xassert(1 <= j && j <= n);
         if (pos[j] == v)
         {  /* z[j] = x[j], where x[j] is original variable */
            z = P->col[j]->prim;
         }
         else if (neg[j] == v)
         {  /* z[j] = 1 - x[j], where x[j] is original variable */
            z = 1.0 - P->col[j]->prim;
         }
         else
            xassert(v != v);
         /* if z[j] is close to zero, do not include v in the induced
          * subgraph */
         if (z < 0.001)
         {  vtoi[v] = 0;
            continue;
         }
         /* calculate cumulative weight of vertex v */
         sum = z;
         /* walk thru all vertices adjacent to v */
         len = cfg_get_adjacent(G, v, ind);
         for (k = 1; k <= len; k++)
         {  /* there is an edge (v,w) in the conflict graph */
            w = ind[k];
            xassert(w != v);
            /* add value of z[j] that corresponds to vertex w */
            j = ref[w];
            xassert(1 <= j && j <= n);
            if (pos[j] == w)
               sum += P->col[j]->prim;
            else if (neg[j] == w)
               sum += 1.0 - P->col[j]->prim;
            else
               xassert(w != w);
         }
         /* cumulative weight of vertex v is an upper bound of weight
          * of any clique containing v; so if it not greater than 1, do
          * not include v in the induced subgraph */
         if (sum < 1.010)
         {  vtoi[v] = 0;
            continue;
         }
         /* include vertex v in the induced subgraph */
         nn++;
         vtoi[v] = nn;
         itov[nn] = v;
         wgt[nn] = z;
      }
      /* induced subgraph has been built */
      csa->nn = nn;
      return;
}

static int sub_adjacent(struct csa *csa, int i, int adj[])
{     /* retrieve vertices of induced subgraph adjacent to specified
       * vertex */
      CFG *G = csa->G;
      int nv = G->nv;
      int *ind = csa->ind;
      int nn = csa->nn;
      int *vtoi = csa->vtoi;
      int *itov = csa->itov;
      int j, k, v, w, len, len1;
      /* determine original vertex v corresponding to vertex i */
      xassert(1 <= i && i <= nn);
      v = itov[i];
      /* retrieve vertices adjacent to vertex v in original graph */
      len1 = cfg_get_adjacent(G, v, ind);
      /* keep only adjacent vertices which are in induced subgraph and
       * change their numbers appropriately */
      len = 0;
      for (k = 1; k <= len1; k++)
      {  /* there exists edge (v, w) in original graph */
         w = ind[k];
         xassert(1 <= w && w <= nv && w != v);
         j = vtoi[w];
         if (j != 0)
         {  /* vertex w is vertex j in induced subgraph */
            xassert(1 <= j && j <= nn && j != i);
            adj[++len] = j;
         }
      }
      return len;
}

static int find_clique(struct csa *csa, int c_ind[])
{     /* find maximum weight clique in induced subgraph with exact
       * Ostergard's algorithm */
      int nn = csa->nn;
      double *wgt = csa->wgt;
      int i, j, k, p, q, t, ne, nb, len, *iwt, *ind;
      unsigned char *a;
      xassert(nn >= 2);
      /* allocate working array */
      ind = talloc(1+nn, int);
      /* calculate the number of elements in lower triangle (without
       * diagonal) of adjacency matrix of induced subgraph */
      ne = (nn * (nn - 1)) / 2;
      /* calculate the number of bytes needed to store lower triangle
       * of adjacency matrix */
      nb = (ne + (CHAR_BIT - 1)) / CHAR_BIT;
      /* allocate lower triangle of adjacency matrix */
      a = talloc(nb, unsigned char);
      /* fill lower triangle of adjacency matrix */
      memset(a, 0, nb);
      for (p = 1; p <= nn; p++)
      {  /* retrieve vertices adjacent to vertex p */
         len = sub_adjacent(csa, p, ind);
         for (k = 1; k <= len; k++)
         {  /* there exists edge (p, q) in induced subgraph */
            q = ind[k];
            xassert(1 <= q && q <= nn && q != p);
            /* determine row and column indices of this edge in lower
             * triangle of adjacency matrix */
            if (p > q)
               i = p, j = q;
            else /* p < q */
               i = q, j = p;
            /* set bit a[i,j] to 1, i > j */
            t = ((i - 1) * (i - 2)) / 2 + (j - 1);
            a[t / CHAR_BIT] |=
               (unsigned char)(1 << ((CHAR_BIT - 1) - t % CHAR_BIT));
         }
      }
      /* scale vertex weights by 1000 and convert them to integers as
       * required by Ostergard's algorithm */
      iwt = ind;
      for (i = 1; i <= nn; i++)
      {  /* it is assumed that 0 <= wgt[i] <= 1 */
         t = (int)(1000.0 * wgt[i] + 0.5);
         if (t < 0)
            t = 0;
         else if (t > 1000)
            t = 1000;
         iwt[i] = t;
      }
      /* find maximum weight clique */
      len = wclique(nn, iwt, a, c_ind);
      /* free working arrays */
      tfree(ind);
      tfree(a);
      /* return clique size to calling routine */
      return len;
}

static int func(void *info, int i, int ind[])
{     /* auxiliary routine used by routine find_clique1 */
      struct csa *csa = info;
      xassert(1 <= i && i <= csa->nn);
      return sub_adjacent(csa, i, ind);
}

static int find_clique1(struct csa *csa, int c_ind[])
{     /* find maximum weight clique in induced subgraph with greedy
       * heuristic */
      int nn = csa->nn;
      double *wgt = csa->wgt;
      int len;
      xassert(nn >= 2);
      len = wclique1(nn, wgt, func, csa, c_ind);
      /* return clique size to calling routine */
      return len;
}

int cfg_find_clique(void *P, CFG *G, int ind[], double *sum_)
{     int nv = G->nv;
      struct csa csa;
      int i, k, len;
      double sum;
      /* initialize common storage area */
      csa.P = P;
      csa.G = G;
      csa.ind = talloc(1+nv, int);
      csa.nn = -1;
      csa.vtoi = talloc(1+nv, int);
      csa.itov = talloc(1+nv, int);
      csa.wgt = talloc(1+nv, double);
      /* build induced subgraph */
      build_subgraph(&csa);
#ifdef GLP_DEBUG
      xprintf("nn = %d\n", csa.nn);
#endif
      /* if subgraph has less than two vertices, do nothing */
      if (csa.nn < 2)
      {  len = 0;
         sum = 0.0;
         goto skip;
      }
      /* find maximum weight clique in induced subgraph */
#if 1 /* FIXME */
      if (csa.nn <= 50)
#endif
      {  /* induced subgraph is small; use exact algorithm */
         len = find_clique(&csa, ind);
      }
      else
      {  /* induced subgraph is large; use greedy heuristic */
         len = find_clique1(&csa, ind);
      }
      /* do not report clique, if it has less than two vertices */
      if (len < 2)
      {  len = 0;
         sum = 0.0;
         goto skip;
      }
      /* convert indices of clique vertices from induced subgraph to
       * original conflict graph and compute clique weight */
      sum = 0.0;
      for (k = 1; k <= len; k++)
      {  i = ind[k];
         xassert(1 <= i && i <= csa.nn);
         sum += csa.wgt[i];
         ind[k] = csa.itov[i];
      }
skip: /* free working arrays */
      tfree(csa.ind);
      tfree(csa.vtoi);
      tfree(csa.itov);
      tfree(csa.wgt);
      /* return to calling routine */
      *sum_ = sum;
      return len;
}

/* eof */