aboutsummaryrefslogtreecommitdiffstats
path: root/src/translation/Veriloggen.v
blob: c400617dd7aac4bae273a428c67a97263358075d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
(*
 * CoqUp: Verified high-level synthesis.
 * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

From Coq Require Import FSets.FMapPositive.

From coqup Require Import HTL Verilog Coquplib.

From compcert Require Errors Op AST Integers.

Definition node : Type := positive.
Definition reg : Type := positive.
Definition ident : Type := positive.

Inductive statetrans : Type :=
  | StateGoto (p : node)
  | StateCond (c : expr) (t f : node).

Record state: Type := mkstate {
  st_variables: PositiveMap.t (nat * expr);
  st_stm : PositiveMap.t stmnt;
  st_statetrans : PositiveMap.t statetrans;
}.

Definition init_state : state :=
  mkstate (PositiveMap.empty (nat * expr)) (PositiveMap.empty stmnt) (PositiveMap.empty statetrans).

Inductive res (A: Type) (S: Type): Type :=
  | Error: Errors.errmsg -> res A S
  | OK: A -> S -> res A S.

Arguments OK [A S].
Arguments Error [A S].

Definition mon (A: Type) : Type := res A state.

Definition ret {A: Type} (x: A) (s: state) : mon A := OK x s.

Definition bind {A B: Type} (f: mon A) (g: A -> mon B) : mon B :=
    match f with
    | Error msg => Error msg
    | OK a s => g a
    end.

Definition bind2 {A B C: Type} (f: mon (A * B)) (g: A -> B -> mon C) : mon C :=
  bind f (fun xy => g (fst xy) (snd xy)).

Definition bindS {A B: Type} (f: mon A) (g: A -> state -> mon B) : mon B :=
  match f with
  | Error msg => Error msg
  | OK a s => g a s
  end.

Notation "'do' X <- A ; B" := (bind A (fun X => B))
   (at level 200, X ident, A at level 100, B at level 200).
Notation "'do' ( X , Y ) <- A ; B" := (bindS A (fun X Y => B))
   (at level 200, X ident, Y ident, A at level 100, B at level 200).

Definition handle_error {A: Type} (f g: mon A) : mon A :=
  match f with
  | OK a s' => OK a s'
  | Error _ => g
  end.

Module PTree.
  Export Maps.PTree.

  Fixpoint xtraverse {A B : Type} (f : positive -> A -> state -> mon B)
           (m : t A) (s : state) (i : positive)
           {struct m} : mon (t B) :=
    match m with
    | Leaf => OK Leaf s
    | Node l o r =>
      let newo :=
          match o with
          | None => OK None s
          | Some x =>
            match f (prev i) x s with
            | Error err => Error err
            | OK val s' => OK (Some val) s'
            end
          end in
      match newo with
      | OK no s =>
        do (nl, s') <- xtraverse f l s (xO i);
        do (nr, s'') <- xtraverse f r s' (xI i);
        OK (Node nl no nr) s''
      | Error msg => Error msg
      end
    end.

  Definition traverse {A B : Type} (f : positive -> A -> state -> mon B) m :=
    xtraverse f m init_state xH.

  Definition traverse1 {A B : Type} (f : A -> state -> mon B) := traverse (fun _ => f).

End PTree.

Definition nonblock (dst : reg) (e : expr) := Vnonblock (Vvar dst) e.

Definition bop (op : binop) (r1 r2 : reg) : option expr :=
  Some (Vbinop op (Vvar r1) (Vvar r2)).

Definition boplit (op : binop) (r : reg) (l : Integers.int) : option expr :=
  Some (Vbinop op (Vvar r) (Vlit (intToValue l))).

Definition translate_comparison (c : Integers.comparison) (args : list reg) : option expr :=
  match c, args with
  | Integers.Ceq, r1::r2::nil => bop Veq r1 r2
  | Integers.Cne, r1::r2::nil => bop Vne r1 r2
  | Integers.Clt, r1::r2::nil => bop Vlt r1 r2
  | Integers.Cgt, r1::r2::nil => bop Vgt r1 r2
  | Integers.Cle, r1::r2::nil => bop Vle r1 r2
  | Integers.Cge, r1::r2::nil => bop Vge r1 r2
  | _, _ => None
  end.

Definition translate_condition (c : Op.condition) (args : list reg) : option expr :=
  match c, args with
  | Op.Ccomp c, _ => translate_comparison c args
  | Op.Ccompu c, _ => None
  | Op.Ccompimm c i, _ => None
  | Op.Ccompuimm c i, _ => None
  | Op.Cmaskzero n, _ => None
  | Op.Cmasknotzero n, _ => None
  | _, _ => None
  end.

(** Translate an instruction to a statement. *)
Definition translate_instr (op : Op.operation) (args : list reg) : option expr :=
  match op, args with
  | Op.Omove, r::nil => Some (Vvar r)
  | Op.Ointconst n, _ => Some (Vlit (intToValue n))
  | Op.Oneg, r::nil => Some (Vunop Vneg (Vvar r))
  | Op.Osub, r1::r2::nil => bop Vsub r1 r2
  | Op.Omul, r1::r2::nil => bop Vmul r1 r2
  | Op.Omulimm n, r::nil => boplit Vmul r n
  | Op.Omulhs, _ => None
  | Op.Omulhu, _ => None
  | Op.Odiv, r1::r2::nil => bop Vdiv r1 r2
  | Op.Odivu, r1::r2::nil => bop Vdivu r1 r2
  | Op.Omod, r1::r2::nil => bop Vmod r1 r2
  | Op.Omodu, r1::r2::nil => bop Vmodu r1 r2
  | Op.Oand, r1::r2::nil => bop Vand r1 r2
  | Op.Oandimm n, r::nil => boplit Vand r n
  | Op.Oor, r1::r2::nil => bop Vor r1 r2
  | Op.Oorimm n, r::nil => boplit Vor r n
  | Op.Oxor, r1::r2::nil => bop Vxor r1 r2
  | Op.Oxorimm n, r::nil => boplit Vxor r n
  | Op.Onot, r::nil => Some (Vunop Vnot (Vvar r))
  | Op.Oshl, r1::r2::nil => bop Vshl r1 r2
  | Op.Oshlimm n, r::nil => boplit Vshl r n
  | Op.Oshr, r1::r2::nil => bop Vshr r1 r2
  | Op.Oshrimm n, r::nil => boplit Vshr r n
  | Op.Oshrximm n, r::nil => None
  | Op.Oshru, r1::r2::nil => None
  | Op.Oshruimm n, r::nil => None
  | Op.Ororimm n, r::nil => None
  | Op.Oshldimm n, r::nil => None
  | Op.Ocmp c, _ => translate_condition c args
  | _, _ => None
  end.

Definition add_instr (n : node) (n' : node) (s : state) (st : stmnt) : mon node :=
  OK n' (mkstate s.(st_variables)
                 (PositiveMap.add n st s.(st_stm))
                 (PositiveMap.add n (StateGoto n') s.(st_statetrans))).

Definition option_err {A : Type} (str : string) (v : option A) (s : state) : mon A :=
  match v with
  | Some v' => OK v' s
  | _ => Error (Errors.msg str)
  end.

Definition transf_instr (n : node) (i : instruction) (s : state) : mon node :=
  match i with
  | Hnop n' =>
    add_instr n n' s Vskip
  | Hnonblock op args dst n' =>
    match translate_instr op args with
    | Some instr => add_instr n n' s (nonblock dst instr)
    | _ => Error (Errors.msg "Instruction is not implemented.")
    end
  | Hload _ _ _ _ _ => Error (Errors.msg "Loads are not implemented.")
  | Hstore _ _ _ _ _ => Error (Errors.msg "Stores are not implemented.")
  | Hinst _ _ _ _ => Error (Errors.msg "Calls are not implemented.")
  | Htailcall _ _ _ => Error (Errors.msg "Tailcalls are not implemented.")
  | Hcond cond args n1 n2 => Error (Errors.msg "Condition not implemented.")
  | Hjumptable _ _ => Error (Errors.msg "Jumptable not implemented.")
  | Hfinish r =>
    match r with
    | Some x => OK n s
    | None => OK n s
    end
  end.

Definition make_stm_cases (s : positive * stmnt) : expr * stmnt :=
  match s with (a, b) => (posToExpr a, b) end.

Definition make_stm (r : reg) (s : PositiveMap.t stmnt) : stmnt :=
  Vcase (Vvar r) (map make_stm_cases (PositiveMap.elements s)).

Definition make_statetrans_cases (r : reg) (st : positive * statetrans) : expr * stmnt :=
  match st with
  | (n, StateGoto n') => (posToExpr n, nonblock r (posToExpr n'))
  | (n, StateCond c n1 n2) => (posToExpr n, nonblock r (Vternary c (posToExpr n1) (posToExpr n2)))
  end.

Definition make_statetrans (r : reg) (s : PositiveMap.t statetrans) : stmnt :=
  Vcase (Vvar r) (map (make_statetrans_cases r) (PositiveMap.elements s)).

Definition make_globals (globals : PositiveMap.t (nat * expr)) : verilog := nil.

Definition make_verilog (s : state) : verilog :=
  let r := 500%positive in
  (make_statetrans r s.(st_statetrans)) :: (make_stm r s.(st_stm))
                                        :: (make_globals s.(st_variables)).

(** To start out with, the assumption is made that there is only one
    function/module in the original code. *)
Definition transf_module (m: module) : Errors.res verilog :=
  match PTree.traverse transf_instr m.(mod_code) with
  | OK _ s => Errors.OK (make_verilog s)
  | Error err => Errors.Error err
  end.

Fixpoint main_module (main : ident) (flist : list (ident * AST.globdef moddecl unit))
         {struct flist} : option module :=
  match flist with
  | (i, AST.Gfun (AST.Internal f)) :: xs =>
    if Pos.eqb i main
    then Some f
    else main_module main xs
  | _ :: xs => main_module main xs
  | nil => None
  end.

Definition transf_program (d : design) : Errors.res verilog :=
  match main_module d.(AST.prog_main) d.(AST.prog_defs) with
  | Some m => transf_module m
  | _ => Errors.Error (Errors.msg "Could not find main module")
  end.